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Abstract. Because of the increasing availability of multi-core machines, clus-
ters, Grids, and combinations of these there is now plenty of computational power,
but today’s programmers are not fully prepared to exploit parallelism. In partic-
ular, Java has helped in handling the heterogeneity of such environments. How-
ever, there is a lot of ground to cover regarding facilities to easily and elegantly
parallelizing applications. One path to this end seems to be the synthesis of semi-
automatic parallelism and Parallelism as a Concern (PaaC). The former allows
users to be mostly unaware of parallel exploitation problems and at the same
time manually optimize parallelized applications whenever necessary, while the
latter allows applications to be separated from parallel-related code. In this pa-
per, we present EasyFJP, an approach that implicitly exploits parallelism in Java
applications based on the concept of fork-join synchronization pattern, a simple
but effective abstraction for creating and coordinating parallel tasks. In addition,
EasyFJP lets users to explicitly optimize applications through policies, or user-
provided rules to dynamically regulate task granularity. Finally, EasyFJP relies
on PaaC by means of source code generation techniques to wire applications and
parallel-specific code together. Experiments with real-world applications on an
emulated Grid and a cluster evidence that EasyFJP delivers competitive perfor-
mance compared to state-of-the-art Java parallel programming tools.

Keywords: Parallel computing, implicit parallelism, explicit parallelism, Paral-
lelism as a Concern (PaaC), Java, fork-join synchronization patterns, policies.

1. Introduction

The advent of powerful distributed environments such as clusters and Grids equipped
with multi-core machines doubtlessly calls for new tools for parallel programming.
Consequently, there are libraries and frameworks that allow users to exploit parallelism
in their applications. Still, many of these tools remain hard to use for an average pro-
grammer, and prioritize performance over other desirable attributes such as code inva-
siveness and independence of the underlying parallel environment. By code invasive-
ness we mean mixing application logic with parallel-related statements in programs.
Simple parallel programming models are essential to support users not proficient in
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parallel concepts, thus helping “sequential” developers to gradually move into the main-
stream. Likewise, low code invasiveness and environment neutrality are important given
the benefits of hiding parallelism from applications on code maintainability.

In dealing with the software diversity of such environments Java has gained much
popularity since it offers platform independence and competitive performance com-
pared to conventional languages [37, 42]. However, most Java parallel libraries have
historically focused on running on one specific parallel environment, i.e., either multi-
core machines or distributed settings. Besides, tools often offer developers APIs and
directives for programmatically coordinating parallel subcomputations. This clearly re-
quires knowledge on parallel (and distributed) development, and leads to codes that
depend on the library being used, making code maintainability and portability to other
libraries an arduous task. Thus, there is not a clear separation between writing appli-
cation logic and parallelizing it. All in all, parallel programming is nowadays the rule
and not the exception. Hence, researchers and software vendors have put down on their
agenda the long-expected goal of versatile parallel tools delivering low code invasive-
ness and development effort.

This paper presents EasyFJP, an approach for parallelizing sequential applications.
By “parallelizing” we mean preparing a code to take advantage of a parallel environ-
ment. EasyFJP synthesizes semi-automatic parallelism and Parallelism as a Concern
(PaaC), through which the difficult and intrusive nature of parallelism is mitigated.
Furthermore, EasyFJP exploits the implicit parallelism present in Java-based applica-
tions through the concept of fork-join synchronization pattern, i.e., a novel parallel ab-
straction of our own that represent common ways present in existing tools of manually
forking and synchronizing subcomputations when parallelizing code. To automate this,
EasyFJP provides semi-automatic algorithms and parallel code generation techniques
that rely on mechanisms for separation of concerns to isolate application logic from
the code in charge of parallelism. Finally, EasyFJP offers an explicit but non-invasive
tuning mechanism based on the concept of policy, which allows users to specify custom
rules to optimize the generated applications at runtime.

EasyFJP builds on previous research carried out by the authors, which was first
reported in [27]. In this paper a number of additional contributions are introduced:

– A technology-neutral, conceptualized view of our approach to parallelism as a
whole, which in turn could serve to facilitate the materialization of EasyFJP to
various programming languages and environments.

– The delineation of the concept of fork-join synchronization pattern by presenting
the existing patterns and the proposed heuristic algorithms to automate their us-
age in sequential applications. Unlike application-specific parallel supports such
as [38], EasyFJP materializes these patterns for general-purpose recursive codes.
This is since FJP is suitable for divide and conquer applications, which is an algo-
rithmic abstraction present in many real-life problems.

– A new type of policy called task placement policy, which allows developers to non-
invasively control task placement or mapping of unfinished tasks to available exe-
cuting nodes in Grids. This policy represents a simple mechanism to increase per-
formance by taking into account network characteristics, which is a major source
of overheads when executing Grid-aware applications [7].
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– Empirical evidence of the feasibility of using our approach to parallelize real-world
sequential applications by comparing EasyFJP with other well-known parallel pro-
gramming models that rely on manual parallelism, such as those based on parallel
directives/annotations, and MapReduce [11, 25].

– A rigorous experimental evaluation of the approach by using an emulated com-
putational Grid and a cluster. Indeed, recent literature shows that there is a rising
interest in Java-based tools for parallel and distributed computing, but their adop-
tion is delayed due to the lack of up-to-date evaluations of their performance [42].

Particularly, with respect to the last two contributions, the obtained results show that
implicit parallelism via fork-join synchronization patterns and policy-oriented explicit
tuning, glued together through mechanisms for separation of concerns, is a viable ap-
proach to PaaC from a practical perspective. Although our ideas may be applicable to
other kind of applications, as suggested earlier we scope our research to divide and
conquer applications, since we aim at dealing with massive parallelism.

The rest of the paper is organised as follows. The next Section discusses the most
relevant related works by pointing out the novelties of EasyFJP. Then, Section 3 ex-
plains the concepts underpinning EasyFJP. After that, Section 4 describes EasyFJP in
detail. The Section also includes source code examples to illustrate our approach. It is
worth noting that, since the advances presented in this paper not only generalize but
also complement our previous efforts, we have deliberately included some of the expla-
nations already reported in [27] to make this article self-contained and therefore more
readable. Section 5 reports an evaluation of EasyFJP with two-real world applications,
namely sequence alignment and ray tracing, on an emulated computational Grid and a
cluster. Finally, Section 6 concludes the paper.

2. Parallelism in Java: background

In light of the increasing amount of available hardware, many Java tools for implement-
ing CPU-hungry parallel applications have been proposed.

2.1. Multi-core programming

Doug Lea’s framework [23] is a Java API that offers functionality for queuing and syn-
chronizing concurrent subcomputations. Alternatively, JCilk [10] supplies Java with the
spawn and sync library primitives. Each parallel method is associated with two clones,
one used in the common case where serial semantics suffice, and another executed
when parallel semantics are required. JCilk obeys the ordinary semantics of the try/-
catch construct when executing on a single core CPU, but causes subcomputations to
abort when an exception occurs on a multi-core machine. Furthermore, JAC [17] aims
at separating application logic from thread declaration and synchronization via Java an-
notations, emphasizing on removing the differences between sequential and concurrent
codes. Duarte et al. [13] address the same goal by automatically deriving thread-enabled
codes from sequential ones based on algebraic laws. Similarly, JOMP [5] is compliant
to OpenMP [9], a popular set of standard method-level/sentence-level directives and
library routines for shared memory parallel programming.
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2.2. Cluster and Grid programming

JR [8] provides a rich concurrency model supporting remote JVM and object creation,
asynchronous communication and rendezvous. JR codes are translated into regular Java
codes. JCluster [46] supports the execution of task-oriented parallel applications in het-
erogeneous clusters. Tasks are scheduled according to the novel transitive random steal-
ing algorithm. Moreover, Satin [44] is a library for parallelizing divide and conquer
codes on LANs and WANs that follows the semantics of JCilk. A programmer marks
through API classes and interfaces the application methods that must run in parallel.
Satin then Grid-enables the application by modifying its compiled code. JavaSym-
phony [21] is another platform that features a semi-automatic execution model that
transparently deals with migration, parallelism and load balancing of Grid applications,
and allows programmers to control such features via API calls embedded in their codes.

Furthermore, VCluster [47] executes thread-based applications on clusters. Threads
migrate between nodes for load balancing purposes. Inter-thread communication is
performed through virtual channels, which isolate threads physical location (i.e., ma-
chine). ProActive [4] allows developers to program parallel applications composed of
active objects, which have migratory capabilities. Active objects asynchronously or syn-
chronously communicate with other active or regular objects via method calls. Active
object creation, communication and mobility are programmatically performed via an
API. In addition, JGRIM [26, 28] gridifies applications by non-invasively attaching Grid
concerns such as resource brokering, mobility and parallelism through Dependency In-
jection [20], which allows component-oriented Java applications [35] to be seamlessly
supplied with middleware-level components that implement those concerns. Last but
not least, with respect to the plethora of tools for building classical master-worker ap-
plications, two representative examples are GridGain [16] and JPPF [40].

2.3. Summary of the discussed tools

Parallel programming is commonly classified into two categories: automatic (or im-
plicit) and manual (or explicit) [45, 15]. The former allows developers to write par-
allel applications without any concern about parallelism, which is performed by the
underlying runtime system in an automatic way. However, by following this approach
performance may be suboptimal. Alternatively, explicit parallelism supplies APIs or
directives for initiating and coordinating subcomputations. Developers have thus more
control over parallel execution to implement efficient applications, but the burden of
managing parallelism falls on them. From now on, “automatic” and “implicit”, and
“manual” and “explicit”, will be used interchangeably throughout the rest of the paper.

Many of the above efforts are inspired by explicit parallelism. Despite its perfor-
mance, a negative side-effect of using traditional explicit parallelism is that paralleliz-
ing applications requires learning the concepts and the features of the parallel tool being
used, which may not be easy for an average programmer. From a software engineering
standpoint, parallelized codes are hard to maintain and port to other libraries. Lastly,
using these approaches lead to parallel codes that contain not only statements for man-
aging subcomputations but also for tuning the application. This makes such tuning logic
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obsolete when the application is ported to a different environment, e.g., from a cluster
to a Grid. This decision could be taken for example for scalability purposes.

An alternative approach to traditional explicit parallelism is to treat parallelism
as a concern, thus avoiding mixing application logic with code implementing paral-
lel behavior. This idea is followed by several Java tools which partly rely on mecha-
nisms for separation of concerns, e.g., class and method-level code annotations (JAC,
GridGain), metaobjects (ProActive), and Dependency Injection (JGRIM). As one may
expect, many other efforts support the same idea through AOP, which is the most widely
known technique in this line, and skeletons, which capture recurring parallel applica-
tion structures such as pipe and master-worker in an application-agnostic way. These
structures, which are analogous to object-oriented design patterns, are instantiated by
composing wrapped sequential codes or specializing framework classes [2, 39].

In our view, current approaches pursuing PaaC fall short with respect to applica-
bility, code intrusiveness and expertise. Tools designed to exploit single machines are
in general not applicable to distributed settings, whereas approaches designed to ex-
ploit such settings experience overheads when used in multi-core machines due to their
distributed nature. Moreover, approaches based on code annotations require explicit
modifications to insert parallelism and application-specific optimizations that obscure
the final code. Metaobjects and specially AOP have proven to cope with this problem,
but at the expense of demanding programmers to learn another programming paradigm.
Lastly, tools providing support for various parallel patterns feature good applicability in
respect to the variety of anatomies of parallel applications that are supported. However,
such approaches require knowledge on parallel notions (e.g., parallel patterns) and al-
tering application logic after parallelization demands first to understand the design of
the produced parallel code.

We argue that PaaC should be further exploited to offer novice users a hybrid ap-
proach to parallel development that takes the simplicity of implicit parallelism, and the
flexibility and efficiency of explicit parallelism. In this sense, we propose EasyFJP, an
approach to parallelism for Java that implicitly leverages parallelism in sequential ap-
plications, and at the same time allows users to explicitly tune the parallelized codes
without affecting the application logic. By drawing a parallel with existing proposals,
EasyFJP borrows ideas from the implicit approach to parallelism followed by functional
languages designed for multi-core CPUs –e.g., Erlang [3], Haskell [19]– that exploit
the inherent concurrency present in applications, and the explicit approach taken by
existing Java-based parallel and distributed programming tools promoting separation of
concerns, but by proposing a simpler approach to PaaC for a family of applications, i.e.,
divide and conquer codes. Furthermore, execution of parallel applications is performed
by leveraging the schedulers of existing Java parallel libraries.

EasyFJP offers users who are not experienced in parallel programming means for
parallelizing applications by adopting a programming model that provides opportunities
for implicit nevertheless versatile forms of parallelism, and using a generative program-
ming approach to build parallel codes that reuse existing parallel/distributed program-
ming libraries. Developers can then optimize generated parallel and distributed codes.
The next section presents the EasyFJP approach in detail.
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3. Fork-join parallelism

Fork-join parallelism (FJP) is a simple but effective technique through which paral-
lelism is expressed via two primitives: fork, which starts the execution of a code frag-
ment (commonly a procedure or a method) in parallel, and join, which blocks its caller
until the execution of the code fragment finishes. FJP represents a high level mecha-
nism to handle threads in programs, whose direct usage has received criticism due to
the inherent complexity of developing, testing and debugging threads [24]. In fact, Java,
which has offered threads as first-class citizens for years, includes now an FJP frame-
work for multi-core CPUs3. Indeed, easy-to-use programming models like FJP are of
major importance as they can boost the performance of today’s sequential applications
without the pressing need for a solid background on parallel programming.

Broadly, FJP is useful for execution environments where the notions of “task” and
“processor” exist. For instance, forked tasks can be run among the nodes of a cluster,
thus improving performance and scalability. Some years ago, Computational Grids [14],
which arrange resources from dispersed sites, have emerged as another exciting envi-
ronment for parallel computing. Interestingly, multi-core CPUs, clusters and Grids alike
can execute FJP tasks, because they conceptually comprise processing nodes (cores or
individual machines) interconnected through communication “links” (a system bus, a
high-speed LAN or a WAN). This uniformity suggests that the same FJP application
may be run in either environments, provided there is a scheduler aware of the specifics
of the underlying support. Then, a requirement for higher performance on a multi-core
FJP application may be fulfilled by gridifying it.

Broadly, current Java parallel libraries relying on task-oriented execution models
offer primitives to fork one or many tasks at once. These tasks are explicitly mapped
through API calls to library-level execution units. For example, the JPPF framework
provides a job abstraction, implemented by the JPPFJob class, which serves as a con-
tainer of one or more parallel tasks. There are however operational differences among
libraries concerning the primitives to synchronize subcomputations. From Section 2 we
conclude that these primitives follow one of two fork-join synchronization patterns:
single-fork join (SFJ) and multi-fork join (MFJ). The former represents one-to-one re-
lationships between fork and join points, i.e., a programmer must block its application
to wait for the result of each task. Alternatively, MFJ models many-to-one relationships,
thus the programmer waits for the results of the tasks launched up to a synchronization
call. For example, in the following code snippet, two SFJ calls are necessary to safely
access the results of task1 and task2:

public class SomeClass{
public void someMethod(){
...
API.fork(task1);
API.fork(task2);
...
API.sfj(task1); /* Block until task1 finishes */
... // Access the result of task1

3 http://openjdk.java.net/projects/jdk7/features
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API.sfj(task2); /* Block until task2 finishes */
... // Access the result of task2

}
}

, whereas the next code achieves the same behavior with one MFJ call:

public class SomeClass{
public void someMethod(){
...
API.fork(task1);
API.fork(task2);
...
API.mfj([task1, task2]); /* Block until task1, task2 finish */
... // Access either results

}
}

Examples of Java-based parallel libraries that support such synchronization patterns are
GridGain (SFJ), JPPF (SFJ), ProActive (SFJ and MFJ) and Satin (MFJ), which devel-
opers take advantage of through certain API calls. Sadly, this requires to learn a parallel
API, and ties the code to the library at hand. Moreover, managing synchronism for real-
world applications with complex algorithmic structures is time-consuming, and even
more important, error prone, as debugging concurrent programs has been historically
conceived as a notoriously hard task [29].

4. Semi-automatic FJP as a concern: the EasyFJP project

Intuitively, FJP is suitable for parallelizing divide and conquer (D&C) applications.
D&C is a natural way of solving a problem by recursively breaking it down into several
subproblems until trivial subproblems are obtained. Small, non-dividable subproblems
are commonly solved by calling a fragment of sequential code. The solutions to the
different subproblems are then combined to solve the whole problem.

Our ongoing EasyFJP project proposes source code analysis algorithms and gen-
eration techniques to automate the task of introducing SFJ and MFJ into sequential
D&C codes. Basically, these algorithms exploit the implicit fork-join structure present
in a sequential D&C application, whereas the techniques generate an FJP version to
leverage a parallel library of the user’s choice. Parallel code generation considers the
synchronization support of the target library, i.e., SFJ or MFJ. Central to EasyFJP is a
semi-automatic parallelization process that outputs library-dependent parallel applica-
tions with hooks for attaching user-provided optimizations called policies. This process
is illustrated in Figure 1. In this context, by parallel application we mean an application
comprising parallel entities that do not share memory and require no synchronization
between each other during their execution other than joins.

In the first step (Section 4.1), the source code of the application is analyzed to
spot the points within the target method that perform recursive calls and accesses to
their results. These calls and accesses together form the task-result dependencies of the
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D&C sequential
application

Step 2: Parallel
code generation

(Section 4.2)

Step 1: Source
code analysis
(Section 4.1)

1  package examples;
2  public class ItemSearch{ 
3   boolean search(int elem,
              int[] array){ 
4    boolean s1, s2 = false;
5    . . .
6    boolean s1 = search(
      elem, halfOne(array));
7    boolean s2 = search(
      elem, halfTwo(array));
8    . . .
9    return s1 || s2;
10  }
11 }

User policy: "Spawn 
search(int, int[]) if ... 
otherwise run it
sequentially"

FJP-based
tunable

application

Target library 
(GridGain, Satin, etc.)

Target method
(complete signature)

Source code                     Configuration
artifact                               artifact 

. . .

Step 3 (optional):
Policy declaration

(Section 4.3)

D&C sequential
applicationTarget library

task-result
dependencies
 = [{6,9}, {7,9}}

Fig. 1: EasyFJP: Parallelization process

method. Based on these dependencies, the points in which library-dependent synchro-
nization code is to be inserted in the method are identified and passed on to the next
step. In this way, the spotted dependencies are ensured upon parallelization to keep
the correctness of the resulting application. Before processing a D&C sequential appli-
cation with EasyFJP, programmers have to follow a simple code convention on their
sequential codes, namely assigning the results of recursive calls to local variables.

Targeting parallel libraries featuring SFJ simplifies the task of automatically identi-
fying synchronization points and hence inserting library-specific code to handle depen-
dencies, since the accesses to task results can be (usually) directly replaced by a proper
blocking API call. This is harder with MFJ, as it is necessary a deeper code analysis to
consider the structure of sentences and variable scopes, while ensuring the spotted de-
pendencies and minimizing the inserted parallel blocking calls. Either synchronization
algorithms behave heuristically, emulating a clever human developer while keeping the
correctness of the produced code.

The second step (Section 4.2) involves the generation of the parallel code itself
through builders, which are components that take advantage of the primitives of the
target parallel library. Builders also insert glue code to dynamically evaluate the opti-
mizations potentially defined at step 3. Lastly, builders adapt the code to the applica-
tion structure prescribed by the tarjet library. This includes extending from certain API
classes and generating extra code artifacts, among others.

A challenging issue in this regard concerns adapting code to the parallel program-
ming model of the target libraries. For example, targeting D&C libraries such as Satin
mostly requires source-to-source translation, i.e., recursive methods in the input appli-
cation are forked in the output application via proper calls to the target library API.
However, targeting libraries relying on conventional execution models –e.g., master-
worker or bag-of-tasks– in which there are not hierarchical relationships between par-
allel tasks, is not straightforward as builders must somehow “flat” the task structure of
the input application. An example of such a library is GridGain. We have nevertheless
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developed builders for GridGain, and Satin, as will be explained in further paragraphs.
Furthermore, we are studying other libraries to detect more adaptation scenarios.

Lastly, at step 3 (Section 4.3), programmers can optionally customize their parallel
applications for efficiency purposes via a non-intrusive tuning mechanism based on
policies. Conceptually, a policy is a rule that controls the amount of parallelism of an
application. It is implemented as a user-supplied class that specifies whether to fork a
recursive call or run it sequentially instead. For instance, ItemSearch (Figure 1) could
be made forking the recursive calls to search provided the length of the input unsorted
array is above some threshold.

Policies are associated to fork points through external configuration, and therefore
they can be modified and switched without altering the application code. Policy usage
is not mandatory for parallelizing applications. In addition, the separation promoted
by this mechanism –which is inspired by the concept of separation of concerns– be-
tween the tasks of writing application logic and tuning it contributes to the application
development process, as these two activities can be carried out independently by pro-
grammers with different skills. Moreover, our tuning framework allows developers to
specify policies based on the nature of their applications and the execution environ-
ment, e.g., using memoization or avoiding many forks with large-valued parameters in
a high-latency network.

One may argue that an alternative rule for paralleling D&C code is to directly rely
on the built-in FJP framework of Java 7. As such, this framework (and hence the paral-
lelized code) is portable to any implementation of Java. However, the framework does
not support distributed computing. Therefore, to support distributed task execution, a
parallel library that conforms to this framework API is needed. Even when it is not
clear whether adapting parallel libraries to support Java 7’s FJP is more difficult than
to produce an EasyFJP builder for these libraries or not, not all library providers are
interested in being compliant to this framework (e.g., JPPF and Satin). EasyFJP then
bridges the gap between D&C sequential codes and parallel libraries relying on fork-
join synchronization but not necessarily compliant to Java 7’s FJP.

4.1. Step 1: Source code analysis

Before feeding EasyFJP with a sequential application, the result of each recursive method
must be stored in a local variable, which allows EasyFJP to automatically spot task--
result dependencies and determine the points in which synchronization barriers are
needed. This, in turn, ensures that recursive results are always available before they
are accessed4. In case a programmer targets a library supporting SFJ such as Doug
Lea’s framework or GridGain, the resulting join points are in fact the points in which
those local variables are read. When generating code for a parallel library based on MFJ
such as Satin, a smarter source code analysis is necessary to minimize the number of
inserted synchronization barriers and hence parallel code. The algorithms for spotting
join points based on SFJ and MFJ are shown in Algorithm 1 and Algorithm 2, respec-
tively.

4 The source code conventions required by the EasyFJP approach are feasible to be automated
through proper IDE support [27].
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Identifying SFJ-based synchronization points. The algorithm for spotting SFJ-based
synchronization points works by walking through the instructions of a method and de-
tecting the points in which a local variable is either defined or used. A local variable
is defined and thus becomes a parallel variable when the result of a recursive method
is assigned to it. Conversely, a parallel variable is used when its value is read. When
executing in parallel, to work properly recursive methods can read parallel variables
provided a join has been previously issued. Based on the identified join points at this
step, EasyFJP modifies the source code so as to ensure that a library-specific join prim-
itive is called between the definition and use of any parallel variable, for any execution
path between these two points. Any regular local variable that does not represent results
from parallel computations, or non-parallel, is naturally ignored by the algorithm.

The algorithm operates on the nodes of the AST tree derived from the source code
of the input method. As such, this tree represents the different scopes of the method,
i.e., the root scope given by the method itself and the scopes resulting from container
sentences such as loops, conditionals, etc. Furthermore, the arcs of the three represent
the relationships between the scopes. Algorithm 1 shows the process of identifying both
the fork and the join points of a D&C method. Fork points are obtained by traversing
the sentences of the tree that is derived from the method in a depth-first fashion and
looking for definitions of parallel variables. The output of this analysis feeds another
process in charge of spotting the points of the method in which synchronization barriers
are to be inserted. Table 1 lists the helper functions of this algorithm.

Table 1: Algorithm for spotting SFJ-based synchronization points: Helper functions
Signature Functionality

getParallelVar
(aSentence,rootScope)

Checks whether aSentence is an assignment of a recursive call to a
parallel variable. If so, the name of the parallel variable defined is
returned, otherwise an empty result is returned.

getParallelVar
(aSentence)

Returns the name of the parallel variable defined in aSentence.

getFirstUse
(varName,aSentence)

Returns the first subsequent sentence of aSentence that uses varName.
If no such a sentence if found, an empty result is returned.

getScope
(aSentence)

Returns the scope to which aSentence belongs. Sentences belong to
one scope only; if a parent scope SP has a child scope Sc, a sentence
of Sc does not belong to SP.

checkIncluded
(aScope,anotherScope)

Checks whether aScope is the same scope as anotherScope or is a
descendant of it by inspecting the corresponding tree.

Identifying MFJ-based synchronization points. Algorithm 2 summarizes the pro-
cess of identifying the MFJ-based points (joinPoints) of a D&C method. To detect fork
points, the first procedure included in Algorithm 1 is used. Like the previous algorithm,
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Algorithm 1 Spotting SFJ-based points

procedure IDENTIFY FORK POINTS (rootScope)
f orkPoints← empty
for all sentence ∈ TRAVERSE DEPTH FIRST (rootScope) do

varName← GET PARALLEL VAR (sentence,rootScope)
if varName ̸= empty then

ADD ELEMENT (forkPoints,sentence)
end if

end for
return f orkPoints

end procedure
procedure IDENTIFY JOIN POINTS (rootScope, f orkPoints)

joinPoints← empty
for all sentence ∈ f orkPoints do

varName← GET PARALLEL VAR (sentence)
currSentence← sentence
scope← true
repeat

useSentence← GET FIRST USE (varName,currSentence)
if useSentence ̸= empty then

useSentenceScope← GET SCOPE (useSentence)
varNameScope← GET SCOPE (sentence)
if CHECK INCLUDED (useSentenceScope,varNameScope) then

ADD ELEMENT (joinPoints,useSentence)
currSentence← useSentence

end if
else

scope← f alse
end if

until scope ̸= true
end for
return joinPoints

end procedure

the MFJ-based algorithm operates on a tree-based representation of the source code of
the input method as well. However, it is less intuitive, since it is in fact an heuristic that
aims at inserting a minimal number of synchronization barriers, as we detail below. In
other words, the heuristic pays attention to both correctness and efficiency aspects.

The algorithm maintains a map with the parallel variables and their associated state
(SAFE or UNSAFE) per scope. The former means that up to the current analyzed in-
struction a parallel variable is safe to use and a synchronization barrier is not needed. In
opposition, the latter means that a barrier from where the variable is defined is needed.
The algorithm takes into account the scope at which parallel variables are defined and
used, i.e., it computes the state of each variable according to the state it has within the
(scope) node of the tree where the variable is read and the state of the same variable
within the ancestors of that node. Table 2 lists the helper functions of the algorithm.
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Algorithm 2 Spotting MFJ-based points

procedure IDENTIFY JOIN POINTS (rootScope)
joinPoints← empty
for all sentence ∈ TRAVERSE DEPTH FIRST (rootScope) do

varName← GET PARALLEL VAR (sentence,rootScope)
if varName ̸= empty then

currentScope← GET SCOPE (sentence)
if BEING USED (varName,sentence) = true then

if GET FIRST STATE (varName,currentScope) =UNSAFE then
SYNC VARS INSCOPE (currentScope)
ADD ELEMENT (joinPoints,sentence)

end if
else if BEING DEFINED (varName,sentence) = true then

DESYNC VARUPTOROOT (varName,currentScope)
end if

end if
end for
return joinPoints

end procedure

Let us apply the algorithm to the sequential method shown below. The method con-
tains one non-parallel variable (nonParallelVar) and two parallel variables (varA and
varB). The points in which a call to an MFJ-based barrier are needed are explicitly in-
dicated in the code. Table 3 shows the state of varA and varB within their associated
scopes as the analysis progresses.

1 public String D&CMethod() { // Scope 1
2 ...
3 boolean nonParallelVar = (Math.random() > 0.5) ? true:false;
4 String varA = D&CMethod();
5 if (!nonParallelVar) { // Scope 1.1
6 String varB = D&CMethod();
7 if (Math.random() > 0.5) { // Block 1.1.1
8 // An MFJ should be inserted here
9 System.out.println(varB);
10 varA = D&CMethod();
11 }
12 }
13 if (nonParallelVar) { // Scope 1.2
14 // An MFJ should be inserted here
15 System.out.println(varA);
16 }
17 ...
18 }

The algorithm iterates the instructions up to line 4, in which varA is defined. Hence, varA
becomes UNSAFE in scope 1 (see stage #1 in Table 3). At line 6, varB is defined within
scope 1.1, which makes it UNSAFE in scope 1.1 and its parent scope 1 (stage #2). At
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Table 2: Algorithm for spotting MFJ-based synchronization points: Helper functions
Signature Functionality

getParallelVar
(aSentence)

Checks whether aSentence references –i.e., either defines or uses– a
parallel variable. In such a case, the variable name within the method
is returned. Otherwise, an empty result is returned.

getScope
(aSentence)

Returns the scope to which aSentence belongs.

beingUsed
(varName,aSentence)

Checks whether the varName parallel variable is being read.
Analogously, beingDefined checks whether a parallel variable is
assigned the result of a recursive call. For container sentences, both
functions check whether the variable is accessed in the header of the
sentence, but not in the body.

getFirstState
(varName,scope)

Traverses the scope tree starting from the node represented by scope
upwards looking for the occurrence of a parallel variable varName in
any of the variable maps of these scopes. When the variable is first
found, the function returns the state it has in the variable map of the
scope it was first encountered.

syncVarsInScope
(scope)

Sets to SAFE the state of all parallel variables contained in scope
(encountered up to the current analyzed sentence) as well as the
ancestors of scope. The resulting pairs [varName,SAFE] are only put
into the map of scope.

desyncVarUpToRoot
(varName,scope)

Sets the state of a specific parallel variable to UNSAFE from a given
scope up to the root scope. This means that the variable becomes
UNSAFE in scope as well as all its ancestor scopes.

line 9, varB is used within scope 1.1.1. Its first occurrence is encountered in the parent
of scope 1.1.1 as UNSAFE. All parallel variables in the variable maps of scope 1.1.1
(none) and its ancestors (varA and varB) are set to SAFE in scope 1.1.1, and the line
right before line 9 is regarded as a join point (stage #3). At line 10, another definition
of varA is found, which makes the variable UNSAFE in scopes 1.1.1, 1.1 and 1 (stage
#4). At line 15, varA is being used within scope 1.2. According to its parent scope 1,
the first state of this variable is UNSAFE. This causes to set to SAFE in scope 1.2 all
variables found in the maps of scope 1.2 (none) and its ancestors (varA and varB), and
to regard the line right before line 15 as a join point (stage #5).

4.2. Step 2: Parallel code generation

Based on the synchronization information obtained at step 1, the source code and con-
figuration of the input application, and the parallel library selected by the developer,
EasyFJP generates parallel source code. For each class of the input application, EasyFJP
creates a peer class that exploits the target parallel API. Then, sequential classes and
peers are seamlessly “wired” at load time by employing a simple bytecode rewriting
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Table 3: Variable maps and MFJ-based synchronization points of D&CMethod

Stage Scope Variable map joinPoints

1

1 {[varA,UNSAFE]}

-1.1 -
1.1.1 -
1.2 -

2

1 {[varA,UNSAFE], [varB,UNSAFE]}

-1.1 {[varB,UNSAFE]}
1.1.1 -
1.2 -

3

1 {[varA,UNSAFE], [varB,UNSAFE]}

line 91.1 {[varB,UNSAFE]}
1.1.1 {[varA,SAFE], [varB,SAFE]}
1.2 -

4

1 {[varA,UNSAFE], [varB,UNSAFE]}

line 91.1 {[varA,UNSAFE], [varB,UNSAFE]}
1.1.1 {[varA,UNSAFE], [varB,SAFE]}
1.2 -

5

1 {[varA,UNSAFE], [varB,UNSAFE]}

lines 9, 151.1 {[varA,UNSAFE], [varB,UNSAFE]}
1.1.1 {[varA,UNSAFE], [varB,SAFE]}
1.2 {[varA,SAFE], [varB,SAFE]}

technique. This essentially aims at avoiding modifying the source code of the original
classes while supporting parallelism for them through those peers.

This technique uses the java.lang.instrument package, a built-in API of Java that de-
fines hooks for modifying classes at load time. The package is intended to be extended
through special user libraries –regular JAR files (Java ARchive)– called Java agents.
These agents customize the class loading process and are accessed by the JVM every
time an application requests to load a class. In EasyFJP, the classes that are subject to
modification are the ones configured by the user as targets for parallelization.

When rewriting a sequential class for such purposes, EasyFJP replaces the body of
its D&C method with a stub that delegates its execution to its parallel counterpart in the
associated peer. For example, let us consider the recursive version for computing the
nth Fibonacci number, whose code is as follows:

public class FibApp{
public long fibonacci(long n){
if (n < 2)
return 1;
f1 = fibonacci(n - 1);
f2 = fibonacci(n - 2);
return f1 + f2;
}
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}

Then, the fibonacci method of the FibApp class is dynamically rewritten as follows, so
that its computation is performed by the peer (FibApp Peer):

public class FibApp{
public long fibonacci(long n){
FibApp_Peer peer = new FibApp_Peer();
copyProperties(this, peer);
// Assuming we are relying on SFJ through GridGain
ExecutorManager m = ManagerFactory.getExecutor("GridGain");
return (long)m.execute(peer, "fibonacci", new Object[]{n});
}

}

The instance variables of the peer, which may be used by the computation, are
instantiated via Java reflection from the running sequential object. Basically, copying
properties is a generic procedure that is possible thanks to the uniformity provided by
following the getters/setters convention of the well-known JavaBean specification [41],
to which sequential classes must also be compliant to. Finally, ExecutorManager rep-
resents the EasyFJP API class that communicates with the library-level support that
executes peers by performing the corresponding parallel library-specific initialization
and disposal activities.

Let us illustrate the peers generated by EasyFJP based on the GridGain library,
which offers SFJ-based synchronization and is currently supported by EasyFJP:

1 import org.gridgain.grid.Grid;
2 import org.gridgain.grid.GridFactory;
3 import org.gridgain.grid.kernal.executor.*;
4 import org.gridgain.grid.GridTaskFuture;
5 import java.util.concurrent.Callable;
6 // Peer
7 public class FibApp_Peer implements java.io.Serializable{
8 // Properties are copied as is from the original class
9 ...
10 public long fibonacci(long n){
11 return fibonacci(n, initContext(...));
12 }
13 // The GridGain-enabled method
14 public long fibonacci(long n, ExecutionContext ctx){
15 ...
16 Grid grid = GridFactory.getGrid();
17 GridExecutorCallableTask ex = new GridExecutorCallableTask();
18 GridTaskFuture<long> f1future = grid.execute(
19 ex, new FibAppTask(this, updateContext(ctx, ...), n - 1);
20 GridTaskFuture<long> f2future = grid.execute(
21 ex, new FibAppTask(this, updateContext(ctx, ...), n - 2);
22 return f1future.get() + f2future.get();
23 }
24 }
25 // Subcomputation
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26 public class FibAppTask implements Callable{
27 // Instance variable declarations
28 ...
29 FibAppTask(FibApp_Peer peer, ExecutionContext ctx, long p0){
30 // Copy arguments into instance variables
31 }
32 // Setters/getters for "peer", "ctx" and arguments
33 ...
34 public Serializable call(){
35 return getPeer().fibonacci(p0, ctx);
36 }
37 }

As shown in the code, the peer contains a proxy method (lines 10-12) that invokes the
actual parallelized method (lines 14-23), whose code has been derived from the original
fibonacci method but modified to include GridGain forks and joins (lines 18-21 and 22,
respectively). Particularly, GridGain materializes the SFJ pattern by extending the con-
ventional future construct from the Java concurrency API to support task asynchronysm
and distribution. In a broad sense, a future is an abstraction that allows programmers
to represent and manipulate an individual asynchronous computation. For the sake of
simplicity, the code shown does not exploit the latest version of the GridGain API (i.e.,
4.1) since it is fairly more verbose than previous versions.

Instances of FibAppTask carry out the subcomputations by calling fibonacci(long,
ExecutionContext) on individual branches of the execution tree. Besides, the peer keeps
track of the depth of the tree at runtime. This information, together with the method pa-
rameters are encapsulated in an ExecutionContext object, which is used to feed policies
by further modifying the source code of the newly generated parallel method. The ad-
ditional modifications are essentially glue code for invoking policies by passing along
context information. It is out of the scope of this paper to detail such code modifications,
which can be found in [27].

Besides automating the use of GridGain and its SFJ-based API, EasyFJP also sup-
ports the Satin library, which provides SFJ-based parallelism, and the standard fork-
join framework of Java [27]. To manually use Satin, methods considered for parallel
execution must be indicated by the user through a marker interface that includes their
exact signature and extends the satin.Spawnable interface. The class containing par-
allel (D&C) methods extends the satin.SatinObject class and implements the marker
interface. In addition, the invocations to parallel methods are stored in local variables.
After specifying parallel methods and inserting synchronization calls into the code, the
developer must feed a compiled version of the application to the Satin compiler that
translates, through Java bytecode instrumentation, each invocation to a parallel method
into a Satin runtime task, so that forks are issued at runtime. Bytecode instrumentation
means transforming the compiled version of a program to alter its semantics.

The purpose of the Satin builder is to automatically reproduce these tasks. The Satin
builder generates the marker interface based on the operations specified within the con-
figuration file of the application, and makes the peer extend and implement the required
API classes and interfaces. Besides, the builder inserts appropriate calls to sync –the
MFJ-based primitive of Satin– based on the output of the source code analysis of step 1.
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Passing the source code of FibApp through the Satin builder (without taking into account
policies) results in the following parallel code:

1 // Marker interface
2 public interface FibApp_Marker extends satin.Spawnable{
3 public long fibonacci(long n, ExecutionContext ctx);
4 }
5 // Peer
6 public class FibApp_Peer extends satin.SatinObject
7 implements FibApp_Marker, Serializable{
8 // Properties are copied as is from the original class
9 ...
10 public long fibonacci(long n){
11 return fib(n, initContext(...));
12 }
13 // The Satin-enabled method
14 public long fibonacci(long n, ExecutionContext ctx){
15 ...
16 f1 = fib(n - 1, updateContext(ctx, ...));
17 f2 = fib(n - 2, updateContext(ctx, ...));
18 super.sync();
19 return f1 + f2;
20 }
21 ...
22 }

The builder generates the FibApp Marker marker interface (lines 1-4), and makes the
peer implement it (line 7). MFJ-based synchronization in the resulting peer is managed
via calls to the sync primitive of the Satin API (line 18).

4.3. Step 3: Policy declaration

Policies represent a mechanism to express, separately from the application logic, cus-
tomized strategies to achieve better performance. Conceptually, a policy implements a
user-specified rule that governs the behavior of an application within the underlying
execution environment. As mentioned earlier, EasyFJP provides a policy-inspired tun-
ing support that let developers introduce common FJP optimization heuristics without
altering their applications by means of special Java classes.

Basically, policies represent tuning decisions that depend on the algorithmic nature
of the application being parallelized. Particularly, policies model the notions of thresh-
old, memoization and task placement, which are explained in the following subsections.
These are, in other words, ways of regulating the levels of parallelism in an application
for non-experienced developers.

Threshold-based policies. Threshold policies are used to avoid forking a subcom-
putation more than needed and otherwise execute it sequentially. For example, in the
FibApp application, we may want to “throttle” the number of forks that are injected
into the runtime system –and therefore the task granularity– depending on the depth
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of the execution tree associated to the method at runtime. This decision is indicated to
EasyFJP by associating the following policy to the fibonacci method:

class MyThresholdPolicy implements Policy{
static final int THRESHOLD = 10;
public boolean shouldFork(ExecutionContext ctx){
return (ctx.getCurrentDepth() <= THRESHOLD);
}

}

The code implements the Policy interface from the EasyFJP policy API and allows each
execution of fibonacci to be forked provided the current depth of the execution tree of
the method is below THRESHOLD. As mentioned in past paragraphs, ExecutionContext
provides operations to further introspect the execution of the application, namely ob-
taining the values of method parameters. For example, for the recursive search method
over an array of Figure 1, a policy may be associated to restrict parallelism depending
on the size of the input array:

...
public boolean shouldFork(ExecutionContext ctx){

int[] array = (int[])ctx.getArgument(1); // search(elem,array)
return (array.length > MIN_ARRAY_SIZE);

}
...

The above policy code uses the ExecutionContext object to access the value of the sec-
ond argument of each call to search to decide whether the size of the received array
justifies another fork. To attach the above threshold policy to the FibApp class, we must
supply the corresponding declaration in the configuration of the application.

Memoization policies. Memoization is another common optimization technique used
to gain efficiency by having applications to avoid forking a subcomputation when re-
sults have been already computed. In this sense, in our FibApp class, we may want to
avoid recalculating previously computed results, as the nature of the application makes
subcomputations to overlap. From a programmer’s perspective, coding a memoization
policy requires deciding whether to fork or not, and in the latter case to identify the
particular result that should be reused:

class MyMemoizationPolicy implements MemoizationPolicy{
public boolean shouldFork(ExecutionContext ctx){
long n = (Long)ctx.getArgument(0); // fibonacci(n)
return (n % 2 == 0);
}
public String buildResultKey(ExecutionContext ctx){
return String.valueOf(ctx.getArgument(0));
}

}

The policy indicates EasyFJP to fork and hence to ignore previously computed results if
the argument of a call to fibonacci is even. Moreover, whenever shouldFork evaluates to
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Fig. 2: An application processing a quadtree data structure.

false, EasyFJP attempts to reuse the value from a result cache with the key as indicated
by buildResultKey. However, if shouldFork evaluates to false but the key is invalid and
leads to a cache miss, the execution in parallel takes place. Depending on the target ex-
ecution environment for the application (e.g., multi-core, cluster), memoization works
by using a local in-memory or a distributed cache [27]. Memoization strategies like the
one implemented by this policy, in which only a subset of already calculated results
are reused, are useful in parallel optimization problems where forking for a subproblem
may yield a better solution than reusing a similar computed suboptimal result [1].

Task placement policies. Task placement or mapping refers to the problem of assign-
ing unfinished tasks to available executing nodes. This problem has been proved to be
NP for both static as well as dynamic placement [22], i.e., when tasks are mapped in
an off-line and a runtime fashion, respectively. Precisely, tasks resulting from executing
D&C applications belong to the second category, because the execution of an individual
task may trigger the execution of N more. Under EasyFJP, the node in charge of execut-
ing a task is not determined by the application but the underlying scheduler. However,
the hierarchical task structure of EasyFJP applications indirectly determines task de-
pendencies that, if ignored, may result in suboptimal performance. Then, the goal of
these policies is to allow the user to control the placement of forked tasks by selectively
ignoring some of the decisions taken by the underlying task scheduler.

Consider, for instance, an application that performs some recursive computation on
a quadtree data structure. As such, every parallel task creates four more tasks, each in
charge of processing a particular region of the data (see Figure 2). Now, let us suppose
we execute this application on four clusters C1, C2, C3 and C4, connected through wide-
area links. Assuming we are targeting a parallel library based on cluster-aware round
robin scheduling such as the Satin framework and launching the execution of our appli-
cation at cluster C1, one possible task mapping is taskd1 /taskd+11 →C1, taskd+12 →C2,
taskd+13 →C3 and taskd+14 →C4.

Alternatively, we could force taskd+11 and taskd+12 to be located at cluster C1, and
delegate the placement of the rest of the siblings tasks of taskd1 to the scheduler (e.g.,
taskd+13 → C2, taskd+14 → C3). Depending on the amount of data interchanged be-
tween taskd1 and taskd+11 /taskd+12 , the semi-automatic mapping may justify the loss
of processing power at cluster C4, to which no task would be assigned.
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Roughly, this kind of decision can be specified in EasyFJP through a task placement
policy, which tells, based on an API-exposed task identifier, where to submit parallel
tasks for execution. Below is the policy code that implements the above mapping:

class MyTaskPlacementPolicy implements TaskPlacementPolicy{
public boolean shouldMap(ExecutionContext ctx, TaskId id){
if (ctx.getCurrentDepth() % 2 != 0){
// This avoids overloading the local node
return false;
}
return (id.getNumber() <= 2);
}
public InetAddress mapTo(ExecutionContext ctx, TaskId id){
return InetAddress.getLocalHost();
}

}

Basically, the shouldMap method decides whether to activate explicit task mapping for a
given subcomputation, whereas mapTo indicates EasyFJP to which node the task should
be submitted. Each task is assigned a unique identifier that comprises the depth asso-
ciated to the task such as id.getDepth() plus one equals ctx.getCurrentDepth(), and a
subsequent number. In this case, we have made the forked tasks to be placed in the
same physical node as the parent tasks originating them. However, other complex ac-
tions could had been taken in this respect, such as mapping tasks to any node of a given
cluster, or even a cluster where a certain task is executing. Finally, task placement poli-
cies assume that the underlying library API has support for explicit task mapping, a
feature present in several Java-based parallel tools, e.g., ProActive and GridGain.

5. Experimental evaluation

The practical implications of using EasyFJP are determined by two essential aspects,
i.e., how competitive is implicitly supporting FJP synchronization patterns in D&C
codes compared to other parallel programming models, and whether policies are ef-
fective to tune parallelized applications. We have already conducted experiments to
partially answer these questions in the context of the MFJ pattern with computational
kernels and Grids [27], from which encouraging results were obtained. Next, we report
experiments with the SFJ and MFJ synchronization patterns along with real-world ap-
plications, through our bindings to GridGain (Section 5.2) and Satin (Section 5.3) on
both an emulated Grid and a cluster to better analyze the tradeoffs inherent to EasyFJP.

5.1. Testbeds and test applications

We set up a LAN comprising 8 dual core nodes with similar CPU capabilities running
Ubuntu 11.04, Java 6, Satin 2.2, and GridGain 3.2.1. The nodes were connected through
a 100 Mbps network. We refer to this environment as the cluster. Then, we established a
wide-area Grid on top of this cluster by employing WANem version 2.2 [43], a software
for emulating WAN conditions over a local area network. We emulated 3 remote clusters
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C1, C2 and C3 by using 2, 3 and 3 of the nodes of the cluster, respectively, which were
connected together by using virtual Internet links. Each WAN link was a T1 connection
(bandwidth of 1,544 Mbps) with a round-trip latency of 100 ms and a jitter of 5 ms,
therefore inter-cluster latencies were in the range of 95-105 ms, which are network
conditions found in Internet-wide Grids. The reason of using this setting was to provide
a challenging testing scenario for EasyFJP. We refer to this second environment as the
emulated Grid or simply Grid. In either environments, we configured middlewares in
such a way 16 computing processors were available for the experiments.

Furthermore, we used two test applications. The first one was ray tracing, a widely-
known rendering technique that generates a digital picture from an abstract description
of a 3D scene [18]. Basically, we based our experiments on an existing D&C ray trac-
ing code from the Satin project5, which operates by deriving an initial image from an
input scene, dividing this image to recursively apply the algorithm, and then joining the
results. Computationally, the ray tracing application is both CPU and memory intensive.

The second application was local pairwise sequence alignment, a problem from
Bioinformatics that involves representing a biological entity (e.g., a gene) in a computer-
understandable way (e.g., strings) and manipulating this representation by using se-
quence alignment algorithms, which are usually computing intensive. Basically, we
took an existing master-worker implementation of the application for aligning protein
sequences whose code was obtained from the JPPF project [40]. This source code relies
on JAligner [30], which given any pair of sequences outputs a coefficient representing
the similarity level between these two by using a scoring matrix from a set of predefined
matrixes. The original JPPF application aligned an unknown input sequence against an
entire sequence database, which was replicated across the nodes of the experimental
testbed to allow parallel tasks to locally access sequence data. The sequence alignment
application makes extensive use of CPU and I/O, because of the many database ac-
cesses.

Moreover, various EasyFJP variants (SFJ-based and MFJ-based) of the ray trac-
ing application were obtained by removing from the original Satin code any sentence
related to parallelism or tuning application execution in order to derive its sequential
D&C counterpart, and then automatically generating the corresponding parallel codes.
The same was carried out to generate various EasyFJP variants of the sequence align-
ment application from the original JPPF code. The manual GridGain and Satin variants
were obtained by directly altering the original parallel codes. We fed the applications
with various 3D scenes, and real gene sequence databases from the NCBI (National
Center for Biotechnology Information). For ray tracing, we used two scenes Scene 1
and Scene 2 with resolutions of 1024x1024 and 2048x2048. For sequence alignment,
we compared five sequences against real protein sequence databases. Concretely, we
employed five sequence databases of increasing sizes (4,289 up to 12,325 sequences).

5.2. SFJ-based parallelism

With respect to task granularity for ray tracing we used two task sizes: base and medium
granularity. The former represents splitting the whole computation into the minimum

5 http://www.cs.vu.nl/ibis/satin.html
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number of parallel tasks such that all processors (i.e., 16 in our case) get work to do,
or in other words one task per processor. On the other hand, with the medium granular-
ity, 64/256 tasks were generated when using the 1024x1024/2048x2048 image, which
means 4/16 parallel tasks per node. For sequence alignment, we also employed two
granularities, base (i.e., 1 parallel task per node), and medium, where the number of
tasks to execute depended on the size of the input database for efficiency purposes. This
is, the larger the database, the more the generated tasks, thus enabling for better paral-
lelism. In this context, a task refers to a computing intensive calculation that actually
processes a region of the input data. Therefore, the number of created tasks associated
with each granularity was the number of launched workers in the manual GridGain vari-
ants, and the number of leaf nodes that resulted from executing the (recursive) EasyFJP
variants. For either application, we used three EasyFJP variants:

– A variant including a default built-in policy that provides a base granularity for
tasks. The policy finds the minimum factor f that satisfies #o f tasks = f anout f ≥
#o f processors, where fanout is the number of recursive calls included in the tar-
get D&C parallelized method. As suggested, this policy is attached by default to
EasyFJP applications, thus no intervention from programmers is required.

– A variant using a threshold policy to configure medium task granularity.
– A variant using a policy that extended the above policy to place tasks processing

near regions of the input data in the same cluster.
Preliminary experiments regarding the use of another variant considering the de-
fault built-in policy plus task placement showed some serious performance prob-
lems. This is because the performance benefits of placing a set of related tasks in
the same physical cluster scene becomes negligible when less tasks are executed. In
other words, dynamically dividing the computation in few, computationally heavy
tasks that are placed in the same physical cluster makes the rest of the clusters to be
underused most of the time. Thus, we decided to left this variant out of the analysis.

Afterwards, we developed manual GridGain variants through its annotation-based par-
allel directives and its support for Google’s MapReduce [11, 25]. We then modified
the resulting codes to generate four manual GridGain variants by considering the two
aforementioned granularities.

For the sake of fairness, all variants (automatic and manual) were configured to
use the same load balancing mechanism at the platform (GridGain) level, namely round
robin scheduling with the default configuration. According to the authors, this algorithm
provides a fair distribution of tasks among the nodes of a Grid/cluster and works well
in most cases. Basically, upon executing an application, the algorithm randomly picks
a Grid node and then dynamically and sequentially assigns tasks for execution in a
round-robin fashion. For the EasyFJP implementations using task placement policies,
on the other hand, some of the generated tasks were heuristically and manually placed
on nodes while for the rest this decision was delegated to this scheduler. In general,
round-robin is known to be an algorithm that is much less effective when scheduling a
heavy-tailed set of tasks [36], i.e., where processing few long-sized tasks takes a high
percentage of the processing time for the entire set. However, all variants employed in
the experiments generated tasks in charge of computing over similar portions of the
input data, which made round-robin an effective scheduler for our test applications.
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Emulated Grid. Figure 3 and Figure 4 illustrate the average execution time (AET)
of the ray tracing and sequence alignment applications for 40 runs, respectively. In all
cases, standard deviations were in the range of 5-12%. Note that this percentage is
somewhat high, however it is mainly explained by the fact that GridGain, and hence the
EasyFJP variants generated automatically, used a random load balancing support, plus
the variability of the WAN links of the testbed in terms of latency.

For ray tracing, from Figure 3 (a), it can be seen that EasyFJP performed com-
petitively for almost all scenes, because it consistently added an average overhead of
around 5 seconds with respect to the manual variants. The exception to this rule was the
combination GridGain (MapReduce) variant and Scene 1 (1024x1024), which showed
an overhead in favor of EasyFJP, but this may be explained by the unpredictable na-
ture of the execution environment. We believe these results are acceptable taking into
account that EasyFJP automates SFJ-based parallelism, and the non-invasive nature of
policies allowed the EasyFJP code to remain clean from these kind of rules, which
simplified the implementation of the medium-grained variants. Precisely, by observing
Figure 3 (b), some very interesting facts arise. For the case of the 1024x1024 resolution
scenes, again, EasyFJP added an overhead of few seconds with regard to its competitors.
However, for the case of the 2048x2048 scenes, using a raw threshold allowed EasyFJP
to perform even closer to the two manual variants, and task placement introduced gains
of up to 63% with respect to the most efficient manual variants in either cases. It is worth
mentioning that the weak point of implementing effective task placement policies is the
requirement of a deeper knowledge on the EasyFJP API. Users without the necessary
knowledge can fall back to threshold policies, which are much easier to specify.

For sequence alignment, the execution times uniformly increased as database sizes
increased for all tests, which shows a good overall correlation of the different variants.
Interestingly, for the base granularity (see Figure 4 (a)) and databases DB 2, DB 3 and
DB 5, EasyFJP performed better than the two manual variants. For DB 1 and DB 4,
on the other hand, EasyFJP added a very small performance overhead. Although this
is interesting, our goal is not to outperform existing Grid libraries but simplifying their
usage while achieving competitive performance. Note that Figure 4 (b) reveals similar
results when relying on medium-grained parallel tasks.

Besides, from Figure 4 (b), it can be seen that task placement did not help in re-
ducing execution times since, unlike ray tracing, parent and child parallel tasks did not
interchange large amounts of data. In other words, for sequence alignment, we observed
that manually mapping individual tasks to nodes naturally lead to less communication
delays but also to much lower levels of processor usage. This does not imply that task
placement policies are not effective but their usage should be decided depending on the
nature of the application, otherwise they may yield negative results. Last but not least,
we emphasize the positive aspect of policies given by the fact that whenever a tuning
decision does not work as expected, the programmer can easily switch between several
policies with no harm to the logic of its application.

Cluster. Figure 5 and Figure 6 illustrate the average execution time (AET) of the ray
tracing and sequence alignment applications for 25 runs, respectively. We performed
less runs compared to the emulated Grid as the standard deviations were much lower.
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Fig. 3: SFJ-based EasyFJP and manual GridGain variants: AET on the emulated Grid
(ray tracing)
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Fig. 4: SFJ-based EasyFJP and manual GridGain variants: AET on the emulated Grid
(sequence alignment)

Moreover, unlike the previous subsection, it can be seen that the variants using the
task placement policy were not used as this policy does not apply to this execution
environment.

As illustrated in Figure 5, EasyFJP incurred an average and constant overhead of
around 6 seconds with respect to its competitors. As suggested by Figure 6, this prob-
lem was not present with the sequence alignment application. A main component of
this overhead is caused by the policy support of EasyFJP. Particularly, for ray tracing,
the shouldFork(ExecutionContext ctx) method of the policies of both EasyFJP variants
receives a copy of the parameters of the parallelized method the policies are attached
to. Therefore, upon each policy invocation, the ctx object is populated with a copy of
the subimage being processed plus some image meta-data (dimensions, color informa-
tion, etc.) that were present in the signature of the parallelized method. However, the
implemented threshold policy, upon deciding whether to fork a task into more subtasks
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Fig. 5: SFJ-based EasyFJP and manual GridGain variants: AET on the cluster (ray trac-
ing)
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Fig. 6: SFJ-based EasyFJP and manual GridGain variants: AET on the cluster (sequence
alignment)

or not, it only needs the subimage dimensions. In this sense, lots of objects are unneces-
sarily created/copied. Then, to avoid this overhead, one solution could be parametrizing
policies with the minimal set of parameters. We are extending the way developers can
currently specify policies at the Step 3 of the process of Section 4 by allowing them
to build a mapping between a target method’s parameters and the input data actually
used by the associated policy. Consequently, at runtime, EasyFJP could perform only
the copy operations specified in the mappings.

5.3. MFJ-based parallelism

In these experiments, we compared the performance of the applications generated au-
tomatically via EasyFJP and our bindings to Satin versus the ones manually coded by
using the Satin API. The next paragraphs report the obtained results.
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Emulated Grid. For both applications, we also employed base and medium task gran-
ularities. Additionally, unlike GridGain, Satin is designed to support finer forms of par-
allelism. Due to this particularity of the targeted parallel library, we also used fine task
granularities, comprising twice as many runtime tasks compared to the medium granu-
larity. Furthermore, for controlling task granularity in the EasyFJP variants, threshold-
based policies were also employed.

Figures 7 and 8 illustrate the AET of the MFJ-based ray tracing and sequence align-
ment codes for 40 runs. Again, standard deviations were in the range of 8-17%, which
was due to the variability of the WAN links of the testbed, plus the fact that Satin and
hence EasyFJP exploited the CRS [44] task scheduling algorithm of Satin, which imple-
ments a cluster-aware random task stealing mechanism. With CRS, when a Grid node
becomes idle, it attempts to steal an unfinished task both from nodes belonging to the
same local cluster or external nodes, however intra-cluster steals have higher priority
than inter-cluster ones, minimizing expensive WAN communication.
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Fig. 7: MFJ-based EasyFJP and Satin variants: AET on the emulated Grid (ray tracing)

All in all, the codes performed very well compared to Satin, considering that our
goal is not to outperform existing Grid libraries but automating as much as possible their
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Fig. 8: MFJ-based EasyFJP and Satin variants: AET on the emulated Grid (sequence
alignment)

usage while achieving competitive performance. From Figure 7 (a) it can be seen that
EasyFJP either performed very closely with respect to Satin or incurred in overheads
of few seconds. Specifically, the most visible execution overhead was only for the case
of base and medium granularities and Scene 2 (2048x2048), however, with the thresh-
old policy using the fine granularity, EasyFJP slightly outperformed Satin whereas re-
mained competitive for the rest of the scenes and resolutions (see Figure 7 (c)). In
practice, this means that whenever a desired performance level is not reached for an
experimental scenario, another policy can be non-invasively configured to the same ap-
plication code. In general, this is more difficult to achieve manually with Satin, since
the code controlling granularity may be scattered across the application logic.

For sequence alignment and the medium task granularity, EasyFJP incurred in over-
heads of 5% and 3% for DB1 and DB2, respectively. Furthermore, for the fine task
granularity and DB4, EasyFJP had a negligible overhead. In general, EasyFJP outper-
formed Satin in 12 out of 15 granularity-input combinations, with gains of up to 14%.
In principle, this may seem confusing since the generated EasyFJP code uses Satin as
the underlying support for execution. This is explained in part by the random nature
of the Satin scheduler, but the main reason is that the code executed by the Satin run-
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time in either cases is subject to different computational requirements. The pure Satin
versions of the applications were parallelized by hand, while the EasyFJP counterparts
were parallelized automatically and as such they contained more sentences for support-
ing policies. Since the sequence alignment is much less CPU intensive compared to
the ray tracing application, having more sentences means heavier tasks, which favors
scheduling for libraries designed to efficiently handle CPU-bound tasks like Satin.

Standard deviations were 9-15% for the case of Satin but in the range 8-17% for
the case of EasyFJP. This fact may suggest that the execution time of the EasyFJP
variants of sequence alignment was more affected by the data-intensive nature of the
application, however this should be further corroborated. To sum up, we believe these
are acceptable results that justify the use of EasyFJP to ease the exploitation of the Satin
library in particular –via the MFJ synchronization pattern– in similar Grid scenarios.

Cluster. In a final round of experiments, we compared the performance of EasyFJP and
Satin in a computer cluster. To schedule parallel tasks, we used the random job stealing
algorithm (or RS for short) provided by Satin. It is worth noting that the “workhorse”
of Satin for running tasks is the CRS algorithm, however we also considered a cluster
and therefore RS for the sake of completeness.

Figures 9 and 10 show the resulting times for the ray tracing and the sequence align-
ment applications. For the case of ray tracing, we did not obtain significant differences
in favor of any of the two approaches, and consequently we can say that in general
EasyFJP performed competitively. For sequence alignment and base granularity, how-
ever, EasyFJP performed worse. The reader should recall that our synchronization al-
gorithms are heuristics that do not guarantee optimal barrier placement compared to
programs parallelized by hand in a smart way. Then, when combined with the default
task granularity policy, results may be suboptimal. It can be seen however that the use
of threshold policies (particularly the variant shown in Figure 10 (c)) ameliorated the
overheads, which enforces the experimental findings from the previous subsections.

6. Conclusions

In this paper we have described EasyFJP, an approach to simplify the parallelization
of divide and conquer sequential Java applications. EasyFJP introduces the concept
of FJP synchronization pattern, i.e., common forms of fork-join parallelism present in
many task-based Java frameworks and libraries. EasyFJP exploits this through semi-
automatic algorithms and source code rewriting techniques to generate parallel applica-
tions. Also, execution of parallel applications is performed by leveraging the scheduling
and load balancing services of existing parallel tools, and can be explicitly adjusted for
optimization purposes via policies.

We have shown that this approach has the potentiality to offer a better balance to the
“ease of use and versatility versus performance” tradeoff inherent to tools for parallel
programming, plus the flexibility of generating code to exploit various parallel libraries
and FJP optimization heuristics. The experimental results obtained based on real world
applications and execution environments, in conjunction with the ones preliminary re-
ported in [27] confirm that implicit synchronization based on FJP patterns and policy--
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Fig. 9: MFJ-based EasyFJP and Satin variants: AET on the cluster (ray tracing)

oriented explicit tuning, glued together through generative programming, are a viable
approach to PaaC from a practical perspective. Interestingly, we have shown that using
EasyFJP and targeting such libraries –in this case GridGain and Satin– does not lead to
resigning performance compared to manually using the libraries.

Up to now, EasyFJP deals with two broad parallel concerns, namely (pattern-based)
task synchronization and application tuning. We are investigating how to incorporate
to our approach other common concerns in parallel programming and specially FJP
applications such as inter-task communication, and adapting our ideas to newer parallel
environments such as Cloud environments [6, 34], which have recently gained much
attention and have became a hot topic in high performance computing. However, this is
a mid-term research goal that should be deeply studied.

Moreover, there is a recent towards programming tools that simplify parallel soft-
ware development. One of the aims of these tools is reducing the analysis and transfor-
mation burden when parallelizing sequential programs, which improves programmer
productivity [12]. In this line, we are building IDE support to simplify the adoption and
use of EasyFJP. As a starting point, we will adopt Eclipse, which is very popular among
Java developers. Finally, we have produced a materialization of our ideas to support
the development of parallel applications within pure engineering communities, where
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Fig. 10: MFJ-based EasyFJP and Satin variants: AET on the cluster (sequence align-
ment)

scripting languages such as Python and Groovy are the common choice [31, 33, 32]. At
present, we have redesigned the policy support of EasyFJP to allows developers to code
policies in Java as well as Python and Groovy. We also plan to materialize EasyFJP
concepts into these scripting languages. Then, we will investigate how to port and ex-
ploit the parallelization heuristics of EasyFJP apart from its policy mechanism, which
will require determining which is the most appropriate fork-join parallelization pattern
for these languages.
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