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The Macro-Cosmos—the Universe—is 
amazingly infinite; the Micro-Cosmos—cells, 
molecules, atoms, electrons…—seems to be 
infinite, too; but the Mind…oh, the Mind!…
it projects further beyond…for sure! Isn’t 
this brief musing epistemological in nature, 
searching for limits?  

Science, technology, history, and 
philosophy are strongly related 
areas of knowledge. Perhaps, the 

best epistemologists are those who 
first were researchers in the sometimes 
called, and perhaps erroneously, hard 
disciplines (said with due respect and 
full recognition to pure epistemolo-
gists) because they, by force of edu-
cation and training, had to be deeply 
involved in the intricacies of physico-
chemical principles and laws and tech-
nological developments to carry out 
measurements, and need to delve back 
in time for those who did it or tried to 
do it before, often being surprised by 
the ingenuity shown by predecessors in 
much older times. After collecting ex-
perience for a long time, the scientist 
falls naturally into traditional philo-
sophical doubts and questions, the 
how’s and what’s, the up to where’s, 
and when’s. Quite interesting, children 
from three to five years old tend to of-
ten ask questions of this kind:  Daddy, 
Mommy, how are we here, how was I 
born, what is the sky, where does the 
sky end, and so on. Does that mean we 
very early in life develop such ques-

tioning attitude that soon thereafter we 
lose, or maybe it is repressed by paren-
tal poor response or lack of response?

In the two preceding notes about 
Laplace’s law [1], [2], we first recalled 
what it is and how it 
is frequently mentioned 
or applied in physiol-
ogy, finding that in this 
particular case, there is 
an apparent separation 
between physiology and 
physics supposedly back-
ing up the subject. Moreover, mistakes 
are almost a rule while amazingly 
and fortunately, the overall practical 
conclusions after very heavy simpli-
fications are correct and well dem-
onstrated by actual experiments and 
postmortem studies. The second note 
dealt with the mathematics of the law, 
and we believe that we practically ex-
hausted all the pathways leading to 
the final formula, both when the wall 
thickness is negligible and when it is 
finite and significant. Now, our hat 
displays the epistemologist’s sign, up-
setting perhaps some readers, but with-
out totally leaving out the quantitative 
view. Hence, the objectives of the note 
are established as follows:

 ▼ general objective: To introduce, dis-
cuss, and eventually produce an-
swers for the epistemological aspects 
associated with Laplace’s law

 ▼ specific objective: To discern if a math-
ematical equation has the same 
reach when obtained from two dif-
ferent physical settings (in our case, 
a phenomenon found in capillaries 

and the behavior of hollow stretch-
able cavities).
This is a good time to recall Thomas 

S. Kuhn’s book [3] as an excellent and 
well-versed material to take into ac-
count when these aspects occupy our 
concerns. This highly cited and rec-
ognized physicist and philosopher of 
science (1922–1995) introduced and 
used the concept of scientific para-
digm. Even though he never gave its 
precise definition, it may be described 
as a very general conception of the nature of 
scientific endeavor within which a given enqui-
ry is undertaken. Ours herein is an enqui-
ry, modest in relation with Kuhn’s hugely 

wider environment, both 
in space and time, but 
valid as such if the physi-
cal settings given above 
in the objectives are con-
sidered as minor subpara-
digms. We could synthe-
size more powerfully our 

question by asking what is the nature of 
 Laplace’s law. The latter really comes up 
as the central question addressed herein.

What Is Epistemology?
Epistemology (from Greek, e’plsth́ µh, 
episteme, knowledge, and lógoz, lo-
gos, theory), as a branch of philosophy, 
devotes itself to scientific knowledge, 
clearly differentiating it from common 
or popular knowledge, which usually 
does not go through reflexive critical 
filters. Typical questions posed by epis-
temology are as follows:

 ▼ What are the necessary and suffi-
cient conditions of knowledge?

 ▼ What sources offer possible answers?
 ▼ What is the structure of such knowl-

edge, and what are its limits?
Broadly speaking, it may be stated that 
epistemology deals also with the cre-
ation and dissemination of knowledge in 
specific areas [4]–[10], or perhaps bet-
ter, we should speak in terms of Theory 
of Science. Hence, the questions posed 
above regarding Laplace’s law clearly fall 
within the much wider spectrum set by 
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these definitions; more specifically, what 
the nature and limits of these law are. Its 
historical development may supply some 
leads. We think this aspect calls at least 
for consideration and discussion when 
dealing with this more or less hidden 
(and even perhaps less sig-
nificant) piece of physics.

Laplace’s Law Based 
on Capillarity
Our previous two notes 
showed that the first 
contributions, starting 
with Laplace himself, 
originated in the cap-
illary phenomenon. How 
does it manifest? De-
pending on the charac-
teristics of the fluid (water, alcohol, 
mercury, or so on), on the material the 
tube is made of (glass, metal, ceramic, 
or so on), and on the gas (in general, 
air) forming the environment of the 
system, the liquid in the vicinity of the 
wall becomes concave or convex. In 
fact, the tube does not have to be a capil-
lary to display such shapes. Quite inter-
esting, and even surprising, is that the 
fluid goes either up or down; the small-
er the diameter, the higher (or lower) 

the displacement, thus defying gravity 
(Figure 1). 

Numerical examples illustrate the 
following points: In a tube with a di-
ameter of 4 m, water would barely rise 
0.007 mm (negligible and essentially 

undetectable, but real); 
if the diameter is 4 cm, 
water goes up to 0.7 mm, 
but if the diameter gets 
down to 0.4 mm (already 
a capillary), the water 
rises up to 70 mm, giving 
the impression of being 
sucked up  without an 
active pump! This is pre-
cisely the method clinical 
biochemists use to collect 
small amounts of blood 

(with density very close to that of wa-
ter) from a punctured fingertip. Thus, by 
definition, capillary is a tube sufficiently 
fine so that attraction of a liquid into the 
tube is significant. Those use for hema-
tocrit determination (made of glass), for 
example, is in the order of 1.1–1.2 mm 
internal diameter and 1.5–1.6 mm exter-
nal diameter. There is a widely known 
equation to calculate the height of the 
column that can be found in any physics 
textbook or in the Web [11], [12], i.e.,

 h 5
2Tcos a

rgr
, (1)

where T  is the liquid–air surface ten-
sion (force/unit length), a is the angle of 
contact, r is the liquid density (mass/vol-
ume), g  is the gravitational field (force/
unit mass), and r  stands for the tube ra-
dius (length).

To better analyze this effect and dis-
cuss it further within the context of the 
note, we should remember basic good old 
physics, the so-called surface phenom-
ena, as described in a classic and highly 
recognized old textbook written by E. 
Perucca, in Italy, in 1932 [11]. However, 
we will slightly modify the derivation be-
cause, as found in other publications, the 
final Laplace’s law appears with only one 
surface tension instead of two.

The contact surface between two 
phases is a separation surface, as be-
tween liquid and gas, solid and gas, liq-
uid and liquid, and solid and liquid. A 
situation often encountered is a three-
phase system formed by solid, gas, and 
liquid. Herein, we are interested in the 
latter case, where the liquid phase plays 
a significant role. The surface tension 
T of a liquid depends on its nature. By 
and large and as a first approximation, 
T does not depend much on the gas that 
surrounds it; however, it decreases with 
the temperature and is greatly modified 
by any contamination (ethylic alcohol 
in air, 22; water in air, 73; and mercury 
in vacuum, 435, all in dyn/cm and at 
20°C). We can imagine T as the force 
to keep united the two edges of an ideal 
cut of 1 cm made over the liquid surface. 
The force, as said before in our previous 
notes, is perpendicular to the cut and 
tangent to the surface. Quite interesting 
is the fact that liquid films are contractile 
and cover the minimum surface compat-
ible with the mechanical links around 
them and applied external forces. In oth-
er words, their potential energy is mini-
mal (see in the following a brief descrip-
tion of contractile mercury droplets).

Imagine the surface separating liquid 
from air (or better, from vacuum). Each 
liquid molecule within the liquid is at-
tracted by the surrounding molecules 
and such attraction quickly decreases 
with the distance, becoming almost zero 
at a distance rm (defined as the radius of 

h2
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h
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FIGURE 1 A schematic showing menisci and capillary effect. (a) Two capillary tubes C1 
and C2 of different diameters. Menisci are concave and the larger lumen displays a 
lower height h1 as compared with the smaller one h2. (b) A capillary immersed in mer-
cury produces a height h negative with respect to the bigger container level. Besides, 
menisci are convex. 
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molecular action), which lies in the order 
of about 4 nm, if it is water. Molecules 
fully immersed in the liquid’s bulk are 
symmetrically attracted by the neighbor-
ing molecules, but those belonging to the 
surface region are attracted by the cohe-
sion forces resultant. Such resultant force 
increases as the molecule gets nearer the 
surface. Thus, surface tension can be 
looked at as an indicator of internal cohe-
sive forces of molecular origin.

A liquid in contact with a solid wall 
takes one of the shapes shown in Fig-
ure 2. The shaded areas and upwards, as 
moving in a funnel, up to the vertex A 
(a) or convex border (b), encompass the 
fluid region (say, water or mercury). By 
the Virtual Work Principle (for a body 
in equilibrium, when a virtual deforma-
tion infinitely small is applied, the virtual 
work of the external forces equals the in-
ner deformation work), point A will be in 
equilibrium when the resultant force R is 
normal to the wall and verifies that

 R 5 T12 1 T23 1 T13 5 0, (2)

where the bold face indicates vectors. 
Force R tends to bring A off the wall, 
which is impossible because of the me-
chanical link imposed by it; thus, equi-
librium means 

 T13 5 T23 1 T12 cos a, (3)

where a stands for the angle linking wall 
3 and fluid 2 (air, usually). The T ’s are 
the respective magnitudes of the vectors 
mentioned above. A virtual displacement 
is an infinitesimal change in the position 
of the coordinates of a system such that 
the constraints remain satisfied, and of-
ten, the principle is summarized by the 
following equation:

 dWi 2 dWe 5 0, (4)

where the W ’s stand for internal and 
external infinitesimal virtual works, re-
spectively. The cosine of the angle a will 
be positive or negative for a smaller or 
larger than 90°.

Refer to Figure 3, where a small 
sphere with center O and radius dr cuts 
a nonplanar liquid surface S having a 
circumference G. The latter determines a 
differential area

dS 5 p 1dr 22. (5)

A diameter MM’ and a 
neighboring one form 
a differential angle dw, 
thus determining over 
the circumference line 
two equal arcs dl1 5 dl r1 
5 dw · dr. The superficial 
tension applies to these 
two opposing arcs, re-
spectively, forces t1?dl1 5 t1?dl1’, tan-
gent to the surface S and perpendicular 
to the arcs (boldface indicates vectors). 
Owing to the curvature of S, both forces 
produce an infinitesimal resultant dF1 
that points downward toward the dis-
tant center of curvature C1, different 
than the small sphere’s center cutting 
the liquid surface. Such force is given by

dF152t1 dl1 cosb 522t1 dl1 sin g, (6)

dF1 5 2t1
# dw # dr # 1dr/r1 2

 5 2t1
# 1dr 22 # dw # 11/r1 2 , (7)

where r1 is the curvature radius at point 
O of the section MOM’C1; this radius 
will be positive when its direction coin-
cide with the direction of the normal n 

and negative with the op-
posite direction. By the 
same token, a perpen-
dicular diameter to MM’ 
accompanied by another 
neighboring one would 
determine two opposing 
arcs dl2 and dl r2 so that an 
equation similar to (7) is 
obtained, i.e.,

dF2 5 2t2
# 1dr 22 # dw # 11/r2 2 . (8)

The four equal arcs dl1, dl1’, dl2, and dl2, 
contribute to the perpendicular action 
along n in the amount

 dF 5 dF11dF2

 5 2t1
# 1dr 22 #df # 11/r1 2  

 1 2t2
# 1dr 22 # df # 11/r2 2 , (9)

 dF 5 dF1 1 dF2

 5 2 1dr 22df 3 1t1/r1 2 1 1t2/r2 2 4.
 (10)

Perucca [11] states that for any pair of nor-
mal sections perpendicular to each other, 
the addition of their respective inverses 
is a constant, in turn equal to the addition 
of the two principal curvatures, i.e., 
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FIGURE 2 Surface tension. Two types of menisci: concave [(a) as water in glass] and convex 
(b), as mercury in glass. When the (a) link angle α < 90°, it is said that the fluid wets the 
wall and (b) when it is > 90°, the fluid does not wet the wall. The dotted arrow repre-
sents the surface tension T12 between medium 1 and 2 (say, air and water). There is also 
a surface tension T23 between the solid wall (say, glass) and the fluid (downward vertical 
thick arrow, tangential to the inner wall surface). Finally, a third surface tension T13 (also 
tangential to the wall and pointing upward) manifests itself between air and the wall. 
The shaded areas on both figures mark the fluid phase (say, water or mercury).

Molecules fully 
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liquid’s bulk are 
symmetrically 

attracted by the 
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molecules.
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3 11/r1 2 1 11/r2 2 45 constant, 

 5 3 11/R1 2 1 11/R2 2 4.

 (11)

Here, it must be reminded what Koiso 
and Palmer recently stated when recall-
ing Thompson’s expression for a system in 
equilibrium [13], [14],

T1/R1 1 T2/R2 ; constant, (12)

where 1/R1 and 1/R2 are the principal 
curvatures of the considered smooth 
surface, and T1 and T2 are orthogonally 
directed tensions, which depend on the 
material and normal direction of the 
surface at each point. Expression (12) 
is also equal to [(t1/r1) 1 (t2/r2)], in 
which we emphasize that r1 and r2 
stand for any pair of perpendicular 
radii different from the two principal 
axes. We remark that on the particular 
case of a sphere, the curvature itself is 
constant everywhere. Hence, consider-

ing Thompson’s  expression, r1 and r2 
of (10) can be replaced by R1 and R2 
leading to

dF 5 2 1dr 22 # dw # 3 1t1/R1 2 1 1t2/R2 2 4. 
 (13)

Integrating with respect to w between 0 
and p/2, i.e., adding up the normal ac-
tions dF generated by all the elements dl 
around the small circumference of radius 
dr, we get

dF 52 # 1dr22 # 31t1/R1211t2/R224 #3
0

p

2
 df,

  (14)

dF 5 2 # 1dr 22 # 31t1/R1 21 1t2/R2 2 4 1p/2 2 , 
 (15)

dF 5 dS # 3t1/R1 1 t2/R2 4 (16)

because p?(dr)2 5 dS and the 2’s in (15) 
cancel out. If now the surface element dS 

is transferred to the left side of the equa-
tion, we end up with

P 5 dF/dS 5 3t1/R1 1 t2/R2 4, (17)

which is nothing else than our good 
friend Laplace’s law, now showing dif-
ferent tensions for each radius, as it 
should be. Inexplicably, even though 
Perucca’s setting of the problem is 
clean and well thought, the two surface 
tensions along the principal merid-
ians appear as equal, losing generality 
and clearly violating what experience 
shows in pathophysiology; remem-
ber, for example, an aortic aneurism, 
where the dissection takes place along 
the longitudinal axis because only its 
perpendicular direction feels the pull 
and the former suffers no surface ef-
fect [1], [2]. To underline the concepts 
herein used and discussed, we must 
emphasize the difference between any 
two pairs of perpendicular radii of a 
small curved surface patch—such as r1 
and r2 in (11), and how the principal 
radii are defined. The maximum and 
minimum at a given point on a surface 
are called the principal curvatures, 
and they measure the maximum and 
minimum bending of a regular sur-
face at each point. To dissipate doubts, 
these definitions have been given by 
Gray in 1997 [15] and also by E.W. 
Weisstein [16].

Laplace’s Law Based 
on Hollow Cavities
Our previous notes [1], [2] dealt ex-
tensively with the mathematical deri-
vations of the law. Some were based 
directly on considering hollow cavi-
ties with elastic walls that, in most 
cases, show a finite, measurable, and 
nonnegligible thickness. Therefore, 
the concept of wall stress was intro-
duced, often used in  cardiac mechan-
ics. Small curved patches, as small as 
necessary, defined by the two princi-
pal radii were the elements that any 
complex three-dimensional surface 
was decomposed into. One of the best, 
most  direct and rigorous derivations 
was that produced very recently by 
Federico Armesto. There is no need 
here to repeat any of that material. 
It must be remarked, however, that 
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τ1dl ′1

γ γ
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dl ′2

M

Σ

Γ
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FIGURE 3 Perucca’s setting. The circumference G above is part of a small sphere of radius 
dr. That circumference lies on and is part of surface Σ. Diameter MM’ forms an angle dw 
with another neighboring diameter.
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this setting differs  significantly from 
the capillary effect viewpoint, hence 
bringing up the doubt of validity of 
the law, even though the expression 
is the same.

Static and Dynamic Mercury Drops
When a drop of mercury is placed in di-
lute acid containing potassium dichro-
mate and an iron wire is dipped into the 
liquid in close proximity to the drop, 
regular and rapid oscillations of the drop 
occur that may last for hours. At least, 
two related aspects can be recorded as ev-
idences of electrochemical activity: elec-
trical potential and impedance changes 
[17], [18].

When the needle is brought into con-
tact with the droplet, oscillations stop 
and the impedance drops to virtually 
zero. The impedance increases when the 
droplet contracts and decreases during 
the expansion. Analysis of the events 
reveals a bistable nature that is sugges-
tive of the electrocapillary dependence 
of mercury surface tension on electrode 
potential and polarizing current density. 
The needle becomes positive by approxi-
mately 0.7–0.8 V to the interior of the 
mercury during the second half of the 
expansion period, and the needle point 
becomes black, probably through forma-
tion of Fe3C.

A simple explanation would suggest 
that the potassium dichromate decreases 
mercury surface tension due to repulsive 
forces in the double layer at the mercury–
electrolyte interface. As the iron needle is 
advanced toward the drop, electrode cur-
rent increases due to decreasing interelec-
trode impedance until a critical current is 
reached. The potassium salt then diffuses 

back to the surface of the drop and in-
creases the mercury potential resulting 
in a change of shape. This phenomenon 
exhibits transition kinetics at one inter-
face (activation and passivation of iron), 
which induces a mechanical change at a 
proximal boundary (mer-
cury), the events being 
mediated by variations in 
electrolyte current and 
electrode surface poten-
tials. Inside the droplet, 
a pressure must build up 
following Laplace’s law 
(Figure 4).

Discussion
The subject we are deal-
ing with herein deserves to be discussed 
within the epistemological framework. 
Let us see why this standing finds justi-
fication. First, looking into its historical 
development, we found that the capil-
lary effect was the original motivation 
leading to the equation and none of the 
authors contributing to it (Jurin, Young, 
Laplace, and Gauss) ever mentioned vol-
umetric cavities under pressure. Robert 
Woods was the first to apply the law to 
hollow organs, and Karl De Snoo ap-
pears as the first to obtain an ingenious 
derivation followed by actual measure-
ments in gravid uteri under dilatation, 
but no reference was made by the latter 
to the capillary action. From a physics 
point of view, there is no relationship 
whatsoever between hollow organs or 
balloons and capillarity; none the less, 
the mathematical equation is the same. 
Hence, is its application valid? We should 
say it is because the equation has been 
demonstrated in the two areas, starting 

from the basic capillary phenomena and 
also from a volumetric conception (as 
cupolas or balloons of any shape, even 
including the wall thickness).

Capillaries triggered also side deriva-
tions that deserve mentioning, at least 

as a curiosity. Gabriel 
Lippmann, a physicist, 
showed the existence of 
an electric phenomenon 
associated with mercury 
when it fills capillaries. 
His contribution had im-
portant practical conse-
quences in the field of 
cardiology, for it offered 
the basis for the first con-
tinuous records of cardiac 

electrical activity with the development 
of the capillary electrometer [19]. But 
there was more to this application. Since 
the capillary meniscus is a surface tension 
phenomenon, mercury drops under cer-
tain conditions can show an outstanding 
rhythmic electric and contracting activ-
ity, where surface tension plays a decisive 
role [17], [18]. Figure 4 illustrates such 
behavior. A puzzling question deserves 
to be posed: Does Laplace’s law hold in 
these drops? How could this be tested? 
We think it does.

After Laplace’s times, and in a way 
to be considered as his immediate con-
tinuator in capillarity studies, Gauss in 
1829 clearly stands out [2]. He mani-
festly recognizes Le Marquis as his ante-
cessor in this respect and, perhaps, can 
even be credited with indirectly naming 
the law. The mathematical formulation 
does not appear as clear enough and is 
rather cryptic using a notation not cur-
rent nowadays. However, it is deemed as 

(a) (b) (c)

FIGURE 4 A mercury droplet immersed in a solution of dilute nitric acid and potassium dichromate. (a) A steel needle gets near the 
droplet surface. (b) As the needle gets closer, a local inward bending takes place. (c) When the needle touches the surface, mercury 
literally sticks to it. 

Potassium dichromate 
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repulsive forces in the 
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mercury–electrolyte 

interface.
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a big step in the treatment of the subject. 
The principle he adopted is that of virtu-
al velocities, gradually transformed later 
on into the principle of the conservation 
of energy. Gauss pointed out the impor-
tance of the angle of contact between 
the two interacting surfaces; thus, he 
supplied the principal defect in Laplace’s 
work. Besides, Gauss mentioned the ad-
vantages of the method of measuring 
the dimensions of large drops of mer-
cury and large bubbles of air in liquids 
under certain conditions by Segner and 
Gay Lussac, afterward carried out by 
Quincke [2]. 

Conclusion 
Laplace’s law explains all the capillar-
ity phenomena as it leads to the pressure 
within a soap bubble or how a small bub-
ble dumps its air into a bigger one if both 
are interconnected, a fact well known in 
certain  respiratory diseases, such as atel-
ectasis [1], [2], [11]. The demonstration 
given by Perucca and some of the dem-
onstrations given in [2] clearly show that, 
no matter what the initial setting is (ei-
ther capillary effect or hollow elastic con-
tainer), the law is valid and beyond any 
doubt. Surface tension puts into evidence 
forces and generates an internal pressure 
within well-defined boundaries. In one 
sentence, it was mentioned that two fully 
different physical phenomena (capillar-
ity, where three phases are components, 
and elastic hollow bodies sustaining pres-
sures) converge to the same mathemati-
cal equation. As a corollary, we might 
add that calling Laplace’s law of physiol-
ogy would not be appropriate but rather 
DeSnoo-Barrau’s because the latter was 
 directly obtained from a hollow organ 
(the uterus).
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