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Abstract We extend the resultin Olmos and Reggiani (J. Reine Angew. Math. 664:29—
53,2012) to the non-compact case. Namely, we prove that the canonical connection on
a simply connected and irreducible naturally reductive space is unique, provided the
space is not a sphere, a compact Lie group with a bi-invariant metric or its symmetric
dual. In particular, the canonical connection is unique for the hyperbolic space when
the dimension is different from three. We also prove that the canonical connection
on the sphere is unique for the symmetric presentation. Finally, we compute the full
isometry group (connected component) of a compact and locally irreducible naturally
reductive space.
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380 C. Olmos, S. Reggiani

1 Introduction and preliminaries

Cartan [4], in the 1920s, asked for linear connections, on a given Riemannian space,
that adapt to the geometry in a more suitable way than the Levi-Civita connection. He
proposed to study the so-called connections with skew-torsion. Such connections are
characterized by the property of having parallel metric tensor and the same geodesics
as the Levi-Civita connection.

Spaces with skew-torsion have an increasing interest in recent years because of their
applications to theoretical physics (see [1]). A distinguished family of Riemannian
spaces with skew-torsion are the naturally reductive spaces. In fact, the canonical
connection V¢ of a naturally reductive space M = G/ H provides a metric connection
and has skew-torsion T = —2(V — V¢), where V is the Levi-Civita connection. If M
is a symmetric space, then the Levi-Civita connection is a canonical connection.

In a naturally reductive space one has that VR = 0 and VT = 0, where R is the
Riemannian curvature tensor. More generally, any G-invariant tensor on M must be
parallel with respect to the canonical connection.

In [6] it was proved that the canonical connection of a (locally irreducible) compact
naturally reductive space is unique, provided the space is different from the following
symmetric spaces: spheres, real projective spaces and compact Lie groups with a
bi-invariant metric.

The proof given in [6] uses strongly the compactness assumption (besides the so-
called skew-torsion holonomy theorem). Namely, it makes use of a decomposition
theorem for compact homogeneous spaces which is false in the non-compact case
(however, such a decomposition theorem was crucial in the proof the skew-torsion
holonomy theorem).

The purpose of this note is to prove that the canonical connection is unique also
for simply connected (irreducible) non-compact naturally reductive spaces, with the
only exceptions of dual symmetric spaces of compact Lie groups. In particular, the
canonical connection is unique for any real hyperbolic space M = H" withn # 3 (in
contrast with the compact case where many spheres are excluded).

Observe that the main result of this article, stated precisely in Theorem 2.1, also
has a local version, since a canonical connection on a naturally reductive space lifts
to the universal cover.

In order to prove Theorem 2.1, we use some auxiliary facts that we want to men-
tion. Namely, that the real hyperbolic space H" admits a unique naturally reductive
presentation (the symmetric pair presentation). This allows to prove that the canonical
connection on H" is unique for all n # 3. To do this, we use that the canonical con-
nection on the sphere S”, with n # 3, is unique if we fix the symmetric presentation
S§" = SO(n + 1)/SO(n), since from Hodge theory there are no non-trivial parallel
3-forms (see Remark 2.1).

Finally, in Sect. 3, we explicitly compute the isometry group of a compact and
locally irreducible naturally reductive space. This extends the result in [8] for normal
homogeneous spaces (and known results by Onishchik [7] and Shankar [9] on isometry
groups of homogeneous spaces).
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The uniqueness of the canonical connection 381

1.1 Skew-torsion holonomy systems

In a previous work [6] we deal with the concept of skew-torsion holonomy systems,
which are a variation of the so-called holonomy systems introduced by Simons [10].
Skew-torsion holonomy systems arise in a natural way and in a geometric context,
by considering the difference tensor between two metric connections which have the
same geodesics as the Levi-Civita connection.

We say that a triple [V, @, G] is a skew-torsion holonomy system provided V is
an Euclidean space, G is a connected Lie subgroup of SO(V), and © is a totally
skew-symmetric 1-form on V which takes values in the Lie algebra g of G (i.e.,
(x,y,2) — (O®,y, z)isanalgebraic 3-formon V). We say that [V, &, G]isirreducible
if G acts irreducibly on V, transitive if G is transitive on the sphere of V, and symmetric
if g.(®) = O forall g € G, where g«(@)y = g0 O,-1() 0 g L

The main result on skew-torsion holonomy systems is analogous to Simons
holonomy theorem for classical holonomy systems. Such a result is actually stronger
because transitive cases cannot occur others than the full orthogonal group.

Theorem 1.1 (Skew-torsion Holonomy Theorem [5,6]) Let [V, ®, G], ® # 0, be
an irreducible skew-torsion holonomy system with G # SO(V). Then [V, ©, G] is
symmetric and non-transitive. Moreover,

1. (V,[-,-]) is an orthogonal simple Lie algebra, of rank at least 2, with respect to
the bracket [x, y] = O, y;

2. G = Ad(H), where H is the connected Lie group associated to the Lie algebra
(V3 ['7 ]))

3. O is unique, up to a scalar multiple.

2 The uniqueness of the canonical connection

In this section we prove a uniqueness result for canonical connections on naturally
reductive spaces, compact or not.

Theorem 2.1 Let M be a simply connected and irreducible naturally reductive space.
Assume that M is not (globally) isometric to a sphere, nor to a Lie group with a bi-
invariant metric or its symmetric dual. Then, the canonical connection on M is unique.

Observe that, in particular, the above theorem says that the canonical connection is
unique for the real hyperbolic space H” for all n # 3. When n = 3, H? is the sym-
metric dual of §3 = SU(2), and in this case H?> admits a line of canonical connections
(see Remark 2.1).

Before giving the proof of Theorem 2.1 we fix some notation and we state some
basic results we will need.

Let M = G/G), p € M, be a naturally reductive space. That is, assume that
M carries a G-invariant metric and the Lie algebra of G admits a decomposition
g = gp @ m, where g, = Lie(G)) and m is an Ad(G )-invariant subspace such that
the geodesics through p are given by

Exp(tX) - p, X em.
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382 C. Olmos, S. Reggiani

That is to say, Riemannian geodesics coincide with V¢-geodesics, where V¢ is the
canonical connection associated with the above mentioned reductive decomposition.

Suppose that V¢ is another canonical connection on M (associated with another
naturally reductive presentation or another reductive decomposition). It follows from
[6, Section 6] that

O = (V" =V,

that is the difference between V¢ and V¢, evaluated at p, is a totally skew-symmetric
1-form on T}, M which takes values in the full isotropy subalgebra f) = Lie(Iso(M) ).
Hence, [T, M, ®, H] is a skew-torsion holonomy system, where H = (Iso(M),)? is
the connected component of the full isotropy subgroup at p.

Let f) be the linear span of {/.(®), : h € H,v € T, M}. We have that f) is an ideal

of h. Let H be the connected Lie subgroup of H with Lie algebra 6 From [6, Section
2] there exist decompositions

TyM=VoV & ---dV; (orthogonal sum) 2.1
and
H= Hy x--- x Hy (almost direct product) 2.2)

such that H; acts trivially on V; if i # j (in particular, Vy is the set of fixed vectors
of H) and H; acts irreducibly on V; with €; (h;) = {0}, where

¢i(hi) == {B € so(V;) : [B, h;] =0}
Moreover, we have that H splits as
H:HOXﬁZHQXH]X"'XHk,

where Hp acts only on V( (and it could be arbitrary). In fact, any skew-torsion
holonomy system can be decomposed in this way (see [2,5,6]).
In order to prove Theorem 2.1, we will make use of the following basic facts.

Lemma 2.1 (see [6]) Let M = G /G, be a Riemannian homogeneous manifold, let
H be a normal subgroup of G, and let W be the subspace of T, M defined by

W={veT,M:dh(v)=vforallh € H}.

Then W is G p-invariant. Moreover, if 9 is the G-invariant distribution on M defined
by Z(p) =W, then 2 is integrable with totally geodesic leaves (or, equivalently, 9
is autoparallel).

Lemma 2.2 Let M = G/G be a naturally reductive space. If X is a G-invariant
field on M, then X is a Killing field.

@ Springer



The uniqueness of the canonical connection 383

Proof Let X be a G-invariant field on M and let D = V — V¢ be the difference tensor
between the Levi-Civita connection and a canonical connection on M associated with
areductive decomposition g = g, @ m. Since X is G-invariant, then X is V¢-parallel
(since V¢ is G-invariant and the V¢-parallel transport along the geodesic Exp(tZ) - p,
Z € m, is given by Exp(tZ).). So, VX = DX is skew-symmetric and this implies
that X is a Killing field. O

Proof (Proof of Theorem 2.1) We keep the notation from the previous paragraphs.
We have decompositions T,M = Vo ® V| @ --- @ V (orthogonal) as in 2.1 and
H = Hyx H=Hyx Hy x---x H as in 2.2. Let Wy, be the set of fixed vectors
of H in T;, M, via the isotropy representation. So, W @ V| is the set of fixed vectors
of H! = Hp x Hy x --- x H and hence, by Lemma 2.1, it induces the G-invariant
autoparallel distribution 2! defined by 2'(p) = Wy @ V.

Let 2y the G-invariant autoparallel distribution defined by Zy(p) = Wo. The key
factor in the proof is to show that Z is parallel along 2!, and then make use of the
skew-torsion holonomy theorem. Since %) is G-invariant we only have to prove that
9 is parallel at p (along 21).

Let S'(p) be the maximal connected integral manifold of 2! which contains p.
That is, S (p) is the set of fixed points of H Uon M (connected component). It is not
difficult to see that S'(p) is an extrinsic homogeneous submanifold under the action
of the group

G'(p)={geG: ¢S (P =S'(P=1lgeG:g(p) e S (p)

with effective isotropy H|. Recall that the metric on ' (p) is naturally reductive, since
S'(p) is a totally geodesic submanifold of M.

Let X € Wy andlet X be the G! (p)-invariant field on Si( p) such that X (p) = X,or
equivalently, the restriction to S' (p) of the G-invariant field on M with initial condition
X. It follows from Lemma 2.2 that X is a Killing field and hence, its derivative VX is
skew-symmetric.

Observe that if h € Hy and v € Wy & V| =~ T,S!(p), then

dh(VyX) = Vanawyh(X) = Vapw X.

Then (VX) p commutes with H; (via the isotropy representation) and so, it leaves W
and V| invariant. Since %](h;) = {0} we have that (VX) plv, = 0, and therefore
V,X € W, forall v € Wy @ V. This implies that % is parallel along 2. Then, 2,
the G-invariant distribution given by 2, (p) = V1, is parallel along 2' and hence, 2,
is autoparallel on M, since 2 Lis autoparallel. On the other side, we have that @f‘ is
also an autoparallel distribution on M, since _@ll (p)=VopVr®---®Vyis the set
of fixed vectors of Hp, and therefore M splits off, unless these distributions are trivial.
Finally, we reach two possibilities:

1. T,M =Vyand H = (Iso(M),)° = Hp, or
2. TyM =V and H = (Iso(M),)° = Hj.
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384 C. Olmos, S. Reggiani

In the first case, we have that the group H spanned by V¢ — V¢ is trivial, and then
we conclude that V¢ = V¢,

In the second case, we have two possibilities again. Firstly, if H is transitive
on the unit sphere of T), M, then, by using the skew-torsion holonomy theorem, we
have that H; = (Iso(M),)° = SO(T,M). So, it is standard to see that M = S" or
M = H". See Proposition 2.1 and Remark 2.1 below to exclude the hyperbolic case
when n # 3. On the other hand, if H is not transitive on the sphere, the skew-torsion
holonomy theorem says that Hy acts on T, M as the adjoint representation of a simple
and compact Lie group. If M is compact, it follows from the classification of strongly
isotropy irreducible spaces, given by Wolf [12] (see [6, Appendix] for a conceptual
proof), that M is a Lie group with a bi-invariant metric. If M is non-compact, then M
turns out a symmetric space (since non-compact isotropy irreducible spaces must be
symmetric [3,11]). If V¢ # V¢, we have, by taking the symmetric dual, that M* is
isometric to a Lie group with a bi-invariant metric. In fact, it is not difficult to see that
there is a one-one correspondence between canonical connections on M and canonical
connections on M* (see Remark 2.2).

This completes the proof of Theorem 2.1. O

Proposition 2.1 The real hyperbolic space H" admits a unique naturally reductive
presentation, the symmetric pair decomposition H" = SO(n + 1, 1)°/ SO(n).

Proof Let G be a connected Lie subgroup of Iso(H") which acts transitively on H"
and such that H" = G/H is a naturally reductive space. If G is semisimple, it is
standard to show that G = Iso(H")? = SO(n + 1, 1)°. In fact, let K be a maximal
compact subgroup of G. So, K has a fixed point, say p. We may assume that H is the
isotropy group at p. So H = K, since K is maximal. Hence, (G, H) is presentation
of H" as an effective Riemannian symmetric pair, and therefore G = SO(n + 1, 1)
(otherwise, H" would have two different presentations as an effective Riemannian
symmetric pair).

If G is not semisimple, then G has a nontrivial normal abelian Lie subgroup A. It is
a well-known fact that, either A fixes a unique point at infinity or A translates a unique
geodesic. If A translates a unique geodesic y (¢), then G leaves y invariant, since A is
a normal subgroup of G, and so G cannot be transitive, which is a contradiction. So,
let goo be the unique point at infinity which is fixed by A, and let .% be the foliation
on H" by parallel horospheres centered at g~. So, we have that A leaves .% invariant,
and hence G does. Let p € H" and let %, be the horosphere through p. Denote by
G the connected component of the subgroup of G which leaves .% p invariant. Then
G is transitive on .Z p- Hence, since H" is naturally reductive with respect to the
decomposition G/ H, each horosphere must be totally geodesic, a contradiction. O

Remark 2.1 Let us consider the sphere $” = SO(n + 1)/ SO(n). Then, for all n # 3,
the Levi-Civita connection is the unique canonical connection on S” associated with
this naturally reductive decomposition. In fact, if V¢ is another canonical connection
on S” then, the difference tensor D = V — V¢ induces a SO(n + 1)-invariant 3-form
w(x,y,z) = (Dyy,z). Since w is invariant, w is a harmonic 3-form on S”. From
Hodge theory, w represents a nontrivial cohomology class of order 3 of the sphere S”.
This yields a contradiction, unless n = 3.
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The uniqueness of the canonical connection 385

As a consequence, it follows from Proposition 2.1 and the next remark that the real
hyperbolic space H” admits a unique canonical connection for all n # 3. If n = 3,
H? is the dual symmetric space of the compact Lie group S° ~ SU(2), and therefore
it admits exactly a line of canonical connections (see [6, Remark 6.1]).

Remark 2.2 Let M = G /K be a symmetric space with associated Cartan decompo-
sition g = £ @ p. Then, there is a one-one correspondence between canonical con-
nections on M and canonical connections on the dual M* = G*/K. In fact, assume
that M admits a canonical connection V¢ associated with a reductive decomposition
g==Etdm. Let g = D ip be the Lie algebra of G*, regarded as a subspace of the
complexification g€ of g. It is clear that m* (the subspace of g* induced by m, via the
vector spaces isomorphism g* =~ g) is and Ad*(K)-invariant subspace such that the
geodesics through p = eK are given by 1-parameter subgroups with initial velocities
in m*. So, V¢ corresponds to a unique canonical connection on M*.

3 The isometry group of compact naturally reductive spaces

Let M = G/H be a compact and locally irreducible naturally reductive space and
let V€ be the canonical connection associated with the reductive decomposition g =
h @ m. Assume that M # S", M # RP". Then, from [6, Theorem 1.1]we have
that Iso(M)? = Aff (M, V©)?, where Aff (M, V) is the connected component of the
affine group of V¢ (i.e., the subgroup of diffeomorphisms of M which preserve V).

By making use of Lemma 2.2 and some arguments in [8] one can obtain the con-
nected component of the isometry group of M. Actually, it is possible to simplify such
arguments.

In fact, let Tr(M, V) be the group of transvections of V¢, that is, the connected
Lie subgroup of Aff(M, V¢)? with Lie algebra tc(M, V¢) = [m, m] + m (not a direct
sum, in general). Recall that Tr(M, V¢) is a normal subgroup of Aff(M, V€)°. As it
is done in [8] for normal homogeneous spaces, we have that G = Tr(M, V¢) and
thus, G is a normal subgroup of Aff(M, V)?. (In fact, tt(M, V°) is an ideal of g,
then if tv(M, V€) # g, since M is compact, one can take a complementary ideal of
the transvection algebra in g, which must be contained in the isotropy algebra. This is
a contradiction, since we assume that G acts effectively on M.)

Now, since G is a normal subgroup of Iso(M)? = Aff(M, V¢)°, we can write

iso(M) =g @b,

where b is a complementary ideal of g in iso(M) (recall that M is compact, and hence
Iso(M)? is also compact). Note that elements of b correspond to G-invariant fields on
M, which are Killing fields by Lemma 2.2 (but not any G-invariant field belongs to b,
in principle).

We can summarize this fact as follows.

Theorem 3.1 Let M = G/H be a compact naturally reductive space. Assume that
M is locally irreducible and that M is not (globally) isometric to the sphere S" nor to
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386 C. Olmos, S. Reggiani

the real projective space RP". Then the connected component of the isometry group
of M is given by

Iso(M)° = Gss x K (almost direct product),

where G is the semisimple part of G and K is the connected subgroup of Iso(M)
whose Lie algebra consists of the G-invariant fields. In particular, Iso(M) is semisim-
ple if and only if K is semisimple.

Remark 3.1 In the notation of Theorem 3.1, K can be identified with (the connected
component of) the set of fixed points of the isotropy group H, acting simply and
transitively by right multiplication. Moreover, just by coping the argument in [8,
Theorem 1.4] we get that the set of fixed points of the full isotropy group (Iso(M)?) ,
is a torus.
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