
Automated Compositional Importance Splitting

Carlos E. Buddea, Pedro R. D’Argeniob,c, Arnd Hartmannsa

aUniversity of Twente, Enschede, Netherlands
bUniversidad Nacional de Córdoba, Córdoba, Argentina

cSaarland University, Saarbrücken, Germany

Abstract

In the formal verification of stochastic systems, statistical model checking uses
simulation to overcome the state space explosion problem of probabilistic model
checking. Yet its runtime explodes when faced with rare events, unless a rare
event simulation method like importance splitting is used. The effectiveness of
importance splitting hinges on nontrivial model-specific inputs: an importance
function with matching splitting thresholds. This prevents its use by non-experts
for general classes of models. In this paper, we present an automated method
to derive the importance function. It considers both the structure of the model
and of the formula characterising the rare event. It is memory-efficient by ex-
ploiting the compositional nature of formal models. We experimentally evaluate
it in various combinations with two approaches to threshold selection as well as
different splitting techniques for steady-state and transient properties. We find
that Restart splitting combined with thresholds determined via a new expected
success method most reliably succeeds and performs very well for transient proper-
ties. It remains competitive in the steady-state case, which is however challenging
to all combinations we consider. All methods are implemented in the modes tool
of the Modest Toolset and the Fig rare event simulator.

Keywords: rare event simulation, importance splitting, importance function,
statistical model checking, transient analysis, steady-state analysis.

1. Introduction

Nuclear reactors, smart power grids, automated storm surge barriers, net-
worked industrial automation systems: we increasingly rely on critical technical
systems and infrastructures whose failure or extended unavailability would have
drastic consequences. It is imperative to perform a quantitative evaluation in the
design phase based on a formal stochastic model, e.g. on extensions of continuous-
time Markov chains (CTMC), stochastic Petri nets (SPN), or fault trees. Only
after the probability of failure and the expected unavailability are shown to be
sufficiently low can the system design be implemented. Calculating such values—
which may be on the order of 10−15 or lower—is challenging. For finite-state
Markov chains or probabilistic timed automata (PTA [46]), probabilistic model
checking can numerically approximate the desired values, but the state space

Preprint submitted to Science of Computer Programming 16th January 2019

explosion problem limits this approach to small models. For other models, in
particular those involving events governed by general continuous probability dis-
tributions, model checking techniques only exist for specific subclasses with limited
scalability [55] or merely compute probability bounds [31].

Statistical model checking (SMC [38, 72]), i.e. using Monte Carlo simulation
with formal models, has become a popular alternative for large models and form-
alisms not amenable to (traditional) probabilistic model checking like stochastic
(timed) automata [9, 18]. SMC trades memory for runtime: memory usage is
constant, but the number of simulation runs which are needed to converge to a
result can easily explode with the desired precision. This is exacerbated in the
presence of rare events. For instance, when the true probability of an event is
10−15, one may want that the error of an estimation is no larger than 10−16. Such
tight requirements in the precision of estimations may render traditional Monte
Carlo simulation approaches infeasible [24, 65].

Rare event simulation methods (RES [58]) have been developed to attack this
problem. They increase the number of simulation runs that reach the rare event
and adjust the statistical evaluation accordingly. Broadly speaking, the main RES
methods are importance sampling and importance splitting. They complement
each other in several application domains [57]. The former modifies the probability
distributions which dictate the stochastic behaviour of the model, with the aim
to make the event more likely. The challenge lies in finding a “good” change of
measure to modify probabilities in an effective way. Importance splitting instead
does not modify the model, but rather refines the simulation mechanics to perform
more (partial) simulation runs, which may start from non-initial states and end
early. Here, the challenge is to find an importance function that assigns to each
state a value indicating how “close” it is to the rare event. More (partial) runs
will be started from states with higher importance.

Importance sampling requires an explicit formula for the distributions govern-
ing all state transitions [37]. This is typically insufficient on its own to allow a
provably efficient change of measure, and further characterisations of the distribu-
tions are needed, like the memoryless property [4] or a rarity parameter [52]. Sev-
eral specific models in the literature satisfy these assumptions, which has allowed
an effective use of importance sampling in the analysis of e.g. network reliability,
queueing theory, particle transport, and counting problems [6, 7, 10, 39, 56].

Importance splitting in principle poses no constraints on the distributions [24,
51]. However, splitting depends on an inherently layered state space where several
transition steps govern the rarity of the event studied. If instead the rarity depends
on taking very few transitions with low probabilities, then the splitting approach
will not be effective. This is e.g. the case when heavy-tail distributions govern the
individual steps of the rare behaviour of the model. Importance splitting enjoys
a rich scope of applications, most prominently in queueing theory but also in
e.g. dependability analysis, randomised algorithms, distributed systems, particle
transport, and hybrid systems [8, 15, 42, 51].

Thus, to tune a particular implementation, both methods require certain know-
ledge of the specific setting where they are applied. Overall, importance splitting
appears more amenable to automatic approaches across different modelling form-

2

alisms using different kinds of probability distributions due to its black-box view
of the model. We thus focus on the automation of importance splitting in this
paper. To achieve efficient splitting in an automated way, the main challenge lies
in deriving a good importance function. However, efficiency also hinges on finding
good values for further nontrivial parameters: depending on the concrete splitting
method used, thresholds (the importance values at which to start new runs) and
splitting or effort factors (how many new runs to generate at each threshold) need
to be chosen. The performance of importance splitting for RES in a specific model
can vary drastically with the choices made for these parameters [11, 51].

In general, the quality of a choice of parameters depends heavily on the struc-
ture of the model at hand; making good choices requires an expert in the system
domain, who should be experienced with the modelling formalism as well as the
selected RES method [65]. In this work we study ways to alleviate such a require-
ment, proposing combinations of techniques that enable an effective application
of importance splitting on a general set of systems. We highlight that to align
RES with the spirit of (statistical) model checking as a “push-button” approach,
it is necessary to devise an automatic selection of parameters that perform well in
most situations. Furthermore, the methods automating such selection must not
negate the memory usage advantages of SMC with respect to traditional model
checking. These constitute the main challenges we address here.
Contributions. In this paper, we present and experimentally evaluate a set of
ingredients that, combined, allow applying robust fully automated importance
splitting on general models, including non-Markovian ones, for RES in SMC.
The ingredients are (i) a compositional method to automatically construct an
importance function from the formal model and a temporal logic property query
(Section 3), (ii) three existing splitting techniques that determine the details of
how to manage the partial runs and calculate a correct estimate (Section 4),
and (iii) two algorithms—one existing, one new—to derive thresholds and factors
(Section 5). We consider both transient and steady-state properties. We use the
splitting methods Restart (Section 4.1), fixed effort [25] (Section 4.2), and fixed
success [53, 57] (Section 4.3). While Restart was proposed for steady-state ana-
lysis and later extended to transient properties [65, 66], the latter two are geared
for estimating probabilities of transient events1. The two algorithms for threshold
selection are a sequential Monte Carlo (SEQ) approach [17] with a single fixed
splitting factor specified by the user for all thresholds (Section 5.1) and a new
“expected success” (EXP) technique (Section 5.2). EXP selects thresholds and an
individual splitting factor for each threshold, removing the need for the user to
manually select a global splitting factor. We implemented all techniques in the
Fig tool [11] and the modes simulator [15] of the Modest Toolset [34]. The
techniques can be freely combined, and work for all the formalisms supported by
the two tools—including CTMC, input-output stochastic automata (IOSA [22]),
and stochastic timed automata (STA [9]). We finally perform an extensive exper-

1For regenerative Markov chains, fixed effort can also be used for steady-state analysis [24].

3

imental evaluation (Section 7) of the various combinations on several case studies,
including three new and challenging examples for steady-state measures.
Previous work. This is an extended version of our previous conference public-
ation [13], which we combine with material from [12] and [11]. Compared to [13],
we add (i) a detailed explanation of the compositional importance function ap-
proach originally introduced in [12] in Section 3, (ii) the analysis of steady-state
properties throughout the paper, (iii) an explanation of the SEQ technique on
the same level of detail as for EXP in Section 5, (iv) two new challenging models
(database and pipeline) in the experimental evaluation in Section 7, one of them
non-Markovian, and (v) a more detailed description of the simulation and RES
capabilities of the modes and Fig tools in Section 6.
Related work. In [68], Villén-Altamirano et al. compared the principles behind
Restart with those of the original splitting approach [44], arguing in favour of the
generality of Restart. Garvels and Kroese [25] performed a thorough theoretical
and empirical comparison of different variants of Restart. All these works rely
on the user to provide the importance function, thresholds, and splitting factors.
We intend to derive this data from the model and property query provided by
the user. In that sense, work by Jégourel et al. [40, 41] is closer to ours: they
build an importance function (score function) from the temporal logic property
query, and then choose the splitting points adaptively as in [16]. Their method
however relies on a layered restatement of the property, resorting to approximate
heuristics when this is not possible. Our proposal also differs from [40, 41] in
that we additionally consider the structure of the model to measure a notion of
distance from an arbitrary state to the rare event. In [73] a method similar to the
monolithic (i.e. non-compositional) approach described later in [11] is introduced
to build an importance function on SPN used with Restart. This is applicable
only to a restricted variant of SPN and throughput measures [74]. RES on SPN
has also been approached through importance sampling [56], selecting the change
of measure automatically from the structure of the model in a way that “could
be adapted to importance splitting.” However that method requires restricting
the scope of applicability: only Markovian systems are considered and all trans-
ition intensities (i.e. rates) need to be parameterised by a rarity parameter ϵ [74].
The difficulties of automating and generalising importance sampling are also illus-
trated in [43]: their proposed automatic change of measure guarantees a reduction
in the variance of the estimator, but this only applies to models whose stochastic
behaviour is described by integrable products of random variables following ex-
ponential and uniform distributions. We argue that such strong restrictions can
be dropped by automating importance splitting to address RES. We aim at gen-
eral modelling formalisms, minimising the restrictions on the models, but still
providing a significant performance boost over standard Monte Carlo. We do not
aim at provable improvements in specific settings, but focus on general models
and empirically study which methods work best in practice. We are not aware of
other practical methods for, or comparisons of, automated splitting approaches
on general stochastic models.

4

Figure 1: Tandem queue

2. Preliminaries

We write {| . . . |} for multisets, in contrast to sets written as { . . . }. N is
the set of natural numbers { 0, 1, . . . } and N+ = N \ { 0 }. We use symbol ! to
denote the disjoint union of sets. In our algorithms, operation S.remove() returns
and removes an element from the set or multiset S. The element may be picked
following any policy, e.g. uniformly at random, in FIFO order, etc.

2.1. Simulation Models
Since we are interested in RES approaches that can work across several stochastic

modelling formalisms with discrete and continuous time and state, we use an ab-
stract notion of models:

Definition 1. A (simulation) model M is a discrete-time Markov process whose
states s ∈ S consist of a discrete part and, optionally, a continuous part. The
model has a (single) initial state that can be obtained as M.initial(). Operation
M.step(s) samples a path in M from state s, and returns the next state of the path
after one time step.

A CTMC Mctmc is a continuous-time stochastic process. We can cast it as a
simulation model Msim by using the number of transitions taken as the (discrete)
time index of Msim . Thus, given a state s of Mctmc , Msim .step(s) returns the first
state s′ of Mctmc encountered after taking one transition from s on a sample
path. In effect, we follow the embedded discrete-time Markov chain. If the event
of interest refers to time, then we also need to keep track of the global elapsed
(continuous) time as part of the states of Msim .

Example 1. Consider a tandem Jackson network consisting of two sequentially
connected queues as in Figure 1. Customers arrive at Queue 1 following a Poisson
process with parameter λ; after being attended by a server at rate µ1 they enter
Queue 2, where they are attended by another server at rate µ2; after the second
service customers leave the system. This tandem queue system is a CTMC: time
lapses between events are independent and exponentially distributed. The tandem
queue has received considerable attention in the RES literature [24, 26, 27, 50,
62, 69].

5

2.2. Property Queries
A model M is a stochastic process X = {Xt | t ∈ N }. A probability space

(Ω,F , P) and a measurable space (S,Σ) are assumed so that each Xt is a random
variable in Ω taking values on the state space S of M. Our algorithms require
models to be Markov processes: this can be done without loss of generality, since
for formalisms with memory, e.g. due to general continuous probability distribu-
tions, we encode the memory in the state space. In particular this is performed
for values and expiration times of clocks in the case of IOSA and STA models.

An event will be a measurable subset of S, i.e. an element of Σ. In what follows
we refer to A ! S as the rare event of interest, that is a (measurable) set of states
that M can enter with positive but very small probability. We call elements in A
target states. In certain cases a stop event B ! S denotes an end-of-simulation
condition so that B ∩A = ∅ and limt→∞ P (Xt ∈ A !B) = 1. We call elements
in B avoid states.

We are interested in the probabilities for transient and steady-state properties.
The general goal is to estimate the probability 0 < γ ≪ 1 of observing the rare
event A in M. The manner in which γ is defined determines whether the probability
is “transient” or “steady-state.” For a thorough mathematical description of these
concepts in the context of RES over formal models we refer the reader to [11,
Sec. 2.5.1] and only summarise the fundamental notions here.

Definition 2. For Markov process X = {Xt | t ∈ N } of model M, let E ⊆ S be
an event observed with positive probability in X. The entrance time into E is the
random variable describing the first time index where event E is observed:

TE
def= inf{ t ∈ N | Xt ∈ E }.

The transient probability of the rare event A given the stop event B is

γt = P (TA ! TB)

where TA and TB are the entrance times into A and B, respectively. The steady-
state probability of the rare event A (also denoted long run probability) is

γs = lim
t→∞

P (Xt ∈ A).

For models with a notion of time that is different from the process’ index (e.g.
for CTMC as explained above), we take the above definition of the steady-state
probability on the corresponding induced (continuous-time) process with that
notion of time instead. This works since our events are defined over states only.

These concepts are common in the RES literature. In our setting, transient
probabilities measure the likelihood that a sample path drawn from M reaches
a target state in A, before visiting an avoid state in B [24, 57]. Steady-state
probabilities measure the proportion of (model) time that a sample path spends
in target states once the system reaches an equilibrium [24, 65, 70]. Concretely, we
estimate these values via the evaluation of property queries (or simply properties)
on sample paths:

6

Definition 3. A transient property φ ∈ S → { true, false, undecided } maps tar-
get states to true, avoid states to false, and all other states to undecided .

Definition 4. A steady-state property ψ ∈ S → R!0 maps target states to their
sojourn time2 and all other states to 0.

For transient analysis of a model M, standard SMC/Monte Carlo simulation
generates a large number n of sample paths and estimates the transient probab-
ility as γ̂t

def= ntrue
n where ntrue is the number of paths that satisfy the transient

property φ. To determine whether a sample path satisfies φ, evaluate φ sequen-
tially for every state on the path and return the first outcome ̸= undecided . Notice
that, since limt→∞ P (Xt ∈ A !B) = 1, with probability 1 all sample paths will
eventually reach a state where φ returns true or false. This procedure corres-
ponds to estimating the value of the until formula P=? (¬avoid U target) in a logic
like PCTL [32], as used in e.g. Prism [47], for state formulæ avoid and target
identifying the stop and rare events in M respectively. Time-bounded until U"b is
encoded by tracking the elapsed time tglobal in states and including tglobal > b in
avoid .

Example 2. For a model M of the tandem queue from Example 1 let q1 denote
the number of customers or packets in Queue 1 and q2 the number in Queue 2.
Let M.initial() = (1, 0) = (q1, q2), i.e. the queue initially has one packet in Queue 1
and none in Queue 2. For a given maximum capacity C of the second queue,
the transient property P=? (q1 > 0 U q2 > C) queries the probability of observing
an overflow in Queue 2 before the first queue becomes empty. The resulting
transient probability γt is rare for certain service rates µ1 and µ2 and capacities
of both queues.

For steady-state analysis it is possible to work with regenerative Markov pro-
cesses [24, 59]. Alternatively, the batch-means method offers a practical and more
general approach [23, 48, 49]. In batch-means a single “long” sample path is gen-
erated and divided into batches { bi }ni=1 of fixed size k each3, which are then
treated similarly to the n sample paths of transient analysis [48, 60]. This favours
the observation of actual steady-state behaviour because only the first batches will
contain the transient phase of the model. However, models exhibiting multi-modal
stochastic behaviour cannot be studied in this way [5, 54].

In the scope of definitions 1 and 4, batch-means involves drawing a sample path
from M that visits states s1, s2, . . . , sm1 (where e.g. m1 = k for discrete models)
constituting the first batch b1. The next batch is generated as the continuation of
this initial sample path, viz. b2 = sm1+1, sm1+2, . . . , sm2 , and so on. The resulting
batches { bi }ni=1 are used to estimate the steady-state probability γ̂s

def= 1
nk

∑
ψ(bi)

for steady-state property ψ, where ψ(bi)
def=

∑mi

j=mi−1+1 ψ(s
i
j) for states sij from

2In a sample path this is the sampled time of permanence in the state before performing a
transition to the next state—which may be the same state as before in case of a self-loop.

3For discrete-time models the batch size is the number of steps, i.e. the number of states
visited in a sample path; for continuous-time models it is the sum of sojourn times.

7

batch bi. Thus γ̂s is an estimate of the proportion of time spent on target states.
This procedure corresponds to estimating the value of the steady-state formula
S=?(target) in a logic like CSL [2] for state formula target .

Example 3. In the setting from Example 2 (and regardless of the initial state
of M) the steady-state property S=? (q2 = C) queries the proportion of time that
Queue 2 is saturated in the long run.

For both transient and steady-state analyses and given some confidence level
selected by the user, Monte Carlo simulation usually reports a confidence interval
around the point estimate γ̂. In particular, the division of the sample path in
batches for the batch-means method in steady-state analysis is performed spe-
cifically for this purpose: confidence intervals are computed from a set of meas-
urements, thus the need to separate the (single) long sample path into several
batches, each of which produces one measurement.

2.3. The Importance Function
Importance splitting increases the simulation effort for states “close” to the

target set. Proximity is represented by an importance function fI ∈ S → N
that maps each state to its importance in { 0, . . . ,max fI }. Ideally states close to
the rare event A should have higher importance than those far from it, where the
notion of distance is stochastic: a state s is close to the rare event if the probability
of visiting some state in A after visiting s is high. To simplify our presentation
we assume that fI(M.initial()) = 0, fI(starget) = max fI for all starget ∈ A, and
if s′ := M.next(s), then |fI(s) − fI(s′)| ! 1. These assumptions can easily be
removed [11, 51].

All importance splitting methods provide unbiased estimators for the (transi-
ent or steady-state) property under study. The quality of the importance function,
i.e. how well it resembles the proximity of the states to the rare event, determ-
ines the variance of the estimator. The goal is to obtain an estimator with lower
variance than with the use of standard Monte Carlo simulation. This means that
the performance, but not the correctness, of importance splitting hinges on the
quality of the importance function fI .

Traditionally, fI is specified ad hoc for each model domain by a RES ex-
pert [25, 57, 65]. Methods to automatically compute an importance function are
usually specialised to a specific formalism or a particular model structure, poten-
tially providing guaranteed efficiency improvements [26, 40, 41, 73]. We use an
automatic method that is applicable to any stochastic compositional model with
a partly discrete state space. As a heuristic, it does not provide mathematical
guarantees of performance improvements, but is aimed at generality and provid-
ing “usually good” results with minimal user input. We describe this method in
detail in Section 3.

2.4. Levels, thresholds and factors
Given a model and importance function fI , importance splitting increases the

simulation effort of sample paths that visit states with growing importance. This

8

can be carried out in different ways, as we detail in Section 4. All techniques
save and restore states from sample paths. For instance, in a typical Restart
implementation, when a simulation run (i.e. a path currently being sampled in
the model) visits a state with higher importance than those observed before, the
state is saved and new (independent) simulation runs are initiated from that state.

In principle importance splitting could spawn more simulation runs whenever
the current sample path moves from a state with importance i to one with import-
ance j > i. However, for certain importance functions and models, the probability
of visiting a state with a higher importance could be often close to 1 for many
of the i. In such scenarios splitting on every increment would lead to excessively
many (partial) runs and high runtime.

It is thus common to partition the importance values into a set of intervals
called levels, so that the saving and re-initiating of simulation runs is performed
when a state in a higher level (rather than with higher importance) is visited.
This results in a level function fL ∈ S → N where, again, the initial state is
on level 0 and all target states are on the highest level max fL. We refer to the
boundary between the highest importance of level l−1 and the lowest importance
i of level l as the threshold Tl, identified by i. Some splitting methods are further
parameterised by the “amount of splitting” at each threshold or the “effort” at
each level; we use splitting factor and effort functions fS resp. fE in N → N+ for
this purpose.

3. Compositional Importance Functions

One of our main motivations is to develop methods that are versatile, e.g.
whose scope of applicability includes models as general as possible. In particular
we intend to scale in terms of model size, for which we resort to compositional
descriptions of models. A compositional model is a parallel composition of com-
ponents M = M1 ∥ . . . ∥ Mn. Each component can be seen as a model on its own,
but these may interact, which they usually do via a synchronisation/handshaking
mechanism. For instance, compositional CTMC models in Prism or the Modest
Toolset use full synchronisation. This means that if the label a is shared among
components M1, . . . , Mn, i.e. it decorates some transition in each of them, then a
transition labelled a in any component can only take place if each other compon-
ent can also take some transition labelled a. Instead, IOSA models in the Fig tool
use broadcast communication channels where all components are input-enabled.
This means that if a component “outputs” label a when taking a transition, other
components may not react to it (i.e. if their current local state does not enable
transitions labelled with a) even when a is part of their alphabet.

The fundamental notion behind our compositional importance function de-
rivation method for a specific (single) model is that, regardless of its stochastic
nature, the importance of a state s should reflect its (stochastic) proximity to
any target state. For model M consider a directed graph representation where the
nodes are the states of M and the edges represent the transitions describing its
behaviour; i.e. edge s → s′ indicates state s′ can be reached from s with positive
probability via some transition in M. Then the rare event A is a set of nodes in

9

the graph, and the distance to A of any state, measured as the minimum number
of edges between s and any s′ ∈ A, is a rough approximation of its importance.

A breadth-first search (BFS) that starts from A and uses the reverted edges of
the graph can compute these importance values. The idea can be refined e.g. to
consider the (potentially) probabilistic nature of the transitions: add weights to
the edges of the graph, to reflect quantitatively the likelihood of taking the trans-
itions they represent, and employ Dijkstra or A* instead of BFS. However, even in
its most simple form, the method can perform well on general models because it is
embedded in a framework for importance splitting implementation—the quality
of the importance function is a cornerstone, but other mechanisms like an adapt-
ive threshold/effort selection can alleviate some poor importance approximations.
Furthermore, the reason why this method is particularly amenable to the analysis
of general systems models is its compositionality, on which we elaborate next.

To derive a compositional importance function one must first decompose the
global state s of M into its constituent parts. For states described by valuations
of (discrete) variables in a model, s is projected onto the local variables of Mi to
reflect its local state s

∣∣
i
corresponding to s. For instance, consider a compositional

description of the tandem queue where Queue 1 and Queue 2 are described by
models M1 and M2, respectively. If the state of the tandem queue M = M1 ∥ M2 is
s = (q1, q2) = (1, 0), then for M1 we have the local state s

∣∣
1
= (q1, q2)

∣∣
1
= (q1) = 1

and for M2 the local state is s
∣∣
2
= 0.

The target formula that characterises the rare event in M can also be projected:
to project the formula onto a component Mi we could remove from target all logical
expressions that refer to variables which do not belong to Mi. The resulting formula
target i can then be evaluated in the states s

∣∣
i
of Mi independently from the other

components to determine the local rare event Ai of component Mi. Notice that this
approach does not tolerate general formulæ that e.g. directly compare variables
belonging to two different components. For example, projecting the target formula
5q1 < q2 in the tandem queue case would produce an empty logical expression for
both components, making it infeasible to compute rare events A1 and A2 local to
components M1 and M2. Therefore our algorithms require that all literals in the
formula, viz. all Boolean variables or arithmetic comparisons between numeric
variables, refer to variables of a single component.

A further technical difficulty is how to evaluate a global target formula in each
component such that the resulting local rare events Ai are in line with the global
rare event A. To illustrate this consider the target formula q1 < 5 ⇒ q2 < C, where
the projection would produce target1 ≡ q1 < 5 for M1 and target2 ≡ q2 < C for M2.
Notice that, in the global model of the tandem queue, all states where q1 " 5 are
indeed target states in A. However, this would not be locally identified in M1 if we
use target1 to construct A1. The general issue here is whether to take positively
or negatively the occurrence of a variable in the target formula: the expression
may have nested logical operations, whose removal during the projection of the
formula obliterates the semantics of target . A solution is to employ a normal
form of the logical formula to produce the desired projections. We use negation
normal form (NNF), where all logical nesting is resolved but for the resulting

10

(disjunctive or conjunctive) clauses, which can be considered as the fundamental
building blocks of the formula. In particular using NNF does not restrict the type
of target formulæ that can be considered, and all negations must occur at the
level of the literals of the formula.

We can now describe the construction of a compositional importance function,
given the compositional model M = M1 ∥ M2 ∥ . . . ∥ Mn and a global target formula
characterising the rare event:
1. Convert target to NNF and associate each literal targetj with the component

M(targetj) ∈ { Mi }ni=1 whose local state variables it refers to.
◃ Literals must not refer to multiple components.

2. Explore the discrete part of the state space of each component Mi. For each
targetj with Mi = M(targetj), use reverse BFS to compute the local minimum
distance of each state s

∣∣
i

to any state satisfying targetj .
◃ The resulting function f j

i : S → N, bound to component Mi and literal targetj ,
maps each s ∈ S to its distance (in Mi) to the closest state in that component
that satisfies targetj .

◃ The local importance function f j
i thus encodes the distance of s

∣∣
i

to Aj
i ,

defined as the subset of the local rare event Ai that corresponds to literal
targetj .

3. In the NNF reformulation of target , replace every occurrence of the literal
targetj by f j

i with i such that Mi = M(targetj), and every Boolean operator
∧ or ∨ by +. Use the resulting formula as the global importance function
fI : S → N.
Further implementation details can be found in [11]. In particular, in the com-

position of the local importance functions f j
i to construct the global importance

function fI , other operators can be used in place of +, e.g. max or multiplication.
Furthermore, the distributive properties between ∧ and ∨ in the NNF reformula-
tion of target can be exploited to choose a combination of operators (rather than
a single one). Some studies on the use of semirings for this purpose can also be
found in [11].

In any case the most relevant characteristic of the compositional method de-
scribed is that, aside from the choice of operator (for which + as default has
worked well for most models studied), the procedure requires no user input to
compute the global importance function fI . Moreover, it takes into account both
the structure of the target formula and the structure of the state space of each
model component. Memory usage is determined by the number of discrete local
states (required to be finite) over all components. Typically, component state
spaces are small even when the composed state space explodes.

4. Importance Splitting Methods

We now describe, from a practical perspective, the three different approaches
to importance splitting that we implemented and evaluated.

11

Input: model M, level function fL, splitting factors fS , transient property φ

1 S := {| ⟨M.initial(), 0⟩ |}, p̂ := 0 // start with initial state from level 0
2 while S ̸= ∅ do // perform main and child runs (Restart loop)
3 ⟨s, l⟩ := S.remove() // get next state from which to start a run
4 lcreate := l // store creation level of current run
5 while φ(s) = undecided do // run until decided (simulation loop)
6 s := M.step(s) // simulate up to next change in discrete state
7 if fL(s) < lcreate then break // moved below creation level: kill
8 else if fL(s) > l then // moved one level up: split
9 l := fL(s)

10 S := S ∪ {| ⟨s, l⟩, . . .(fS(l)− 1 times). . . , ⟨s, l⟩ |}

11 if φ(s) then p̂ := p̂+ 1/
∏l

i=1 fS(i) // update result on rare event
12 return p̂

Algorithm 1: The Restart method for transient analysis

�

�

�

Figure 2: Restart

4.1. Restart
Originally discovered in 1970 [3] and popularised by J. and M. Villén-Altami-

rano [65], the Restart importance splitting method was designed for steady-state
measures and later extended to transient properties [66]. It works by performing
one main simulation run from the initial state. As soon as any run crosses a
threshold from below, new child runs are started from the first state in the new
level l (the run is split). The number of child runs to start is given by l’s splitting
factor, fS(l) − 1, resulting in fS(l) runs that continue after splitting. Each run
is tagged with the level on which it is created. When a run crosses a threshold
from above into a level below its creation level, it ends (the run is killed). A run
also ends when it reaches an avoid or target state. We state Restart formally
to perform importance splitting for transient analysis as Algorithm 1. Figure 2
illustrates its behaviour. The horizontal axis is the model’s time steps while
the vertical direction shows the current state’s importance. target states are

12

Input: model M, level function fL, effort function fE , transient property φ

1 L := { 0 1→ [S := { M.initial() }, n := 0, up := 0] } // set up data for level 0
2 for l from 0 to max fL do // iterate over all levels from initial to target
3 for i from 1 to fE(l) do // perform sub-runs on level (fixed effort loop)
4 s :∈ L(l).S, L(l).n := L(l).n+1 // pick from the level’s initial states
5 while φ(s) = undecided do // run until decided (simulation loop)
6 s := M.step(s) // simulate up to next change in discrete state
7 if fL(s) > l then // moved one level up: end sub-run
8 L(l).up := L(l).up + 1 // count level-up run for current level
9 L(fL(s)).S := L(fL(s)).S ∪ { s } // initial state for next level

10 break

11 if φ(s) then L(l).up := L(l).up +1 // rare event (highest level only)
12 if L(l).up = 0 then return 0 // cannot reach the target any more

13 return
∏max fL

i=0 L(i).up/L(i).n // multiply cond. level-up prob. estimates

Algorithm 2: The fixed effort method for transient analysis

marked ✓and avoid states are marked ✗. We have three levels with thresholds at
importance values 3 to 4 and 9 to 10. fS is { 1 1→ 3, 2 1→ 2 }.

The result of a Restart run—consisting of a main and several child runs—is
the weighted number of runs that reach target . Each run’s weight is 1 divided
by the product of the splitting factors of all levels. The result is thus a positive
rational number. Note that this is in contrast to standard Monte Carlo simulation,
where each run is a Bernoulli trial with outcome 0 or 1. This affects the statistical
analysis on which the confidence interval over multiple runs is built.

Restart, as presented in Algorithm 1 for transient analysis, is carefully de-
signed such that the mean of the results of many Restart runs is an unbiased
estimator for the true probability of the transient property [67]. In particular,
over many Restart runs, underestimation caused by runs that die when going
down is compensated by overestimation from the one that survives and is later
split again.

The application of Restart to steady-state analysis is a special case of the
batch-means method [65]. For a single Restart run performed from M.initial()
for T (simulation) time units, say m runs visited the rare event. Let t∗j be the
total time that the j-th such run spent on a target state. Then

γ̂s
def=

∑m
i=1 t

∗
i

T
∏l

j=1 fS(j)

is an unbiased estimator of the steady-state probability of the rare event.

4.2. Fixed Effort
In contrast to Restart, each run of the fixed effort method [24, 25] performs

a fixed number fE(l) of partial runs on each level l. Each of these ends when it

13

�

�

�

�
�

�

�

��

�

Figure 3: Fixed effort

either crosses a threshold from below into level l + 1, encounters a target state,
or encounters an avoid state. We count the first two cases as nl

up . In the first
case, the new state is stored in a set of initial states for level l + 1. When all
partial runs for level l have ended, the algorithm moves to level l+1, starting the
next round of partial runs from the previously collected initial states of the new
level. This behaviour is illustrated in Figure 3 (with fE(l) = 5 for all levels) and
formally stated as Algorithm 2. The initial state of each partial run can be chosen
randomly, or in a round-robin fashion among the available initial states [25]. When
a fixed effort run ends, the fraction of partial runs started in level l that moved
up is an approximation of the conditional probability of reaching level l+1 given
that level l was reached. Since target states exist only on the highest level, the
overall result is thus simply the product of the fraction nl

up/fE(l) for all levels l,
i.e. a rational number in the interval [0, 1]. The average of the result of many
fixed effort runs is again an unbiased estimator for the probability of the transient
property [24].

The advantage of fixed effort is its predictability: each run involves at most∑max fL
l=0 fE(l) partial runs, each of which will end with probability 1. The method

is specifically designed for transient properties; it does not map naturally to
steady-state analysis where there is no end-of-simulation condition. Like Restart
needs splitting levels via function fS , fixed effort needs the effort function fE that
determines the number of partial runs for each level.

4.3. Fixed Success
Fixed effort intuitively controls the simulation effort by adjusting the estim-

ator’s imprecision. The fixed success method [1, 53] turns this around: its para-
meters control the imprecision, but the effort then varies. Instead of launching a
fixed number of partial runs per level, fixed success keeps launching such runs until
fE(l) of them have reached the next level (or a target state in case of the highest
level). Illustrated in Figure 4 (with fE(l) = 4 for all levels), the algorithmic steps
are as in Algorithm 2 except for two changes: first, the for loop in line 3 is replaced
by a while loop with condition L(l).up < fE(l), i.e. we perform sub-runs on the
current level until fE(l) sub-runs moved up to the next level (or hit the target in

14

�

�

�
�

�

�

�

�

���
�

�

Figure 4: Fixed success

case l is the highest level). Second, the final return statement in line 13 uses a dif-
ferent estimator: instead of

∏max fL
i=0

L(l).up
L(l).n , we have to return

∏max fL
i=0

L(l).up−1
L(l).n−1 .

This is due to the underlying negative binomial distribution; see [1] for details.
The method thus requires fE(l) " 2 for all levels l.

Like fixed effort, fixed success is designed to study transient properties. From
the automation perspective, the advantage of fixed success is that it self-adapts
to the (a priori unknown) probability of levelling up: if that probability is low for
some level, more partial runs will be generated on it, and vice-versa. However,
the desired number of successes still needs to be specified. 20 is suggested as a
starting point in [1], but for a specific setting already.

A disadvantage of fixed success is that it is not guaranteed to terminate: if
the model, importance function, and thresholds are such that, with positive prob-
ability, it may happen that all initial states found for some level lie in a bottom
strongly connected component without target states, then the (modified) loop of
line 3 of the algorithm diverges. We have not encountered this situation in our
experiments, though.

5. Thresholds and Splitting Factors

To determine the splitting levels/thresholds, we implement and compare two
approaches: the sequential Monte Carlo (SEQ) method from [11] and a new tech-
nique that tries to ensure a certain expected number of runs that level up.

5.1. Sequential Monte Carlo
Our first approach is inspired by the sequential Monte Carlo splitting tech-

nique [17]. As shown in Algorithm 3, it works in two alternating phases: first,
n simulation runs determine the importance values that can be reached from the
current level, keeping track of the state of maximum importance for each run.
We sort these states by ascending importance and pick the importance of the one
at position n − k, i.e. the (n− k)-th n-quantile of importances, as the start of
the next level. This means that as parameter k grows, the width of the levels

15

Input: model M, importance function fI , transient property φ, n, k ∈ N+,
k < n

1 for i from 1 to n+ k do S(i) := M.initial() // set up state vector
2 T .push(0) // stack of selected threshold importances
3 while T .top() < max fI do // find upper threshold for every importance
4 for i from 1 to n do // first set of runs: find importance distribution
5 s := S(i)
6 while φ(s) = undecided do
7 s := M.step(s)
8 if fI(s) > fI(S(i)) then S(i) := s // keep most important state

9 sort S(i) for i ∈ { 1, . . . , n } according to fI // sort first n states
10 if T .top() " fI(S(n− k)) then break // no more important state
11 T .push(fI(S(n− k))) // new threshold at n−k

n importance quantile
12 for i from 1 to n do // second set of runs: initial states for next round
13 j := sample uniformly from {n+ 1, . . . , n+ k }, S(i) := S(j)
14 while φ(S(i)) = undecided ∧fI(S(i)) < T .top() do
15 S(i) := M.step(S(i))
16 if fI(S(i)) < T .top() then goto 13 // did not reach new threshold
17 for j from n+ 1 to n+ k do // randomly select k initial states
18 i := sample uniformly from { 1, . . . , n }, S(j) := S(i)

19 for l from T .top() to max fI do T .push(l) // fill in missing thresholds
20 return T // set of threshold importances characterising the levels

Algorithm 3: The sequential Monte Carlo method for threshold selection

decreases and the probability of moving from one level to the next increases. In
the second phase, the algorithm randomly selects k new initial states that lie
just above the newfound threshold via more simulation runs. This extra phase is
needed to obtain new reachable states because we cannot generate them directly
as in the setting of [17]. We then proceed to the next round to compute the next
threshold from the new initial states. Detailed pseudocode is shown Algorithm 3
and also as Algorithm 5 in [11]. The result is a sequence of thresholds—a subset
of importance values from { 0, . . . ,max fI }—characterising a level function fL.

This SEQ algorithm only determines the splitting levels. It does not decide
on splitting factors, which the user must select if they wish to run Restart. Fig
and modes request a fixed splitting factor g and then run SEQ with k = n/g.
When used with fixed effort and fixed success, we set k = n/2 and use a user-
specified effort value e for all levels. A value for n must also be specified; by
default n = 1000. The degree of automation offered by SEQ is clearly not satis-
factory. Furthermore, we found in previous experiments with Fig that the levels
computed by different SEQ runs differed significantly, leading to large variations
in Restart performance [11]. Our studies suggest this could be attributed to
SEQ being originally designed for continuous importance functions [16, 17], for

16

Input: model M, importance function fI , n ∈ N+

1 fL := fI , fE := { l 1→ n | l ∈ { 0, . . . ,max fI } }
2 m := 0, e := 0, pup := { l 1→ 0 | l ∈ { 0, . . . ,max fI } }
3 while pup(max fI) = 0 do // roughly estimate the level-up probabilities
4 m := m+ 1, L := level data computed in one fixed effort run (Alg. 2)
5 for l from 0 to max fI do
6 pup(l) := pup(l) +

1
m (L(l).up/L(l).n − pup(l))

7 for l from 0 to max fI do // calculate splitting factors from probabilities
8 split := 1/pup(l) + e, F (l) := ⌊split + 0.5⌋, e := split − F (l)

9 return F // if F (l) > 1, then l is a threshold and F (l) the splitting factor

Algorithm 4: The expected success method for threshold and factor selection

which thresholds can be set infinitely close to each other [11, 13].
For the code presented in Algorithm 3 for transient analysis, SEQ may get

stuck in the same way as fixed success. We encountered this with our wlan case
study of Section 7.1. Our tool thus restarts SEQ after a 30 s timeout; on the wlan
model, it then always succeeded with at most two retries. An alternative is that,
in lines 6 and 14, a predefined max simulation run length is used (instead of the
transient property φ) to determine the end of a simulation. This is also precisely
what is done to perform steady-state analysis using SEQ, where the property
query does not specify an end-of-simulation condition.

5.2. Expected Success
To replace SEQ, we propose a new approach based on the rule-of-thumb that

one would like the expected number of runs that move up on each level to be 1.
This rule is called “balanced growth” by Garvels [24]. The resulting procedure,
shown as Algorithm 4, is conceptually much simpler than SEQ: we first perform
fixed effort runs, using constant effort n and each importance as a level, until
the rare event is encountered. We extract the approximations of the conditional
probabilities of a sample path moving up by one level (the level-up probabilities)
computed inside the fixed effort runs, averaging the values if we need multiple
runs (line 5). After that, we set the factor for each importance to one divided by
the (very rough) estimate of the respective conditional probability computed in
the first phase. Since splitting factors are natural numbers, we round each factor,
but carry the rounding error to the next importance. In this way, even if the exact
splitting factors would all be close to 1, we get a rounded splitting factor of 2 for
some of the importances.

The result is a mapping from importances to splitting factors, characterising
both the level function fL—every importance with a factor different from 1 starts a
new level—and the splitting function fS . We call this procedure the expected suc-
cess (ES) method. Aside from the choice of n (we use a default of n = 256, which
has worked well in all experiments), it provides full automation with Restart.
To use it with fixed effort, we need a user-specified base effort value e, and then

17

set fE to { l 1→ e · fS(l) | l ∈ { 0, . . . ,max fL } } resulting in a weighted fixed effort
approach. Note that our default of n = 256 is much lower than the default of
n = 1000 for SEQ. This is because SEQ performs simple simulation runs where
ES performs fixed effort runs, each of which provides more information about the
behaviour of the model.

We also experimented with expected numbers of runs that move up of 2 and
4, which implies that the number of partial runs grows—by those factors on
average—as simulations reach higher values of fL. In practice this always led
to dismal performance or timeouts, most often due to too many splits in our ex-
periments. This indicates a simulation overhead, an “unbalanced growth” to put
it in Garvel’s terms, and thus we only consider the original single (1) expected
successful run for ES in the sequel. We further note that the property is not an
input to Algorithm 4; the algorithm can thus be employed for both transient and
steady-state analysis as-is.

6. Tools, Languages and Models

We implemented the compositional importance function generation of Sec-
tion 3, the splitting methods described in Section 4, and the threshold calculation
methods of Section 5 in both the modes simulator [15] of the Modest Tool-
set [31] and the Fig tool [11] for input-output stochastic automata.

6.1. The modes Tool
modes is the statistical model checker of the Modest Toolset. It implements

all of the methods described in sections 3 to 5, however for transient properties
only. It uses the toolset’s infrastructure to transform various input languages into
an internal metamodel corresponding to a network of stochastic hybrid automata
(SHA [30]) with discrete variables. The following input languages are currently
supported:
• Modest [30], a process algebra-based modelling language for stochastic timed

systems featuring high-level constructs such as recursive process calls, loops,
and exception handling;

• xSADF [35], an extension of scenario-aware dataflow with continuous probab-
ility distributions and nondeterminism, a formalism particularly suited to the
study of embedded streaming applications; and

• Jani [14], a model exchange format designed to improve the interoperation of
quantitative verification tools. Other tools provide converters to Jani from
various Petri net formats or the Prism language [47]. Jani closely corresponds
to the Modest Toolset’s internal metamodel.

Due to the mapping to a single internal representation, modes naturally provides
RES capabilities for all of these input languages. The complexity of generating
simulation traces—for RES or Monte Carlo simulation—however inherently de-
pends on the underlying mathematical modelling formalism. An input language
may support multiple such formalisms. modes contains simulation algorithms
specifically optimised for the following cases [15]:

18

• For DTMC (discrete-time Markov chains), simulation is simple and efficient:
obtain the current state’s probability distribution over successors, randomly
select one of them (using the distribution’s probabilities), and continue from
that state.

• For CTMC, the situation is similar: obtain the set of enabled outgoing trans-
itions, randomly select a delay from the exponential distribution parameterised
by the sum of their rates, then make a random selection of one transition
weighted by the transitions’ rates.

• PTA extend Markov decision processes with clocks, transition guards, and loc-
ation invariants as in timed automata. PTA explicitly keep a memory of elapsed
times in the clocks. They admit finite-state abstractions that preserve reachab-
ility probabilities and allow them to essentially be simulated as DTMC. modes
implements region graph- and zone-based simulation of PTA as DTMC [21, 36].
With fewer restrictions, they can also be treated as STA.

• STA extend PTA with general continuous probability distributions. The STA
simulator needs to keep track of the values of all clocks. For each transition, it
has to compute the set of time points at which the transition is enabled. These
sets can be unions of several disjoint intervals. Overall, STA simulation thus
requires relatively higher computational effort.

6.2. The FIG Tool
The compositional importance function generation was first developed for

and implemented in the Fig simulator [11]. Fig implements the splitting and
threshold selection methods described in sections 4 and 5 for transient properties.
Additionally, it supports steady-state properties using Restart in combination
with all of the other techniques. Fig was developed specifically for input/output
stochastic automata (IOSA [22]), originally designed in an extension of the Prism
language [47] to consider arbitrary (continuous) probability distributions as in
stochastic automata [18]. It recently added support for the fragment of Jani
corresponding to a standard encoding of IOSA. Fig supports two variants of the
IOSA formalism and modelling language:
• IOSA [22] allows the description of stochastic automata, where clocks variables

control and observe the passage of time. In [22] a list of constraints ensures
that models written in IOSA cannot exhibit nondeterministic behaviour. In-
put/output communication semantics are used, where all modules are input
enabled and each output action can only be produced by a single module.

• IOSA-U or IOSA with urgency [19] is an extension of the original language
where actions can be urgent. An enabled transition decorated with an urgent
(output) action must be taken immediately, viz. without the passage of time.
Urgent inputs can only communicate with urgent outputs. As in IOSA, a series
of rules in IOSA-U ensures that models cannot show nondeterminism.

Similar to modes’ STA simulation engine, Fig needs to keep track of the values
and expiration times of individual clocks. For each transition, it needs to compute
the (single) point in time when it becomes enabled. While slightly more efficient
than STA simulation, using Fig for CTMC (which are IOSA that only use the

19

exponential distribution) will incur an overhead compared to a dedicated CTMC
simulator as in modes.

7. Experimental Evaluation

The goal of our work was to find a RES approach that provides consistently
good performance at a maximal degree of automation. Aside from the composi-
tional importance function generation, we have three splitting methods and two
approaches to threshold selection, all implemented in two different tools, at our
disposal now. To find out whether there is a combination of all of these that
consistently works well, and that could thus be used as a fully-automated default
setting in modes and Fig, we perform an experimental evaluation of all method
combinations on a number of benchmarks and case studies from the literature.
For transient properties, we use modes in order to cover a wide variety of mod-
elling formalisms from CTMC to STA and exploit its more efficient specialised
simulation engines. For steady-state properties, we use Fig on both CTMC en-
coded as IOSA and true IOSA models that make use of non-Markovian continuous
probability distributions.

7.1. Transient Properties
For transient properties, we use modes to evaluate the performance of all relev-

ant combinations of the implemented RES methods on CTMC queueing models,
network protocols modelled as PTA, and a more complex file server setting mod-
elled as STA.

7.1.1. Case Studies
We considered the following models, which are classic RES benchmarks as well

as existing case studies that had previously been analysed with model checkers:
tandem: tandem queueing networks are standard benchmarks in probabilistic
model checking and RES [24, 26, 27, 50, 62]. We consider the case from [12] with
all exponentially distributed interarrival times, i.e. a CTMC. The arrival rate into
the first queue q1 (initially empty) is 3 and its service rate is 2. After that, packets
move into the second queue q2 (initially containing one packet), to be processed at
rate 6. The model has one parameter C, the capacity of each queue. We estimate
the value of the transient property P=?(q2 > 0 U q2 = C), i.e. the probability of
the second queue becoming full without having been empty before.
openclosed: our second CTMC has two parallel queues [28], both initially empty:
an open queue qo, receiving packets at rate 1 from an external source, and a closed
queue qc that receives internal packets. One server processes packets from both
queues: packets from qo are processed at rate 4 while qc is empty; otherwise,
packets from qc are served at rate 2. The latter packets are put back into another
internal queue, which are independently moved back to qc at rate 1

2 . We study
the system as in [11] with a single packet in internal circulation, i.e. an M/M/1
queue with server breakdowns, and the capacity of qo as parameter. We estimate
P=?(¬reset U lost): the probability that qo overflows before a packet is processed
from qo or qc such that the respective queue becomes empty again.

20

breakdown: the final queueing system that we consider [45] as a CTMC consists
of ten sources of two types, five of each, that produce packets at rate λ1 = 3 (type
1) or λ2 = 6 (type 2), periodically break down with rate β1 = 2 resp. β2 = 4, and
get repaired with rate α1 = 3 resp. α2 = 1. The produced packets are collected in
a single queue, attended to by a server with service rate µ = 100, breakdown rate
γ = 3, and repair rate δ = 4. Again, and as in [12], we parameterise the model
by the queue’s capacity, here denoted K, and estimate P=?(¬reset U buf = K):
starting from a single packet in the queue, what is the probability for the queue
to overflow before it becomes empty?
brp: we also study two PTA examples from [33]. The first is the bounded re-
transmission protocol, another classic benchmark in formal verification. We use
parameter M to determine the actual parameters N (the number of chunks to
transmit), MAX (the retransmission bound), and TD (the transmission delay)
by way of ⟨N,MAX ,TD⟩ = ⟨16 · 2M , 4 · M, 4 · 2M ⟩. We thus consider the large
instances ⟨32, 4, 8⟩, ⟨64, 8, 16⟩, and ⟨128, 12, 32⟩. To avoid nondeterminism, TD is
both lower and upper bound for the delay. We estimate P=?(true U snok ∧i > N

2),
i.e. the probability that the sender eventually reports unsuccessful transmission
after more than half of the chunks have been sent successfully.
wlan: our second PTA model is of IEEE 802.11 wireless LAN with two stations.
In contrast to [33] and the original Prism case study, we use the timing parameters
from the standard (leading to a model too large for standard probabilistic model
checkers) and a stochastic semantics of the PTA (scheduling events as soon as
possible and resolving all other nondeterminism uniformly). The parameter is K,
the maximum backoff counter value. We estimate P=?(true U bc1 = bc2 = K), the
probability that both stations’ backoff counters reach K.
fileserver: our last case study combines exponentially and uniformly distributed
delays. It is an STA model of a file server where some files are archived and require
significantly more time to retrieve. Introduced in [31], we change the archive access
time from nondeterministic to continuously uniform over the same interval. Model
parameter C is the server’s queue size. We estimate the time-bounded probability
of queue overflow: P=?(true U"1000 queue = C).

We consider several queueing systems since these are frequently used benchmarks
for RES [24, 26–28, 45, 50, 62]. The CTMC could easily be modified to use general
distributions and our techniques and tools would still work the same.

7.1.2. Experimental Setup
The experiments for the tandem and wlan models were performed on a four-

core Intel Core i5-6600T (2.7/3.5 GHz) system running 64-bit Windows 10 v1607
x64 using three simulation threads. All other experiments ran on a six-core Intel
Xeon E5-2620v3 (2.4/3.2 GHz, 12 logical processors) system with Mono 5.2 on 64-
bit Debian v4.9.25 using five simulation threads each for two separate experiments
running concurrently. We used a timeout of 600 s for the tandem, openclosed, and
brp models and 1200 s for the others. Simulations were run until the half-width of
the 95% normal confidence interval was at most 10% of the currently estimated

21

Table 1: Model data and performance results for transient properties

SM
C Restart fixed effort -weighted fixed success

model/param p̂ nI 2 4 8 16 ES 16 64 256 8 16 128 8 32 128
tandem 8 5.6e−6 22 70 3 1 1 11 1 1 1 1 1 1 1 1 1 1

12 1.9e−8 30 — 45 1 10 190 1 5 4 3 3 2 1 6 2 2

16 7.1e−11 38 — — 3 177 588 2 18 8 6 11 6 4 18 7 5

20 3.0e−13 46 — — 5 — — 4 124 23 14 84 21 12 59 17 12

open- 20 3.9e−8 155 — 2 142 3 2 1 5 3 2 6 4 2 5 3 3

closed 30 8.8e−12 235 — 5 — 21 7 1 19 9 9 46 19 6 24 8 8

40 2.0e−15 315 — 19 — 89 15 3 105 24 17 360 72 14 133 19 20

50 4.6e−19 395 — 74 — — 85 4 404 45 33 — 167 38 284 47 34

break- 40 4.6e−4 193 46 7 7 8 11 4 10 10 16 15 13 7 11 9 15

down 80 3.7e−7 353 — 33 24 29 40 23 73 51 61 194 112 44 87 52 54

120 3.0e−10 513 — 80 59 67 97 104 397 149 173 687 283 139 312 182 136

160 2.4e−13 673 — 316 109 121 175 583 794 377 290 — — 335 999 421 313

brp 1 3.5e−7 2 k — — — 413 86 21 110 36 33 856 435 226 27 21 50

2 5.8e−13 6 k — — — — — 81 — 423 184 — — — 208 141 235

3 9.0e−19 16 k — — — — — 216 — — — — — — — 420 569

wlan 4 2.2e−5 14 k 376 — — — — — 57 38 31 120 131 221 44 36 39

5 1.6e−7 23 k — — — — — — 457 177 121 784 855 809 139 153 164

file- 50 3.9e−11 156 — 125 88 61 57 27 572 137 75 — 435 79 — — 140

server 100 4.8e−23 306 — — — — 229 319 — — 765 — — 851 — — —

mean4. By this use of a relative width, precision automatically adapted to the
rareness of the event. We also performed SMC/Monte Carlo simulation as a
comparison baseline (labelled “SMC” in results), where modes uses the Agresti-
Coull approximation of the binomial confidence interval. For each case study and
parameterisation, we evaluated the following combinations of methods:
• Restart with thresholds selected via SEQ and a fixed splitting factor g ∈
{ 2, 4, 8, 16 } (labelled “Restart g”), using n = 512 and k = n/g for SEQ;

• Restart with thresholds and splitting factors determined by the ES method
(labelled “Restart ES”) and the default n = 256 for ES;

• fixed effort with SEQ (n = 512, k = n/2) and effort e ∈ { 16, 64, 256 };
• weighted fixed effort with ES (labelled “-weighted”) as described in Section 5.2

using base effort e ∈ { 8, 16, 128 } since all weights are " 2;
• fixed success with SEQ as before (n = 512, k = n/2) and the required number

of successes for each level being either 8, 32 or 128.
We did not consider ES in cases where the splitting factors it computes would

not be used (such as with “unweighted” fixed effort or fixed success). The default
of using addition to replace ∧ and ∨ in the compositional importance function (cf.
Section 3) worked well except for wlan, where we used max instead.

7.1.3. Results
We provide an overview of the performance results for all model instances in

Table 1. We report the averages of three runs of each experiment to account for

4We rely on the standard CLT assumption for large enough sample sizes; to this end, we do
not stop before we obtain at least one sample > 0 and at least 50 samples.

22

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

tandem/12

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

tandem/16

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

openclosed/40

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

openclosed/50

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

breakdown/80

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600
 650
 700

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

breakdown/120

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

brp/1

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450
 500
 550
 600

Restart
2
�

4
�

8
�

16
�

ES
�

�xed e�ort
16
�

64
�

256
�

-weighted
8
�

16
�

128
�

�xed success
8
�

32
�

128
�

brp/2

Figure 5: Selected performance results compared (runtimes in seconds)

23

fluctuations due to the inherent randomisation in the simulation and especially in
the threshold selection algorithms. Column p̂ lists the average of all (up to 45)
individual estimates for each instance. All estimates were consistent, including
SMC in the few cases where it did not time out. To verify that the compositional
importance function construction does not lead to high memory usage, we list the
total number of states that it needs to store in column nI . These numbers are
consistently low; even on the two PTA cases, they are far below the total number
of states of the composed state spaces. The remaining columns report the total
time, in seconds, that each approach took to compute the importance function,
perform threshold selection, and use the respective splitting method to estimate
the probability of the transient rare event. Dashes mark timeouts.

We show some interesting cases graphically with added details in Figure 5.
✗ marks timeouts. Each bar’s darker part is the time needed to compute the
importance function and thresholds. The lighter part is the time for the actual
RES. The former, which is almost entirely spent in threshold selection, is much
lower for ES than for SEQ. For instance in the breakdown case study, the darker
region is practically unnoticeable for the buffer capacity K = 80 for Restart with
ES and weighted-fixed effort, and only marginally distinguishable for K = 120.
The error bars show the standard deviation between the convergence times of the
three runs that we performed for each experiment. A larger sample size would be
needed for a thorough evaluation of this aspect, though.

Our experiments first confirm previous observations made with the first ver-
sions of Fig: the performance of Restart depends not only on the import-
ance function, but also very much on the thresholds and splitting factor. Out
of g ∈ { 2, 4, 8, 16 }, there was no single optimal splitting factor that worked well
for all models. Restart with ES usually performed best, being drastically faster
than any other method in many cases. This is a very encouraging result since
Restart with ES is also the one approach that requires no more user-selected
parameters. We thus selected it as the default for modes. The wlan case is the
only one where this default, and in fact none of the Restart-based methods,
terminated within our 1200 s time bound. All of the splitting methods specifically
designed for transient properties, however, worked for wlan, with fixed success
performing best. They also work reasonably well on the other cases, but we see
that their performance depends on the chosen effort parameter. In contrast to the
splitting factors for Restart, though, we can make a clear recommendation for
this choice: larger effort values rather consistently result in better performance.

7.2. Steady-State Properties
For steady-state properties, we use Fig to evaluate the performance of the

presented methods. Of the splitting methods, only Restart is designed for
steady-state properties. We thus only consider the combinations of Restart
with the automatic compositional importance function generation and the two
threshold and factor selection methods from Section 5.

24

7.2.1. Case Studies
We run Fig to estimate steady-state properties on two queueing models and

two reliability evaluation examples. One of each is a CTMC. In the non-Markovian
queueing model, arrival and service times follow Erlang distributions; of the non-
Markovian reliability model, we consider two variants with different kinds of dis-
tributions for failures and repairs. In all, we consider the following case studies:
tandem: this is the same tandem queueing network as considered for transient
properties in Section 7.1. We estimate the steady-state probability of a saturation
in the second queue, that is S=? (q2 = C).
3-tandem: following the same concept as the tandem queue with an additional
third queue in succession to the second one, in the triple tandem queue studied
in [63] the service times for all queues follow an Erlang distribution. The shape
parameter α ∈ { 2, 3 } is the same for all servers. The load at the third queue
is always 1/3, meaning that its scale parameter is µ3 = 1/6, 1/9 when α = 2, 3,
respectively. The scale parameters µ1, µ2 of the first and second queues, as well
as the capacity C in all queues, are chosen so that the steady-state probability of
a saturation in the third queue is of the same order of magnitude for all variants of
the model. Here we study cases A, . . . , F defined by (α, µ1, µ2, C) = (2, 1/3, 1/4, 12),
(3, 2/3, 1/6, 9), (2, 1/6, 1/4, 13), (3, 1/9, 1/6, 10), (2, 1/10, 1/8, 15), and (3, 1/15, 1/12, 13).
We estimate S=? (q3 = C), the steady-state probability of a saturation in the third
queue, which is around 5.0e−10 for all cases.
database: our first (Markovian) reliability evaluation example models a data-
base computer facility consisting of disks arranged in clusters, disk controllers,
and processors. Originally studied in [29] and later using Restart in [61], for
redundancy R the system is composed of two types of processors and two types of
controllers, each with R copies of each type, and six disk clusters, with R+2 disks
each. The lifetime of these units is exponentially distributed with failure rates µD,
µC , and µP for disks, controllers, and processors, respectively. A unit can fail,
with equal probability, in mode 1 or 2: repair rates are 1 and 0.5 per time unit
for failure modes 1 and 2 respectively. The system is operational as long as fewer
than R processors of each type, R controllers of each type, and R disks on each
cluster, have failed. The number of components in the database system grows
rapidly as R increases: in spite of its Markovian nature, analyses with standard
model checking techniques become infeasible for redundacy values as low as R = 4
due to state space explosion [12]. We study system unavailability (i.e. the pro-
portion of time the system is not operational in the long run) for R ∈ { 2, . . . , 5 }
and failure rates (µD, µC , µP) = (1/75, 1/25, 1/25). The corresponding steady-state
property e.g. for R = 2 is S=?

(
(d11 ∧d12)∨(d12 ∧d13)∨ · · ·∨(p21 ∧p22)

)
.

pipeline: the final and most challenging case studies we consider are consecutive-
k-out-of-n: F systems, consisting of a sequence of n nodes ordered sequentially,
where the whole system fails if k or more consecutive nodes fail. This resembles
a pipeline where fluid is pushed through via homogeneously distributed pumps:
redundancy is built-in so that if less than k consecutive pumps fail, the fluid
can still be pushed by the ones remaining. We study the non-Markovian and
repairable systems analysed in e.g. [64, 71], with a single repairman whose repair

25

times follow a log-normal distribution with parameters µ = 1.21 and σ = 0.8.
For n = 12 nodes and k ∈ { 2, . . . , 5 } we analyse two variants: pipeline (exp)
has exponentially distributed failures with rate µ = 0.001, and pipeline (ray)
has Rayleigh failures (i.e. Weibull with shape parameter k = 2) with parameter
β = 0.00000157. Notably, the single-repairman setup required the use of the
IOSA-U model syntax. We study system unavailability, which e.g. for k = 2
corresponds to the steady-state property S=? ((n1 ∧n2)∨ · · ·∨(n11 ∧n12)).

7.2.2. Experimental Setup
All experiments were performed on dual-processor 16-core Intel Xeon E5-2683-

v4 (2.1/3.0 GHz) systems running 64-bit Ubuntu with Linux kernel v4.4.0-116.
Fig is currently a single-threaded tool, and we ran one instance of Fig per CPU
core to perform multiple experiments in parallel. For this reason, and since steady-
state simulations using Fig’s more generic IOSA engine take more time than
transient properties in modes, we used a timeout of 30 minutes for the tandem
and 3-tandem models and 60 minutes for the reliability evaluation models. To
achieve a meaningful comparison that is more robust to timeouts, we adopt a
different approach than the 10% relative confidence interval as used for transient
properties: for our steady-state runs, we instead let all experiments run up to the
timeout and report the relative half-width of the confidence interval attained at
that point in percent. Thus again, lower numbers indicate better performance. For
each case study and parameterisation, we evaluated the following combinations of
methods:
• Restart with thresholds selected via SEQ and a fixed splitting factor g ∈
{ 2, 4, 8, 16 } (labelled “Restart g”);

• Restart with thresholds and splitting factors determined by the ES method
(labelled “Restart ES”).

As we did for transient properties, here we also performed Monte Carlo simula-
tion (SMC) as a comparison baseline; Fig uses Agresti-Coull binomial confidence
intervals with Student’s-t quantiles.

In all cases, we used addition to replace ∧ and ∨ in the compositional import-
ance function (cf. Section 3).

7.2.3. Results
We provide an overview of the performance results for all model instances in

Table 2. For the database and pipeline models, we report the averages of three
runs of each experiment again. Column p̂ lists the average of all (up to 18)
individual estimates for each instance, which were again consistent. Column t/o
recalls the timeout used for the respective models. The remaining columns report
the half-width of the confidence interval, in percent of p̂, obtained at the timeout.
Dashes mark cases where the rare event was not encountered even once.

Our experiments show that steady-state properties on the considered models
are truly challenging for automated importance splitting. In most cases, one
of the method combinations is still noticeably better than plain SMC. However,
unlike for transient properties, there is no combination that performs consistently
best. Notwithstanding, the combination of Restart with expected success was

26

Table 2: Model data and performance results for steady-state properties

SM
C Restart

model/param p̂ t/o 2 4 8 16 ES
tandem 8 6.2e−5

30

1 1 1 1 1 1

12 8.4e−7 8 3 3 2 2 2

16 1.7e−8 106 10 12 12 3 6

20 1.9e−10 — 23 36 6 8 39

3- A 2.5e−10

30

— 5 62 49 56 78

tandem B 3.4e−10 — 38 44 79 51 39

C 5.1e−10 — 22 54 52 56 66

D 9.9e−10 — 46 36 57 39 71

E 9.5e−10 66 26 78 43 32 56

F 1.5e−9 — 64 49 37 45 54

data- 2 3.8e−2

60

0 0 0 0 0 0

base 3 5.9e−4 1 1 1 2 1 1

4 6.6e−6 8 10 12 14 12 8

5 6.1e−8 104 65 101 128 96 107

pipe- 2 4.8e−4

60

0 0 0 0 0 0

line 3 7.4e−6 3 3 3 3 3 3

(exp) 4 2.1e−7 22 19 21 24 25 25

5 1.1e−8 189 169 88 43 188 61

pipe- 2 4.8e−4

60

0 0 0 0 0 0

line 3 7.4e−6 3 3 3 3 3 3

(ray) 4 2.1e−7 23 23 20 30 21 20

5 1.2e−8 48 91 220 119 67 96

always competitive, and it remains reasonable to keep it as a safe—if not always
optimal—default. It is in any case preferable as the only method combination
that provides fully automated RES.

8. Conclusion

We investigated ways to automate and improve the performance of importance
splitting to perform rare event simulation for general classes of stochastic models.
For this purpose, we provided a memory-efficient method to automatically derive
an importance function from a compositional formal model [12]. The method takes
into account the structure of the model’s state space as well as the structure of the
logical formula that identifies the rare event. Any method to derive importance
functions is necessarily a heuristic, but this one appears to work well for diverse
case studies. We further studied and implemented three existing splitting methods
and two threshold selection algorithms, one of them new. The modes tool, which
contains our implementation of all methods for transient properties, is publicly
available as part of the Modest Toolset at www.modestchecker.net. The
Fig simulator provides complementary support for steady-state properties. Using
both tools, we performed extensive experiments, resulting in the only practical
comparison of Restart and other methods that we are aware of.

Our results show that we have found a fully automated rare event simula-
tion approach based on importance splitting that performs very well for transient
properties: automatic compositional importance functions together with Restart

27

and the expected success method. It pushes automated importance splitting for
general models into the realm of very rare events with probabilities down to the
order of 10−23. For steady-state properties, however, the picture is not so clear:
different methods and method parameterisations work best for different model in-
stances. Still, the fully automated combination of Restart with expected success
shows competitive performance and thus appears as a reasonable default. Further
research will be necessary to find out what the key differences are in the behaviour
of transient and steady-state analysis to cause such distinct results.

As future work, we would also like to more deeply investigate models with few
points of randomisation such as the PTA examples that proved to be the most
challenging for our methods. We note that our methods have already successfully
been combined with the lightweight scheduler sampling techniques of [20, 21, 36]
to properly handle models that include nondeterminism, as reported in [15].
Acknowledgements. We are grateful to José Villén-Altamirano for very helpful
discussions that led to our eventual design of the expected success method.
This work is supported by the 3TU.BSR project, ERC grant 695614 (POWVER),
the NWO SEQUOIA project, NWO VENI grant no. 639.021.754, and SeCyT-
UNC projects 05/BP12 and 05/B497.

References

[1] Michael Amrein and Hans R. Künsch. A variant of importance splitting for
rare event estimation: Fixed number of successes. ACM Transactions on
Modeling and Computer Simulation, 21(2):13:1–13:20, 2011.

[2] Christel Baier, Joost-Pieter Katoen, and Holger Hermanns. Approximate
symbolic model checking of continuous-time Markov chains. In CONCUR,
volume 1664 of Lecture Notes in Computer Science, pages 146–161. Springer,
1999.

[3] Anthony J. Bayes. Statistical techniques for simulation models. Australian
Computer Journal, 2(4):180–184, 1970.

[4] Anthony J. Bayes. A minimum variance sampling technique for simulation
models. Journal of the ACM, 19(4):734–741, 1972.

[5] Denis Benasciutti and Roberto Tovo. On fatigue damage assessment in
bimodal random processes. International Journal of Fatigue, 29(2):232–244,
2007.

[6] José Blanchet and Michel Mandjes. Rare Event Simulation for Queues,
chapter 5, pages 87–124. In Rubino and Tuffin [57], 2009.

[7] José Blanchet and Daniel Rudoy. Rare Event Simulation and Counting Prob-
lems, chapter 8, pages 171–192. In Rubino and Tuffin [57], 2009.

28

[8] Henk A. P. Blom, G. J. (Bert) Bakker, and Jaroslav Krystul. Rare Event
Estimation for a Large-Scale Stochastic Hybrid System with Air Traffic Ap-
plication, chapter 9, pages 193–214. In Rubino and Tuffin [57], 2009.

[9] Henrik C. Bohnenkamp, Pedro R. D’Argenio, Holger Hermanns, and Joost-
Pieter Katoen. MoDeST: A compositional modeling formalism for hard and
softly timed systems. IEEE Transactions on Software Engineering, 32(10):
812–830, 2006.

[10] Thomas Booth. Particle Transport Applications, chapter 10, pages 215–242.
In Rubino and Tuffin [57], 2009.

[11] Carlos E. Budde. Automation of Importance Splitting Techniques for Rare
Event Simulation. PhD thesis, Universidad Nacional de Córdoba, Córdoba,
Argentina, 2017.

[12] Carlos E. Budde, Pedro R. D’Argenio, and Raúl E. Monti. Compositional
construction of importance functions in fully automated importance splitting.
In VALUETOOLS. ACM, 2016.

[13] Carlos E. Budde, Pedro R. D’Argenio, and Arnd Hartmanns. Better auto-
mated importance splitting for transient rare events. In SETTA, volume
10606 of Lecture Notes in Computer Science, pages 42–58. Springer, 2017.

[14] Carlos E. Budde, Christian Dehnert, Ernst Moritz Hahn, Arnd Hartmanns,
Sebastian Junges, and Andrea Turrini. JANI: Quantitative model and tool
interaction. In TACAS, volume 10206 of Lecture Notes in Computer Science,
pages 151–168. Springer, 2017.

[15] Carlos E. Budde, Pedro R. D’Argenio, Arnd Hartmanns, and Sean Sedwards.
A statistical model checker for nondeterminism and rare events. In TACAS,
volume 10806 of Lecture Notes in Computer Science, pages 340–358. Springer,
2018.

[16] Frédéric Cérou and Arnaud Guyader. Adaptive multilevel splitting for rare
event analysis. Stochastic Analysis and Applications, 25(2):417–443, 2007.

[17] Frédéric Cérou, Pierre Del Moral, Teddy Furon, and Arnaud Guyader. Se-
quential Monte Carlo for rare event estimation. Statistics and Computing, 22
(3):795–808, 2012.

[18] Pedro R. D’Argenio and Joost-Pieter Katoen. A theory of stochastic sys-
tems part I: stochastic automata. Information and Computation, 203(1):
1–38, 2005.

[19] Pedro R. D’Argenio and Raúl E. Monti. Input/output stochastic automata
with urgency: Confluence and weak determinism. In ICTAC, volume 11187
of Lecture Notes in Computer Science, pages 132–152. Springer, 2018.

29

[20] Pedro R. D’Argenio, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez.
Smart sampling for lightweight verification of Markov decision processes.
Software Tools for Technology Transfer, 17(4):469–484, 2015.

[21] Pedro R. D’Argenio, Arnd Hartmanns, Axel Legay, and Sean Sedwards. Stat-
istical approximation of optimal schedulers for probabilistic timed automata.
In iFM, volume 9681 of Lecture Notes in Computer Science, pages 99–114.
Springer, 2016.

[22] Pedro R. D’Argenio, Matias David Lee, and Raúl E. Monti. Input/output
stochastic automata – compositionality and determinism. In FORMATS,
volume 9884 of Lecture Notes in Computer Science, pages 53–68. Springer,
2016.

[23] George S. Fishman and L. Stephen Yarberry. An implementation of the batch
means method. INFORMS Journal on Computing, 9(3):296–310, 1997.

[24] Marnix J. J. Garvels. The splitting method in rare event simulation. PhD
thesis, University of Twente, Enschede, The Netherlands, 2000.

[25] Marnix J. J. Garvels and Dirk P. Kroese. A comparison of RESTART im-
plementations. In Winter Simulation Conference, pages 601–608, 1998.

[26] Marnix J. J. Garvels, Jan-Kees C. W. van Ommeren, and Dirk P. Kroese.
On the importance function in splitting simulation. European Transactions
on Telecommunications, 13(4):363–371, 2002.

[27] Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic.
A large deviations perspective on the efficiency of multilevel splitting. IEEE
Transactions on Automatic Control, 43(12):1666–1679, 1998.

[28] Paul Glasserman, Philip Heidelberger, Perwez Shahabuddin, and Tim Zajic.
Multilevel splitting for estimating rare event probabilities. Operations Re-
search, 47(4):585–600, 1999.

[29] Ambuj Goyal, Perwez Shahabuddin, Philip Heidelberger, Victor F. Nicola,
and Peter W. Glynn. A unified framework for simulating Markovian models of
highly dependable systems. IEEE Transactions on Computers, 41(1):36–51,
1992.

[30] Ernst Moritz Hahn, Arnd Hartmanns, Holger Hermanns, and Joost-Pieter
Katoen. A compositional modelling and analysis framework for stochastic
hybrid systems. Formal Methods in System Design, 43(2):191–232, 2013.

[31] Ernst Moritz Hahn, Arnd Hartmanns, and Holger Hermanns. Reachability
and reward checking for stochastic timed automata. Electronic Communica-
tions of the EASST, 70, 2014.

[32] Hans Hansson and Bengt Jonsson. A logic for reasoning about time and
reliability. Formal Aspects of Computing, 6(5):512–535, 1994.

30

[33] Arnd Hartmanns and Holger Hermanns. A Modest approach to checking
probabilistic timed automata. In QEST, pages 187–196. IEEE Computer
Society, 2009.

[34] Arnd Hartmanns and Holger Hermanns. The Modest Toolset: An integrated
environment for quantitative modelling and verification. In TACAS, volume
8413 of Lecture Notes in Computer Science, pages 593–598. Springer, 2014.

[35] Arnd Hartmanns, Holger Hermanns, and Michael Bungert. Flexible support
for time and costs in scenario-aware dataflow. In EMSOFT, pages 3:1–3:10.
ACM, 2016.

[36] Arnd Hartmanns, Sean Sedwards, and Pedro R. D’Argenio. Efficient
simulation-based verification of probabilistic timed automata. In Winter Sim-
ulation Conference, pages 1419–1430, 2017.

[37] Philip Heidelberger. Fast simulation of rare events in queueing and reliability
models. ACM Transactions on Modeling and Computer Simulation, 5(1):43–
85, 1995.

[38] Thomas Hérault, Richard Lassaigne, Frédéric Magniette, and Sylvain Peyron-
net. Approximate probabilistic model checking. In VMCAI, volume 2937 of
Lecture Notes in Computer Science, pages 73–84. Springer, 2004.

[39] Kin-Ping Hui, Nigel Bean, Miro Kraetzl, and Dirk P. Kroese. The cross-
entropy method for network reliability estimation. Annals of Operations Re-
search, 134(1):101–118, 2005.

[40] Cyrille Jégourel, Axel Legay, and Sean Sedwards. Importance splitting for
statistical model checking rare properties. In CAV, volume 8044 of Lecture
Notes in Computer Science, pages 576–591. Springer, 2013.

[41] Cyrille Jégourel, Axel Legay, and Sean Sedwards. An effective heuristic for
adaptive importance splitting in statistical model checking. In ISoLA, volume
8803 of Lecture Notes in Computer Science, pages 143–159. Springer, 2014.

[42] Cyrille Jégourel, Axel Legay, Sean Sedwards, and Louis-Marie Traonouez.
Distributed verification of rare properties using importance splitting observ-
ers. Electronic Communications of the EASST, 72, 2015.

[43] Cyrille Jégourel, Kim G. Larsen, Axel Legay, Marius Mikucionis,
Danny Bøgsted Poulsen, and Sean Sedwards. Importance sampling for
stochastic timed automata. In SETTA, volume 9984 of Lecture Notes in
Computer Science, pages 163–178. Springer, 2016.

[44] Herman Kahn and Ted E. Harris. Estimation of particle transmission by
random sampling. National Bureau of Standards applied mathematics series,
12:27–30, 1951.

31

[45] Dirk P. Kroese and Victor F. Nicola. Efficient estimation of overflow prob-
abilities in queues with breakdowns. Performance Evaluation, 36:471–484,
1999.

[46] Marta Z. Kwiatkowska, Gethin Norman, Roberto Segala, and Jeremy Spro-
ston. Automatic verification of real-time systems with discrete probability
distributions. Theoretical Computer Science, 282(1):101–150, 2002.

[47] Marta Z. Kwiatkowska, Gethin Norman, and David Parker. PRISM 4.0: Veri-
fication of probabilistic real-time systems. In CAV, volume 6806 of Lecture
Notes in Computer Science, pages 585–591. Springer, 2011.

[48] Averill M. Law. Simulation modeling and analysis. McGraw-Hill Education,
2014.

[49] Averill M. Law and John S. Carson. A sequential procedure for determining
the length of a steady-state simulation. Operations Research, 27(5):1011–
1025, 1979.

[50] Pierre L’Ecuyer, Valérie Demers, and Bruno Tuffin. Rare events, splitting,
and quasi-Monte Carlo. ACM Transactions on Modeling and Computer Sim-
ulation, 17(2), 2007.

[51] Pierre L’Ecuyer, François Le Gland, Pascal Lezaud, and Bruno Tuffin. Split-
ting Techniques, chapter 3, pages 39–61. In Rubino and Tuffin [57], 2009.

[52] Pierre L’Ecuyer, Michel Mandjes, and Bruno Tuffin. Importance Sampling in
Rare Event Simulation, chapter 2, pages 17–38. In Rubino and Tuffin [57],
2009.

[53] François LeGland and Nadia Oudjane. A sequential particle algorithm that
keeps the particle system alive. In EUSIPCO, pages 1–4. IEEE, 2005.

[54] Loren D. Lutes and Curtis E. Larsen. Improved spectral method for vari-
able amplitude fatigue prediction. Journal of Structural Engineering (United
States), 116(4):1149–1164, 1990.

[55] Marco Paolieri, András Horváth, and Enrico Vicario. Probabilistic model
checking of regenerative concurrent systems. IEEE Transactions on Software
Engineering, 42(2):153–169, 2016.

[56] Daniël Reijsbergen, Pieter-Tjerk de Boer, Werner R. W. Scheinhardt, and
Boudewijn R. Haverkort. Automated rare event simulation for stochastic
Petri nets. In QEST, volume 8054 of Lecture Notes in Computer Science,
pages 372–388. Springer, 2013.

[57] Gerardo Rubino and Bruno Tuffin, editors. Rare Event Simulation Using
Monte Carlo Methods. John Wiley & Sons, Ltd, 2009.

[58] Gerardo Rubino and Bruno Tuffin. Introduction to Rare Event Simulation,
chapter 1, pages 1–13. In Rubino and Tuffin [57], 2009.

32

[59] Walter L. Smith. Regenerative stochastic processes. Proceedings of the Royal
Society of London A: Mathematical, Physical and Engineering Sciences, 232
(1188):6–31, 1955.

[60] Natalie M. Steiger and James R. Wilson. Convergence properties of the
batch means method for simulation output analysis. INFORMS Journal on
Computing, 13(4):277–293, 2001.

[61] José Villén-Altamirano. RESTART method for the case where rare events
can occur in retrials from any threshold. International Journal of Electronics
and Communications, 52:183–189, 1998.

[62] José Villén-Altamirano. Rare event RESTART simulation of two-stage net-
works. European Journal of Operational Research, 179(1):148–159, 2007.

[63] José Villén-Altamirano. RESTART simulation of networks of queues with
erlang service times. In Winter Simulation Conference, pages 1146–1154,
2009.

[64] José Villén-Altamirano. RESTART simulation of non-Markov consecutive-k-
out-of-n: F repairable systems. Reliability Engineering & System Safety, 95
(3):247–254, 2010.

[65] Manuel Villén-Altamirano and José Villén-Altamirano. RESTART: a method
for accelerating rare event simulations. In Queueing, Performance and Con-
trol in ATM (ITC-13), pages 71–76. Elsevier, 1991.

[66] Manuel Villén-Altamirano and José Villén-Altamirano. RESTART: a
straightforward method for fast simulation of rare events. In Winter Simu-
lation Conference, pages 282–289, 1994.

[67] Manuel Villén-Altamirano and José Villén-Altamirano. Analysis of restart
simulation: Theoretical basis and sensitivity study. European Transactions
on Telecommunications, 13(4):373–385, 2002.

[68] Manuel Villén-Altamirano and José Villén-Altamirano. On the efficiency
of RESTART for multidimensional state systems. ACM Transactions on
Modeling and Computer Simulation, 16(3):251–279, 2006.

[69] Manuel Villén-Altamirano and José Villén-Altamirano. The rare event sim-
ulation method RESTART: efficiency analysis and guidelines for its applica-
tion. In Network Performance Engineering, volume 5233 of Lecture Notes in
Computer Science, pages 509–547. Springer, 2011.

[70] Manuel Villén-Altamirano, A. Martínez-Marrón, J. Gamo, and F. Fernández-
Cuesta. Enhancement of the accelerated simulation method RESTART by
considering multiple thresholds. In Proc. 14th Int. Teletraffic Congress, pages
797–810, 1994.

33

[71] Gang Xiao, Zhizhong Li, and Ting Li. Dependability estimation for non-
Markov consecutive-k-out-of-n: F repairable systems by fast simulation. Re-
liability Engineering & System Safety, 92(3):293 – 299, 2007.

[72] Håkan L. S. Younes and Reid G. Simmons. Probabilistic verification of dis-
crete event systems using acceptance sampling. In CAV, volume 2404 of
Lecture Notes in Computer Science, pages 223–235. Springer, 2002.

[73] Armin Zimmermann and Paulo Maciel. Importance function derivation for
RESTART simulations of Petri nets. In RESIM, pages 8–15, 2012.

[74] Armin Zimmermann, Daniël Reijsbergen, Alexander Wichmann, and Andres
Canabal Lavista. Numerical results for the automated rare event simulation
of stochastic Petri nets. In RESIM, pages 1–10, 2016.

34

