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Abstract. We consider symmetry properties of minimizers in the variational

characterization of the best constant in the trace inequality C‖u‖p
Lq(∂Bρ)

≤
‖u‖p

W1,p(Bρ)
in the ball Bρ of radius ρ. When p is fixed minimizers in this

problem can be radial or nonradial depending on the parameters q and ρ. We

prove that there is a global radial function u0 > 0, with u0 independent of
q, such that any radial minimizer is a multiple of the restriction of u0 to Bρ.

Next we prove that if either q or ρ is sufficiently large then the minimizers

are nonradial. In the case when p = 2 we consider a generalization of the
minimization problem and improve some of the above symmetry results. We

also present some numerical results describing the exact values of q and ρ for

which radial symmetry breaking occurs.

1. Introduction

Let Bρ denote the ball of radius ρ centered at the origin in RN with N ≥ 2.
Let 1 < p < ∞ be fixed and denote by p∗ the critical trace exponent given by
p∗ = p(N − 1)/(N − p) if p < N and p∗ = ∞ if p ≥ N . Let 1 < q < p∗. The trace
inequality states that there exists a constant C which depends on q and ρ such that

C

(∫
∂Bρ

|u|q dσ

)p/q

≤
∫

Bρ

|∇u|p + |u|p dx ∀u ∈ W 1,p(Bρ).

The best constant is given by

(1) Sq(ρ) = inf
u∈W 1,p(Bρ)

∫
Bρ
|∇u|p + |u|p dx(∫

∂Bρ
|u|q dσ

)p/q
.

If 1 < q < p∗ it is standard to show that this infimum is reached by a function u
which has definite sign and that any nonzero multiple of u is again a minimizer. If
q = p then u is the first eigenfunction in a Steklov type problem (see equation (4)
below). If q 6= p we can assume that u is positive and normalized in such a way
that

(2) Sq(ρ)

(∫
∂Bρ

uq dσ

) p
q−1

= 1.

The function u is then a solution of the boundary value problem

(3)


∆pu = up−1 in Bρ,
u > 0 in Bρ,
|∇u|p−2 ∂u

∂ν = uq−1 on ∂Bρ.

Given the inherent symmetries of this minimization problem it is natural to ask if u
is radial. Two previous articles study this question in the case p = 2. The following
results are known:
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(1) In [8] M. del Pino and C. Flores consider the best trace constant in an
expanding smooth domain when 2 < q < 2∗. They show that when the
parameter governing the expansion is sufficiently large the minimizing func-
tions concentrate near a single point on the boundary where the mean
curvature is maximum. In the case of a ball this result implies that the
minimizing functions are nonradial when ρ is sufficiently large.

(2) In [6] J. Fernandez Bonder, E. Lami Dozo and J. Rossi proved the following
results: Let N ≥ 3. There exists R > 0 such that for any ρ < R and for
any 1 < q ≤ 2∗ the minimizer for Sq(ρ) is radial. If N = 2 then for any
1 < q < ∞ there exists R(q) such that for any ρ < R(q) the minimizer
for Sq(ρ) is radial. Now let ρ > 0 be fixed. The authors show that if
there is a radial minimizer for Sq0(ρ) then for any q ≤ q0 there exists a
radial minimizer for Sq(ρ). In particular, since there always exists a radial
minimizer when q = 2 it follows that Sq(ρ) has a radial minimizer for any
q ≤ 2 and any ρ > 0.

We have considered these questions in the more general setting 1 < p < +∞.
We extend many of the results known for the case p = 2 and find new methods of
proof for some of them. We also prove various results which are new even in the
case p = 2. We now state our main results.

Let ρ > 0 be fixed and consider the following Steklov type eigenvalue problem,

(4)
{

∆pu = |u|p−2u in Bρ,
|∇u|p−2 ∂u

∂ν = λ|u|p−2u on ∂Bρ.

It is well known that the first eigenvalue λ1(ρ) = Sp(ρ) is simple (see [7]). Let u0

be an eigenfunction associated to λ1(ρ). Since u0 is unique up to a constant factor
and (4) is invariant under rotation it is clear that u0 is radial.

Theorem 1. Let ρ > 0 and 1 < p < +∞ be fixed.
(1) If there exists a radial minimizer for Sq(ρ) then it is a multiple of u0.
(2) Assume there exists a radial minimizer for Sq0(ρ). If 1 < q < q0 then any

minimizer for Sq(ρ) is a multiple of u0.
(3) Let 1 < q < p. Then the solution of the boundary value problem (3) is

unique and it is a multiple of u0. In particular any minimizer for Sq(ρ) is
a multiple of u0.

The second and third statements of Theorem 1 are partly known in the case
p = 2. Indeed it is shown in [6] that if q ≤ q0 or q ≤ 2 then there exists a radial
minimizer for Sq(ρ). In fact the second statement in Theorem 1 asserts that in this
case any minimizer is radial and is given up to a constant factor by u0. Moreover
the third statement in Theorem 1 asserts that when q < p we have uniqueness in
the associated boundary value problem as well as in the minimization problem.

Under certain conditions radial symmetry is lost if either q or ρ is sufficiently
large. Define the function ρ 7→ Q(ρ) by

(5) Q(ρ) =
1

λ1(ρ)p/(p−1)

(
1− (N − 1)

λ1(ρ)
ρ

)
+ 1.

Theorem 2. Let 1 < p < +∞ be fixed.
(1) Let ρ > 0. If q > Q(ρ) then there is no radial minimizer for Sq(ρ).
(2) Let p < q < p∗. There exists R(q) such that for any ρ > R(q) there is no

radial minimizer for Sq(ρ).

The first statement in Theorem 2 appears to be new even in the case p = 2.
Moreover, although there are several studies in the literature concerning symmetry
breaking in variational problems it is unusual to find precise quantitative results in
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higher dimension such as the first statement in Theorem 2. The second statement
in Theorem 2 appears to be new in the case p 6= 2 but follows from [8] in the case
p = 2. The authors of [8] consider the more general setting of an expanding smooth
bounded domain. Our proof of Theorem 2 is different and only works in the case
of a ball. However it is more simple and direct than [8]. We use a method of
”desymmetrization” whereby one starts with a hypothetical radial minimizer and
uses it to construct a nonradial function which has a smaller Rayleigh quotient.

It will be shown that if N ≥ 3 and if ρ is sufficiently small then Q(ρ) > p∗.
When q > p∗ the minimization problem (1) is not a priori well defined so the first
statement of Theorem 2 does not apply. This is in perfect agreement with the result
of [6], in the case when p = 2 and N ≥ 3, which states that there exists R > 0 such
that for any ρ < R and for any 2 < q ≤ 2∗ the minimizers are radial.

When the minimizer in (1) is nonradial it is still possible to get some symmetry
by using the technique of spherical symmetrization, also known as foliated Schwarz
symmetrization (see [4] for a description of this symmetrization method). We de-
scribe the shape of nonradial minimizers in section 5.

Using theorems 1 and 2 we may define a function Q̃(ρ) such that

(6)
q ≤ Q̃(ρ) ⇒ Any minimizer for Sq(ρ) is a multiple of u0

q > Q̃(ρ) ⇒ There is no radial minimizer for Sq(ρ)

It is clear that p ≤ Q̃(ρ) ≤ Q(ρ). Furthermore we will prove the following state-
ments:

(1) If N = 2 and p = 2 then limρ→0 Q̃(ρ) = limρ→0 Q(ρ) = +∞
(2) For any N and p we have limρ→+∞ Q̃(ρ) = limρ→+∞ Q(ρ) = p

In light of this it seems natural to ask if Q̃(ρ) = Q(ρ) for all ρ > 0. In other
words, we ask if the converse of the first statement in Theorem 2 is true. We do not
know of a proof (or counter proof) of this statement so we have tested the equality
Q̃(ρ) = Q(ρ) numerically in a special case. More precisely we present numerical
data in section 6 which suggests that Q̃(ρ) = Q(ρ) at least when p = 2 and N = 2.
We have not found any values of the parameters for which Q̃(ρ) 6= Q(ρ). This
numerical study also yields a means of visualizing the graphs of minimizers when
N = 2.

In the case p = 2 we can improve Theorem 1. To do so, we next consider the
problem

(7)


∆u = u in Bρ,
u > 0 in Bρ,
∂u
∂ν = λu + uq−1 on ∂Bρ,

where Bρ is as above, 1 < q < 2∗ and −∞ < λ < λ1(ρ) where λ1(ρ) is the first
Steklov eigenvalue (see equation (10) below). A solution u is called a least energy
solution if it is a minimizer for

(8) Sλ
q (ρ) = inf

v∈H1(Bρ)

∫
Bρ
|∇v|2 + v2 dx− λ

∫
∂Bρ

v2 dσ(∫
∂Bρ

|v|q dσ
)2/q

.

Conversely if a function u minimizes (8) then an appropriate multiple of u is a
solution of (7). The following result can be proved using standard variational
methods.

Theorem 3. Let ρ > 0. Let q 6= 2 and 1 < q < 2∗. Then (7) has a least energy
solution if and only if −∞ < λ < λ1 (ρ).



4 ENRIQUE J. LAMI DOZO AND OLAF TORNÉ

Given the symmetries of the minimization problem (8) it is again natural to ask
if the minimizers are radial functions. A similar problem has been studied elsewhere
in the literature: Consider a positive solution of the equation

(9) −∆u = uq−1 − λu in Bρ

with homogeneous Dirichlet (u = 0) or Neumann (∂u
∂ν = 0) boundary conditions

where q is subcritical and λ > 0. In the case of the Dirichlet boundary condition
any solution is radial by the Gidas-Ni-Nirenberg theorem. When the Neumann
condition is imposed least energy solutions can be defined in a similar way to (8).
The authors of [5] prove that there are no nonconstant radial least energy solutions
and they prove some axial symmetry properties for least energy solutions, which
do not depend on any of the parameters ρ, q or λ.

In contrast to the situation for (9) we find that the symmetry properties of
minimizers in (8) depend on each of the parameters ρ, q and λ. First let us denote
by λ1(ρ) the first eigenvalue in the Steklov type problem

(10)
{

∆u = u in Bρ,
∂u
∂ν = µu on ∂Bρ.

Let u0 be an eigenfunction associated to λ1(ρ). This function is positive, unique
up to a constant factor and it is radial. As in the case λ = 0 we show that if q < 2
then the minimizer for (8) is unique up to a constant factor and is given by u0 up to
a normalization. It remains to consider the case q > 2. Let −∞ < λ < 1 be fixed.
By the proof of Proposition 6 below, the function ρ 7→ λ1 (ρ) is strictly increasing,
λ1(0) = 0 and limρ→+∞ λ1(ρ) = 1. It follows that we can define

(11) ρ0(λ) = inf {ρ > 0; λ < λ1(ρ)} .

Note that when λ ≤ 0 we have ρ0 = 0.

Theorem 4. Consider ρ > 0, 2 < q < 2∗ and −∞ < λ < 1. Then there exist
positive numbers δ1 (q, λ), δ2 (q, ρ) and δ3 (λ, ρ) such that if one or more of the
following conditions is true

(1) ρ0(λ) < ρ < ρ0(λ) + δ1,
(2) λ1(ρ)− δ2 < λ < λ1(ρ),
(3) 2 < q < 2 + δ3,

then any minimizer for Sλ
q (ρ) is a multiple of u0.

Notice that the third statement of Theorem 4 improves the third statement of
Theorem 1 in the case p = 2. Moreover it will be shown that the numbers δ1, δ2

and δ3 can not be chosen independently of the parameters ρ, q and λ. Concerning
the loss of radial symmetry we have the following result.

Theorem 5. Let ρ > 0, 2 < q < 2∗ and −∞ < λ < λ1(ρ) be fixed. If

(12) 1− (N − 1)
λ1(ρ)

ρ
− (q − 1)λ2

1(ρ) + (q − 2)λ1(ρ)λ < 0.

then there is no radial minimizer for Sλ
q (ρ).

Note that (12) can be used to write quantitative estimates for the values of q and
λ where radial symmetry breaking occurs by isolating either of these parameters in
the inequality (cf. equation (5)). In fact we will deduce from (12) that minimizers
for Sλ

q (ρ) may be nonradial if either ρ or q is sufficiently large or if λ is sufficiently
small.

In section 5 we apply spherical symmetrization to describe the shape of nonradial
minimizers. Lastly, in section 6 we give numerical examples which suggest that the
converse of Theorem 5 is also true: If the inequality ≥ holds in (12) then any
minimizer is radial.
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2. Radial minimizers

From now on let 1 < p < ∞ and ρ > 0 be fixed. Theorem 1 follows from
propositions 2, 3 and 4 below. First we show that the eigenfunction associated to
the first eigenvalue λ1 (ρ) = Sp (ρ) in the Steklov type problem (4) is independent
of ρ in the following sense.

Proposition 1. There exists a positive radial function u0 such that

∆pu0 = up−1
0 in RN .

This u0 unique up to a constant factor and for any ρ > 0 the restriction of u0 to
Bρ is the first eigenfunction of (4).

Proof. We construct u0 such that, say, u0(0) = 1. For α > 0 let Bα be the ball of
radius α centered at the origin. Let uα denote a solution of the Dirichlet problem
∆puα = up−1

α in Bα and uα ≡ 1 on ∂Bα. This function uα is unique by regularity
theory and the comparison principle (see [10] and [3]). For any α > 0 we define the
restriction of u0 to Bα by u0 = uα

uα(0) . Using the comparison principle as above one
can check that u0 is well defined and has the desired properties. �

Another useful property is given in the following

Proposition 2. Let v be a radial solution of (3). Then v is a multiple of u0. In
particular any radial minimizer of (1) is a multiple of u0.

Proof. Fix a > 0 such that au0 ≡ v on ∂Bρ. The solution of the Dirichlet problem
for the equation ∆pw = wp−1 is unique by the results of [10] and [3]. It follows
that au0 ≡ v in Bρ. �

The following proposition contains the second statement of Theorem 1.

Proposition 3. Let 1 < p < ∞ and let ρ > 0 be fixed. Let 1 < q0 < p∗ and assume
there exists a radial minimizer for Sq0(ρ). If 1 < q < q0, then any minimizer for
Sq(ρ) is a multiple of u0.

Proof. Let v be a minimizer for Sq(ρ). If v is constant on the boundary then v is a
multiple of u0 by the same argument as in the proof of Proposition 2. Assume now
that v is not constant on the boundary. To simplify notations we write B = Bρ. It
follows from the strict Holder inequality that(∫

∂B

vq dσ

)p/q

< |∂B|
p
q−

p
q0

(∫
∂B

vq0 dσ

)p/q0

.

Now, by Proposition 2, u0 is a minimizer for Sq0(ρ). Using the previous inequality
we get the following

‖v‖p

W1,p

(
∫

∂B
vq0 dσ)p/q0

< |∂B|
p
q−

p
q0

‖v‖p

W1,p

(
∫

∂B
vq dσ)p/q

= (
∫

∂B
uq

0 dσ)p/q

(
∫

∂B
u

q0
0 dσ)p/q0

‖v‖p

W1,p

(
∫

∂B
vq dσ)p/q

≤ ‖u0‖p

W1,p

(
∫

∂B
u

q0
0 dσ)p/q0

= Sq0 (ρ)

where the last inequality follows from the fact that v is a minimizer for Sq(ρ). This
contradicts the definition (1) of Sq0 (ρ). Thus if 1 < q < q0, then any minimizer v
for Sq(ρ) must be radial. By Proposition 2 it follows that v is a multiple of u0. �
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Recall that any minimizer for Sp(ρ) = λ1(ρ) is a multiple of u0. Thus the above
Proposition implies that the minimizer for Sq(ρ) is given by u0 whenever q ≤ p. In
fact a stronger property holds since we have uniqueness not only of the minimizer
but also in the associated boundary value problem.

Proposition 4. Let 1 < q < p. The solution of (3) is unique and it is a multiple
of u0.

Proof. Assume that there exist two solutions u and v of (3). By the regularity
results of [10] and the maximum principle of [9] it follows that u, v > 0 in B̄ρ.
Using first Picone’s identity (see [1]) and then the weak formulation of (3) we have

0 ≤
∫

Bρ
|∇u|p dx−

∫
Bρ
|∇v|p−2∇v∇

(
up

vp−1

)
dx

= −
∫

Bρ
up dx +

∫
∂Bρ

uq dσ +
∫

Bρ
vp−1 up

vp−1 dx−
∫

∂Bρ
vq−1 up

vp−1 dσ

=
∫

∂Bρ
uq dσ −

∫
∂Bρ

vq−pup dσ

=
∫

∂Bρ
up (uq−p − vq−p) dσ.

Clearly we can swap u and v in the above equation. Combining the inequality thus
obtained with the above inequality we get

0 ≤
∫

∂Bρ

(up − vp)
(
uq−p − vq−p

)
dσ.

Since q < p the above integrand is nonpositive so that in fact u ≡ v on ∂Bρ.
By uniqueness of the solution to the Dirichlet problem we get u ≡ v in Bρ as in
the proof of Proposition 2. Since it is unique the solution u must be radial and
Proposition 2 implies u is a multiple of u0. �

3. Loss of radial symmetry

Let 1 < p < ∞ be fixed in what follows. Recall that the function ρ 7→ Q (ρ) is
defined by (5) and that λ1(ρ) = Sp(ρ) is the first eigenvalue in the Steklov type
problem (4). Theorem 2 will follow from Proposition 5 and corollary 1 below.

Proposition 5. Let ρ > 0. If q > Q(ρ) there is no radial minimizer for Sq(ρ).

Proof. Let ρ > 0 be fixed and consider u0 the radial solution of ∆pu0 = up−1
0 in

RN such that u0 ≡ 1 on ∂Bρ (see Proposition 1). By Proposition 2 it is enough to
check that u0 is not a minimizer for Sq(ρ) when q > Q(ρ). We write u instead of u0

to simplify notations. For any t ∈ R and x ∈ RN denote xt = (x1 − t, x2, . . . , xN ).
Consider the function

Φ(t) =

∫
Bρ
|∇u(xt)|p + u(xt)p dx(∫

∂Bρ
u(xt)q dσ

)p/q
.

Then

Φ′(t) = p
(∫

∂Bρ
u(xt)q dσ

)− p
q−1

·

[
−
(∫

Bρ

1
2 |∇u(xt)|p−2 ∂|∇u(xt)|2

∂x1
+ 1

p
∂u(xt)p

∂x1
dx
)(∫

∂Bρ
u(xt)q dσ

)
+
(∫

Bρ
|∇u(xt)|p + u(xt)p dx

)(
1
q

∫
∂Bρ

∂u(xt)q

∂x1
dσ
)]

.
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The first and second integrands in square brackets are odd functions when t = 0,
so Φ′(0) = 0. Using the fact that u ≡ 1 on ∂Bρ and the divergence Theorem we get

Φ′′(0) = p (|∂Bρ|)−
p
q−1

(
|∂Bρ|

∫
Bρ

∂
∂x1

(
1
2 |∇u|p−2 ∂|∇u|2

∂x1
+ 1

p
∂up

∂x1

)
dx

− 1
q‖u‖

p
1,p

∫
∂Bρ

∂2uq

∂x2
1

dσ
)

= C
(
|∂Bρ|

∫
∂Bρ

(
1
2 |∇u|p−2 ∂|∇u|2

∂x1
+ 1

p
∂up

∂x1

)
ν1 dσ

−‖u‖p
1,p

∫
∂Bρ

(q − 1)
(

∂u
∂x1

)2

+ ∂2u
∂x2

1
dσ

)
where ν = (ν1, . . . , νN ) is the outer normal vector and C is a positive constant.
Now since u is radial we can write

Φ′′(0) = C
(
|∂Bρ|

N

∫
∂Bρ

1
2 |∇u|p−2 ∂|∇u|2

∂ν + 1
p

∂up

∂ν dσ

−‖u‖p
1,p

N

∫
∂Bρ

(q − 1)|∇u|2 + ∆u dσ
)

.

By definition u = u(r) satisfies

(13)
(
rN−1|u′|p−2u′

)′
= rN−1up−1 ∀r > 0.

Proposition 1 states that for any r > 0 the function u is an eigenfunction associated
to λ1(r) in B(r). The boundary condition satisfied by eigenfunctions implies that

(14) u′(r)p−1 = λ1(r)u(r)p−1 ∀r > 0.

Using (13) and (14) a straightforward calculation shows that

1
2 |∇u|p−2 ∂|∇u|2

∂ν + 1
p

∂up

∂ν = λ
1/(p−1)
1
p−1

(
1− (N − 1)λ1

ρ

)
+ λ

1/(p−1)
1

and that

(q−1)|∇u|2 +∆u = (q−1)λ2/(p−1)
1 + 1

(p−1)λ
p−2
p−1
1

(
1− (N − 1)λ1

ρ

)
+(N −1)λ

1/(p−1)
1

ρ

on ∂Bρ. We also have that
‖u‖p

1,p = λ1|∂Bρ|.
Collecting equations we get Φ′(0) = 0 and

Φ′′(0) = C

(
1− (N − 1)

λ1(ρ)
ρ

− (q − 1)λ1(ρ)p/(p−1)

)
,

where C is a positive constant. If q > Q(ρ) then Φ′′(0) < 0 and t = 0 is a local
maximum for Φ. Thus u = u0 can not be a minimizer. �

In order to get symmetry breaking in large balls we must study the asymptotic
behavior of Q(ρ) as ρ → +∞. This will follow from the following lemma.

Lemma 1. Denote by λ1(ρ) = Sp(ρ) the first eigenvalue in the Steklov type problem
(4). Then the function ρ 7→ λ1(ρ) is a solution of the following differential equation

(15) λ′ = 1− (p− 1)λp/(p−1) − (N − 1)
λ

ρ
∀ρ > 0

satisfying the initial condition λ1(0) = 0.
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Proof. Let u0 denote as before the positive radial solution of ∆pu0 = up−1
0 in RN

normalized in such a way that, say, u0(0) = 1. For any ρ > 0 the first eigenfunction
of the Steklov problem (4) is given by the restriction of u0 to Bρ (see Proposition
1). From the boundary condition satisfied by an eigenfunction we get

(16) λ1(ρ) =
u′0(ρ)p−1

u0(ρ)p−1
∀ρ > 0.

Deriving (16) with respect to ρ and using the equation (13) satisfied by u0 we get
the desired equation for λ1. Now, choosing u ≡ 1 as testing function in (1) we get

(17) λ1(ρ) ≡ Sp(ρ) ≤ |Bρ|
|∂Bρ|

=
ρ

N

so that λ1(0) = 0. �

Proposition 6. The function Q(ρ) has the following asymptotic behavior

lim
ρ→0

Q(ρ) = +∞ and lim
ρ→+∞

Q(ρ) = p.

Proof. As mentioned above any minimizer for Sp(ρ) is radial. Consequently Propo-
sition 5 implies that p ≤ Q(ρ) for any ρ > 0. On the other hand using (5) and
(15) we see that λ′1 (ρ) = (Q(ρ)− p) λ1 (ρ)p/(p−1) so that λ′1(ρ) > 0 for all ρ > 0.
It follows from (15) that the function λ1(ρ) is bounded by some positive constant.
Consequently λ′1(ρ) → 0 as ρ → +∞. It follows that limρ→∞ λ1(ρ)

p
p−1 = 1

p−1 .
Hence limρ→∞ Q(ρ) = p.

Now (17) implies that λ1(ρ)
ρ is bounded by 1/N and that λ1(ρ) → 0 as ρ → 0,

so limρ→0 Q(ρ) = +∞. �

A remarkable consequence of propositions 5 and 6 is that radial symmetry is lost
in large balls.

Corollary 1. Let q > p. If ρ is sufficiently large there is no radial minimizer for
Sq(ρ).

Proof. By Proposition 6 we have q > Q (ρ) for all ρ sufficiently large. The result
then follows from Proposition 5. �

Recall Q̃(ρ) is defined by (6). It is clear that Q(ρ) is an upper bound for Q̃(ρ),
so that p ≤ Q̃(ρ) ≤ Q(ρ) for all ρ > 0. We may also show that Q̃ and Q have the
same asymptotic behavior. Indeed from Proposition 6 we get

lim
ρ→+∞

Q(ρ) = lim
ρ→+∞

Q̃(ρ) = p.

When p = 2 and N = 2 the results of [6] imply that limρ→0 Q̃(ρ) = +∞ so

lim
ρ→0

Q(ρ) = lim
ρ→0

Q̃(ρ),

at least in this special case. In light of this it seems natural to ask if Q̃ = Q. We
do not know of a proof (or counter proof) of this statement but we have checked
numerically that it is true at least in the case N = 2 and p = 2 (see section 6).

4. A problem involving a nonlinear boundary condition

In this section we consider the minimization problem (8) and prove theorems 4
and 5. We first state a symmetry result which is analogous to Theorem 1. Since
the proof is very similar to the proof of Theorem 1 we will not include it here.

Theorem 6. Let ρ > 0 be fixed.
(1) If there exists a radial minimizer for (8) then it is a multiple of u0.
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(2) Assume there exists a radial minimizer for Sλ0
q0

(ρ). If 1 < q ≤ q0 and if
λ0 ≤ λ < λ1(ρ) then any minimizer for Sλ

q (ρ) is a multiple of u0.
(3) Let q < 2 and let −∞ < λ < λ1(ρ). Then the solution of the boundary

value problem (7) is unique and it is a multiple of u0. In particular any
minimizer for Sλ

q (ρ) is a multiple of u0.

Let us now prove Theorem 4.

Proof of Theorem 4. Statement (1). Recall that ρ0 is defined such that λ1 (ρ0) = λ
when 0 < λ < 1 and ρ0 = 0 when λ ≤ 0. Let vρ be a sequence of positive minimizers
for Sλ

q (ρ) with ρ → ρ0. We have that Sλ
q (ρ) → Sλ

q (ρ0) = 0 as ρ → ρ0. We may
change scale by setting uρ(x) = vρ(ρx) and denoting the unit ball by B. The uρ

satisfy

(18)
∫

B

∇uρ∇ϕ+ ρ2uρϕ dx−λρ

∫
∂B

uρϕ dσ− ρ
N−2

q (2∗−q)Sλ
q (ρ)

∫
∂B

uq−1
ρ ϕ dσ = 0

for any ϕ ∈ H1(B) where uρ is normalized in such a way that
∫

∂B
uq

ρ dσ = 1. If
ρ0 > 0 let ũ(x) = u0(ρx) where u0 is the first Steklov eigenfunction in Bρ normalized
so that ũ ≡ 1

|∂B|1/q on ∂B, whereas if ρ0 = 0 let ũ ≡ 1
|∂B|1/q in B. It can be shown

using standard arguments of functional analysis that uρ → ũ in H1 (B) as ρ → ρ0.
Consider now the function
F : H1(B)× R× R → H1(B)′ × R : (u, t, ρ) 7→ (F1(u, t, ρ), F2(u, t, ρ))

< F1(u, t, ρ), ϕ >=
∫

B
∇u∇ϕ + ρ2uϕ dx− λρ

∫
∂B

uϕ dσ − t
∫

∂B
|u|q−2uϕ dσ

F2(u, t, ρ) =
∫

∂B
|u|q dσ − 1

We have F (ũ, 0, ρ0) = 0. Let (v, s) ∈ H1(B)×R. The derivative of F with respect
to (u, t) at the point (ũ, 0, ρ0) and in the direction (v, s) is given by

〈 ∂F1
∂(u,t)

∣∣
(ũ,0,ρ0) (v, s), ϕ〉 =

∫
B
∇v∇ϕ + ρ2

0vϕ dx− λρ0

∫
∂B

vϕ dσ

−s|∂B|−
q−1

q
∫

∂B
ϕ dσ ∀ϕ ∈ H1(B)

∂F2
∂(u,t)

∣∣
(ũ,0,ρ0) (v, s) = q|∂B|−

q−1
q
∫

∂B
v dσ

Let (φ, α) ∈ H1(B)′ × R and consider the minimization problem

inf
v∈X

1
2

∫
B
|∇v|2 + ρ2

0v
2 dx− λ1(ρ0)ρ0

2

∫
∂B

v2 dσ − 〈φ, v〉,

X =
{
v ∈ H1(B);

∫
∂B

v dσ = 0
}

.

It can be shown that any minimizing sequence is bounded and that the infimum is
achieved by some function v0 ∈ X satisfying∫

B

∇v0∇ϕ + ρ2
0v0ϕ dx− λ1 (ρ0) ρ0

∫
∂B

v0ϕ dσ − 〈φ, ϕ〉 = η

∫
∂B

ϕ dσ,

for all ϕ ∈ H1(B), where η is a Lagrange multiplier. Setting v = v0 + α
q ũ and s =

η|∂B|
q−1

q we have ∂F
∂(u,t)

∣∣
(ũ,0,ρ0) (v, s) = (φ, α) so that the differential is surjective.

One may check that it is also injective. By the implicit function Theorem there is
a neighborhood V of (ũ, 0, ρ0) in H1(B) × R × R such that for any ρ sufficiently
near to ρ0 there is a unique point (u, t, ρ) ∈ V such that F (u, t, ρ) = 0.

Now consider again the sequence uρ above. We have
(
uρ, S

λ
q (ρ), ρ

)
→ (ũ, 0, ρ0)

in H1(B)×R×R as ρ → ρ0, and F
(
uρ, S

λ
q (ρ), ρ

)
= 0. By the uniqueness property

in the implicit function Theorem and the fact that F is invariant by rotation we
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have that uρ is radial for ρ close to ρ0. Going back to Bρ by a change of scale we
see that any minimizer vρ for Sλ

q (ρ) is radial when ρ is sufficiently near to ρ0. By
Theorem 6 the function vρ is then a multiple of u0.

Statement (2). Let ρ > 0 and 2 < q < 2∗ be fixed. Let ui be a sequence of
positive minimizers for Sλi

q (ρ) with λi → λ1(ρ) as i →∞. We have that Sλi
q (ρ) →

S
λ1(ρ)
q (ρ) = 0 as i →∞. Moreover the ui satisfy the following equation

(19)
∫

Bρ

∇ui∇ϕ + uiϕ dx− λi

∫
∂Bρ

uiϕ dσ − Sλi
q (ρ)

∫
∂Bρ

uq−1
i ϕ dσ = 0

for any ϕ ∈ H1 (Bρ) where ui is normalized in such a way that
∫

∂Bρ
uq

i dσ = 1. It
follows from standard arguments of functional analysis that ui converges in H1 (Bρ)
to u0, an eigenfunction associated to λ1 (ρ) and normalized so that u0 ≡ 1

|∂Bρ|1/q

on ∂Bρ.
Similarly to above, define the function

F : H1(Bρ)× R× R → H1(Bρ)′ × R : (u, t, λ) 7→ (F1(u, t, λ), F2(u, t, λ))

< F1(u, t, λ), ϕ >=
∫

Bρ
∇u∇ϕ + uϕ dx− λ

∫
∂Bρ

uϕ dσ − t
∫

∂Bρ
|u|q−2uϕ dσ

F2(u, t, λ) =
∫

∂Bρ
|u|q dσ − 1

We have F (u0, 0, λ1) = 0. Let (v, s) ∈ H1(B)×R and consider the derivative of F
with respect to (u, t) at the point (u0, 0, λ1) and in the direction (v, s):

〈 ∂F1
∂(u,t)

∣∣
(u0,0,λ1) (v, s), ϕ〉 =

∫
Bρ
∇v∇ϕ + vϕ dx− λ1(ρ)

∫
∂Bρ

vϕ dσ

−s|∂B|−
q−1

q
∫

∂Bρ
ϕ dσ ∀ϕ ∈ H1(Bρ)

∂F2
∂(u,t)

∣∣
(u0,0,λ1) (v, s) = q|∂Bρ|−

q−1
q
∫

∂Bρ
v dσ

Let (φ, α) ∈ H1(B)′ × R. The infimum

inf
v∈X

1
2

∫
Bρ
|∇v|2 + v2 dx− λ1(ρ)

2

∫
∂Bρ

v2 dσ − 〈φ, v〉,

X =
{

v ∈ H1(Bρ);
∫

∂Bρ
v dσ = 0

}
.

is achieved by a function v0 ∈ X such that∫
Bρ

∇v0∇ϕ + v0ϕ dx− λ1(ρ)
∫

∂Bρ

v0ϕ dσ − 〈φ, ϕ〉 = η

∫
∂Bρ

ϕ dσ,

for all ϕ ∈ H1(Bρ), where η is a Lagrange multiplier. Setting v = v0 + α
q u0 and

s = η|∂B|
q−1

q we see that ∂F/∂(u, t)|(u0,0,λ1)(v, s) = (φ, α) so that the differential
is surjective. One may check that it is also injective. Arguing as above, with use
of the implicit function theorem, we reach the desired conclusion.

Statement (3). Let ρ > 0 and −∞ < λ < λ1(ρ). Let ui be a sequence of positive
minimizers for Sλ

qi
(ρ) with qi → 2, normalized so that

∫
∂Bρ

uqi

i dσ = 1. It can be
shown that Sλ

q (ρ) → Sλ
2 (ρ) = λ1(ρ)−λ and that ui → u0 in H1 (Bρ) where u0 is an

eigenfunction associated to λ1(ρ) and normalized in such a way that u0 ≡ 1
|∂Bρ|1/2

on ∂Bρ.
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Consider the function:
F : H1(Bρ)× R× R → H1(Bρ)′ × R : (u, t, q) 7→ (F1(u, t, q), F2(u, t, q))

< F1(u, t, q), ϕ >=
∫

Bρ
∇u∇ϕ + uϕ dx− λ

∫
∂Bρ

uϕ dσ − t
∫

∂Bρ
|u|q−2uϕ dσ

F2(u, t, q) =
∫

∂Bρ
|u|q dσ − 1

We have F (u0, λ1 − λ, 2) = 0. Using the implicit function Theorem as above one
shows that there is a neighborhood V of (u0, λ1 (ρ)− λ, 2) in H1(Bρ)×R×R such
that for any q sufficiently near to 2 there is a unique point (u, t, q) ∈ V such that
F (u, t, q) = 0. Arguing as above we get that ui is radial for qi near 2. �

Proof of Theorem 5. Let ρ > 0 be fixed and consider u0 the radial solution of
∆u0 = u0 in RN such that u0 ≡ 1 on ∂Bρ (see Proposition 1). Note that the
restriction of u0 to the ball Bρ is just the first eigenfunction in problem (10). By
Theorem 6 it is enough to check that u0 is not a minimizer for Sλ

q (ρ) when inequality
(12) holds. For any t ∈ R and x ∈ RN denote xt = (x1 − t, x2, . . . , xN ). Define the
function

Φ(t) =

∫
Bρ
|∇u0(xt)|2 + u0(xt)2 dx− λ

∫
∂Bρ

u0(xt)2 dσ(∫
∂Bρ

u0(xt)q dσ
)2/q

.

As in the proof of Proposition 5 we show that

Φ′(0) = 0

Φ′′(0) = C
(
1− (N − 1)λ1(ρ)

ρ − (q − 1)λ2
1(ρ) + (q − 2)λ1(ρ)λ

)
where C is a positive constant. If Φ′′(0) < 0 then t = 0 is a local maximum for Φ
and u0 cannot be a minimizer. �

Define the functions

(20) Q(ρ, λ) = 1 +
1

λ1(ρ)− λ

(
1

λ1(ρ)
− N − 1

ρ
− λ

)
and

(21) Λ(ρ, q) =
−1

(q − 2)λ1(ρ)

(
1− (N − 1)

λ1(ρ)
ρ

− (q − 1)λ2
1(ρ)

)
.

If either q > Q (ρ, λ) or λ < Λ (ρ, q) then inequality (12) holds and the minimizer
for Sλ

q (ρ) is nonradial. Now let ρ > 0 and let −∞ < λ < λ1 (ρ). By Theorem
4 there is a δ3 > 0 such that if 2 < q < 2 + δ3 then the minimizer for Sλ

q (ρ) is
given by a multiple of u0. This δ3 is not bounded below by a positive constant
independent of ρ and λ. Indeed let q > 2 be fixed. We have that limρ→∞ Q (ρ, λ) =
limλ→−∞ Q (ρ, λ) = 2 so that the minimizer for Sλ

q (ρ) is nonradial if ρ is sufficiently
large or if λ is sufficiently near to −∞. Consequently infρ,λ δ3 = 0. In a similar
manner it can be shown that the number δ1 (respectively δ2) appearing in Theorem
4 can not be chosen independently of λ and q (respectively q and ρ).

5. Symmetry properties of nonradial minimizers

The technique of spherical symmetrization, also known as foliated Schwartz sym-
metrization, is well adapted to the minimization problem (1). For a description of
this technique see for instance [4]. Let u be a minimizer for (1) and let ũ ∈ W 1,p(Bρ)
denote the foliated Schwartz symmetrization of u with respect to the north pole.
It is well known that for any ball Bρ we have

(22) ‖ũ‖W 1,p(Bρ) ≤ ‖u‖W 1,p(Bρ) and ‖ũ‖Lq(∂Bρ) = ‖u‖Lq(∂Bρ)



12 ENRIQUE J. LAMI DOZO AND OLAF TORNÉ

so that ũ is also a minimizer for Sq(ρ). The function ũ depends only on two
variables: The radial variable and ϕ the geodesic distance from the north pole
on the unit sphere. Also the restriction of ũ to any sphere centered at the origin
and contained in Bρ is an increasing function of ϕ. This fact, together with the
maximum principle of [9], implies that ũ achieves it’s maximum at a single point
which is situated on the boundary of Bρ.

Now let u be a minimizer for problem (8) and let ũ be the foliated Schwartz
symmetrization of u with respect to the north pole. The relations (22) again hold
with p = 2 so that ũ is also a minimizer. In fact Denzler has shown in [2] that, when
p = 2, either the inequality in (22) is strict or u and ũ coincide on every sphere up to
a rotation. This implies that any minimizer for (8) is foliated Schwartz symmetric.

6. Numerical computations

Recall the function Q̃(ρ) is defined by

q ≤ Q̃(ρ) ⇒ Any minimizer for Sq(ρ) is a multiple of u0

q > Q̃(ρ) ⇒ There is no radial minimizer for Sq(ρ)

Based on the remarks at the end of section 3 we may guess that Q̃ = Q where Q is
given by (5). We do not know of a proof (or counter proof) of this statement so we
have checked it numerically in the special case when p = 2 and N = 2. We found
that Q(ρ) = Q̃(ρ) for a large range of values of ρ. In this section we explain our
methods then quote some precise numerical results.

Denote by Srad
q (ρ) the infimum (1) restricted to radial functions. By the defini-

tion of Q̃(ρ) we have Srad
q (ρ) = Sq(ρ) if and only if q ≤ Q̃(ρ). Since Q̃(ρ) ≤ Q(ρ)

it follows that Q(ρ) = Q̃(ρ) if and only if Srad
Q(ρ)(ρ) = SQ(ρ)(ρ). Thus it suffices to

compute approximations of Srad
Q(ρ)(ρ) and SQ(ρ)(ρ) and compare these numbers.

In practice it is straightforward to obtain an approximation of Srad
q (ρ). By Palais’

principle any minimizer v for Srad
q (ρ) is a solution of (3) and is thus a multiple of

u0 by Proposition 2. Thus

Srad
q (ρ) =

‖u0‖p
1,p

‖u0‖p
Lq(∂Bρ)

= Sp(ρ)
‖u0‖p

Lp(∂Bρ)

‖u0‖p
Lq(∂Bρ)

= Sp(ρ)|∂Bρ|1−
p
q .

When p = 2 we can get λ1(ρ) = Sp(ρ) directly using expression (23) below. When
p 6= 2 we can get λ1(ρ) by solving the Cauchy problem in Lemma 1.

Computing Sq(ρ) is far more tricky and we are only able to consider this problem
when p = 2. Consider the Steklov type problem{

∆u = u in Bρ,
∂u
∂ν = λu on ∂Bρ.

A complete set of eigenfunctions and the associated eigenvalues are given by

(23)
ukj(x) = |x|1−N

2 Ik+ N
2 −1(|x|)Ykj

(
x
|x|

)
λk = 1−N/2

ρ +
I′k+N/2−1(ρ)

Ik+N/2−1(ρ)

where Iν is the modified Bessel function of the first kind and of order ν and the
Ykj are the spherical harmonics of order k indexed by j. The functions ukj form a
basis of H1(Bρ). Now denote by Vn the subspace of H1(Bρ) spanned by the first
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n eigenfunctions in (23). Let

(24) Sn = inf
v∈Vn

∫
Bρ
|∇v|2 + v2 dx(∫

∂Bρ
|v|q dσ

)2/q
.

Using that V =
⋃∞

n=1 Vn is dense in H1(Bρ) we get Sn ↘ Sq(ρ) as n → +∞.
Therefore an approximation to Sq(ρ) is obtained by computing Sn given by (24) or
equivalently by

(25) Sn = inf

{∫
Bρ

|∇v|2 + v2 dx; v ∈ Vn,

∫
∂Bρ

|v|q dσ = 1

}
.

Moreover if Sn is achieved by un ∈ Vn then there exists a subsequence uni
such

that uni
→ u where u is a minimizer for Sq (ρ). Notice that (24) and (25) are

nonlinear optimization problems in Rn. We considered the case N = 2 and used
routines from the Nag library to solve this minimization problem. For safety we
used various routines and both formulations (24) and (25) to get our numerical
data. We now give a sample of our results. The graph of

Q(ρ) =
1

λ1(ρ)2

(
1− λ1(ρ)

ρ

)
+ 1

is plotted in figure 1. For 2 < q < ∞ let ρ∗ = Q−1(q). We tested a large range

Figure 1. Q (ρ) with p = 2 and N = 2

of values of q and found that Srad
q (ρ∗) = Sq(ρ∗). This confirms that Q = Q̃ when

p = 2 and N = 2. We provide a small sample of our numerical data in table 1 where
we have computed Srad

q (ρ) and Sq(ρ) with ρ = 0.95ρ∗, ρ = ρ∗ and ρ = 1.05ρ∗.
We use a minimizer un for Sn as an approximation of a minimizer u for Sq (ρ).

The function u0 is plotted in figure 2. An approximate minimizer for S3.0 (1.3) is
plotted in figure 3.

Now let us adapt the preceding analysis to the minimization problem (8). By
Theorem 5 there is no radial minimizer for Sλ

q (ρ) if

(26) 1− (N − 1)
λ1(ρ)

ρ
− (q − 1)λ2

1(ρ) + (q − 2)λ1(ρ)λ < 0.
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q = 2.7
ρ∗ = 1.49611

q = 9.0
ρ∗ = 0.52553

ρ Srad
q (ρ) Sq(ρ)

1.42130 1.01623 1.01623
1.49611 1.06399 1.06399
1.57091 1.11013 1.10566

ρ Srad
q (ρ) Sq(ρ)

0.49925 0.58920 0.58920
0.52553 0.64340 0.64340
0.55180 0.69935 0.69475

Table 1. Sq (ρ) and Srad
q (ρ) with N = 2 and p = 2

Figure 2. The function u0 with N = 2 and p = 2.

We wish to show numerically that any minimizer for Sλ
q (ρ) is a multiple of u0 if

the inequality ≥ holds in (26) or, equivalently, if q < Q (ρ, λ) where Q (ρ, λ) is
defined by (20). Following the procedure described above we let Sλ, rad

q denote the
infimum (8) restricted to radial functions. By Theorem 6 it suffices to check that
Sλ

Q(ρ,λ)(ρ) = Sλ, rad
Q(ρ,λ)(ρ) for all admissible ρ and λ. As above we have that

Sλ, rad
q = (λ1(ρ)− λ) |∂Bρ|1−

2
q

and an approximation of Sλ
q (ρ) is given by

(27) Sλ
n = inf

{∫
Bρ

|∇v|2 + v2 dx− λ

∫
∂Bρ

v2 dσ; v ∈ Vn,

∫
∂Bρ

|v|q dσ = 1

}
.

We consider only the case N = 2. In table 2 we give a sample of numerical results
comparing Sλ

Q(ρ,λ) (ρ) and Sλ, rad
Q(ρ,λ) (ρ). To prepare this table we fixed 2 < q < +∞

and chose −∞ < λ < 1. Then we computed ρ∗ such that Q (ρ∗, λ) = q. We see
that Sλ

q (ρ∗) = Sλ, rad
q (ρ∗). This sample, in addition to the many other similar

tables that we computed, confirm that if the inequality ≥ holds in (26) then any
minimizer for Sλ

q (ρ) is a multiple of u0, at least when N = 2.
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Figure 3. A minimizer for S3.0 (1.3) with N = 2 and p = 2.

q = 3.0
λ = 0.5
ρ∗ = 2.09525

q = 7.5
λ = −1.5
ρ∗ = 0.11630

ρ Sλ, rad
q (ρ) Sλ

q (ρ)
1.99048 0.45543 0.45543
2.09525 0.50249 0.50249
2.20001 0.54726 0.54231

ρ Sλ, rad
q (ρ) Sλ

q (ρ)
0.11048 1.18990 1.18990
0.11630 1.23786 1.23786
0.12211 1.28529 1.28271

Table 2. Sλ
q (ρ) and Sλ, rad

q (ρ) with N = 2
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