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The SARS-CoV-2 outbreak has spread rapidly and globally generating a new coronavirus disease
(COVID-19) since December 2019 that turned into a pandemic. Effective drugs are urgently needed and drug
repurposing strategies offer a promising alternative to dramatically shorten the process of traditional de novo
development. Based on their antiviral uses, the potential affinity of sea urchin pigments to bind main protease
(Mpro) of SARS-CoV-2 was evaluated in silico. Docking analysis was used to test the potential of these sea
urchin pigments as therapeutic and antiviral agents. All pigment compounds presented high molecular affinity
to Mpro protein. However, the 1,4-naphtoquinones polihydroxilate (Spinochrome A and Echinochrome A)
showed high affinity to bind around the Mpro´s pocket target by interfering with proper folding of the protein
mainly through an H-bond with Glu166 residue. This interaction represents a potential blockage of this
protease´s activity. All these results provide novel information regarding the uses of sea urchin pigments as
antiviral drugs and suggest the need for further in vitro and in vivo analysis to expand all therapeutic uses
against SARS-CoV-2.
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Abstract. 23 

The SARS-CoV-2 outbreak has spread rapidly and globally generating a new coronavirus 24 
disease (COVID-19) since December 2019 that turned into a pandemic. Effective drugs are 25 
urgently needed and drug repurposing strategies offer a promising alternative to dramatically 26 
shorten the process of traditional de novo development. Based on their antiviral uses, the 27 
potential affinity of sea urchin pigments to bind main protease (Mpro) of SARS-COV-2 was 28 
evaluated in silico. Docking analysis was used to test the potential of these sea urchin pigments 29 
as therapeutic and antiviral agents. All pigment compounds presented high molecular affinity 30 
to Mpro protein. However, the 1,4-naphtoquinones polihydroxilate (Spinochrome A and 31 
Echinochrome A) showed high affinity to bind around the Mpro´s pocket target by interfering 32 
with proper folding of the protein mainly through an H-bond with Glu166 residue. This 33 
interaction represents a potential blockage of this protease´s activity. All these results provide 34 
novel information regarding the uses of sea urchin pigments as antiviral drugs and suggest the 35 
need for further in vitro and in vivo analysis to expand all therapeutic uses against SARS-CoV-36 
2. 37 
 38 
Keywords: 2019 pandemic; 1,4-naphtoquinones polihydroxilate; Spinochrome A; 39 
Echinochrome A; antiviral drug.  40 
  41 



Introduction 42 

The novel SARS-CoV-2 is an enveloped, positive-sense, single-stranded RNA virus belonging 43 

to the order Nidovirales, family Coronaviridae, subfamily Coronavirinae which has generated 44 

a new coronavirus disease (COVID-19) worldwide. Coronaviruses (CoVs) have the ability to 45 

infect multiple species with rapid change through recombination; this constitutes an ongoing 46 

threat to human health. Three betacoronaviruses have crossed the species barrier and produced 47 

deadly pneumonia in humans: severe acute respiratory syndrome coronavirus (SARS-CoV), 48 

Middle-East respiratory syndrome coronavirus (MERS-CoV), and SARS-CoV-2 causal agent 49 

of the COVID-19 pandemic. Coronaviruses code dozens of proteins, some of them involved in 50 

viral replication and entry into cells. As the most abundant protein in the betacoronaviruses 51 

virion structure, the main protease (Mpro, monomer between 25-30 kDa) is responsible for the 52 

structure and it is inserted into the envelope through three transmembrane domains. The amino 53 

constitutes a small ectodomain and can be modified by glycosylation which influences the 54 

tropism of the organs to be infected, such as the interferon-inducing capacity (IFN) of some 55 

coronaviruses. Therefore, the Mpro is considered the engine for the assembly of viral particles 56 

(Perrier et al., 2019), and it constitutes a suitable drug target since it is a key enzyme for 57 

coronavirus replication (Zhang et al., 2020a). The Mpro sequence is highly conserved within 58 

Coronaviruses. The viral replication can be inhibited in the active site in Mpro of SARS-CoV 59 

(Jin et al., 2020), which is located in the same position in SARS-CoV and SARS-CoV-2 60 

between domain I (8-99 aa) and domain II (100-183 aa). Mpro presents flexibility in the binding 61 

site conformation constituting a good target for small drugs (Bzowka et al., 2020; Bzówka et 62 

al., 2020). 63 

With the lack of available therapies and vaccines for COVID-19 treatment, scientists around 64 

the world have expanded and ramped up research on identifying promising inhibitors for 65 

preventive and supportive therapies. Drug repositioning is a recommended approach to face an 66 

unmet medical need for a new disease like COVID-19 (Pushpakom et al., 2018; Rosa and 67 

Santos, 2020). The molecular docking approach may predict the binding site on a 68 

complimentary basis in terms of the ligand and the target (Kitchen et al., 2004). Recent results 69 

of in silico docking analysis have indicated that certain positive bioactive compounds could be 70 

potent inhibitors of Mpro (Khaerunnisa et al., 2020; Pendyalaa and Patrasa, 2020).  71 

Natural bioactive compounds are being extracted from a wide variety of sources, offering fewer 72 

side effects and accessible costs. Although research on marine natural products dates back more 73 



than 50 years, only a few compounds have resulted in clinical trials and even fewer have been 74 

approved (Serive and Bach, 2018). A large number of pigments have photoprotection, anti-75 

inflammatory and antioxidant effects, among other properties (Serive and Bach, 2018), leading 76 

to their use in cosmetics, functional food, nutraceutical and pharmaceutical products. Natural 77 

pigments incur no toxicity and that is why humans have been using them for clinical purposes. 78 

The relationship between food and health is known and well documented (Moniruddin, 2020; 79 

Syed, 2020).  80 

Sea urchins are marine echinoderms that have been consumed by humans since ancient times 81 

(Rubilar and Crespi-Abril, 2017). In Asian culture, the sea urchin appears as far as long ago as 82 

in the “Materia Medica” of the Ming Dynasty author by Li Zhongli in 1647. In Chinese 83 

medicine, sea urchin roe is known for its benefits to the heart, bones, blood and also it 84 

counteracts impotence. Sea urchins can have different types of pigments such as carotenoids 85 

(astanxanthin, fucoxanthin and β-carotene) and 1,4-naphtoquinones polihydroxilate 86 

(commonly known as Spinochromes) (Cirino et al., 2017; Vasileva et al., 2017). Currently, 87 

there are now numerous studies that demonstrate the use of pigments to prevent cardiovascular 88 

and neurodegenerative diseases, as well as their antidiabetic, antiparasitic, anti-inflammatory, 89 

anti-obesity, anti-age-related macular degeneration, anticancer, and immunostimulatory effects 90 

(Serive and Bach, 2018). Nowadays the most common use of natural pigments is related to the 91 

nutraceutical and cosmeceutical industries. To reach the pharmaceutical market, bioactive 92 

pigments must satisfy pharmacokinetic descriptions, clinical studies, and regulation 93 

requirements.  94 

In order to contribute to the identification of new drugs targeting the SARS-CoV-2 main 95 

protease and  because sea urchin pigments are promising molecules, the aim of this in silico 96 

study was to evaluate the potential binding affinity of sea urchin pigments on Mpro through a 97 

docking analysis. 98 

 99 

Methodology  100 

Protein and ligands preparation 101 

The receptor preparation was done according to Forli et al. (Forli et al., 2016) with 102 

modifications. The molecular 3D structure of SARS-CoV-2 Mpro protein co-crystalized with 103 

an inhibitor was obtained from Protein Data Base PDB (https://www.rcsb.org/): 6LU7, 104 



resolution 2.16 Å (Kris-Etherton et al., 2002; Xu et al., 2020; Zhang et al., 2020b). Water and 105 

ligand molecules were removed from the file and the software AutoDockTools (ADT version 106 

1.5.7) was used for receptor and ligands preparation. Polar hydrogens were added and the partial 107 

Kollman charges were assigned to the proteins.  108 

The co-crystallized N3 ligand was extracted from the PDB structure and polar hydrogens and 109 

Gasteiger charges were added through the ADT software. The prepared structure was saved in 110 

.pdbqt format.  111 

The SMILE of sea urchin pigments Spinochomre A, Echinochrome A, β-carotene, astaxanthin 112 

and fucoxanthin and drugs Carmofur, Cinanserin, Disulfiram, Ebselen, PX-12, Shikonin, 113 

TDZD-8 and Tideglusib were downloaded from Chemical Entities of Biological Interest 114 

(ChEBI) and PubChem (https://pubchem.ncbi.nlm.nih.gov/), transformed to PDB and polar 115 

hydrogens and Gasteiger charges were added and saved in .pdbqt format by ADT software. In 116 

the case of Ebselen the selenium atom was changed for a sulfur because otherwise it was not 117 

possible to perform the molecular docking analysis. 118 

 119 

Molecular docking 120 

The docking simulations were performed using AutoDock vina 1.1.2 (Trott and Olson, 2010). 121 

The center of the search space for Mpro dockings (-9.732, 11.403, 68.483) have been 122 

determined on the basis of the co-crystallized bound N3 ligand, and its size has been set to 123 

20x20x20 Å to cover the active site of the protease. The exhaustiveness has been set to 24 in 124 

all docking analyses while the remaining AutoDock Vina parameters have been kept at default 125 

values. The results of the docking experiments have been ranked according to their Vina score 126 

and docking poses were visually inspected with UCSF Chimera software (Pettersen et al., 127 

2004).  128 

In the case of Echinochrome A, the top ranked candidates were selected for further analysis of 129 

protein-ligand interactions. Hydrogen bonds (H-bonds) were detected with UCSF Chimera 130 

relax H-bonds constraints (0.5 Å and 25°). All direct interactions were also identified as clashes 131 

and contact. Note that clashes are unfavorable interactions where atoms are too close together, 132 

with contacts denoting all kinds of direct interactions (polar and nonpolar, favorable and 133 

unfavorable), including clashes.  134 

 135 



As a validation protocol for Mpro analysis, the co-crystallized N3 peptide was removed and 136 

redocked with the substrate-binding site of SARS-CoV-2 Mpro (6LU7) by using the same 137 

docking parameters. The generated re-docked pose was quite similar to the co-crystalized 138 

conformation (RMSD 5.496 Å).  139 

 140 

Results and Discussion 141 

 142 

This study was focused on the potential of sea urchin pigments as antiviral drugs by inhibiting 143 

Mpro activity since they are small molecules (Table 1). These pigments share the common 144 

property of being antioxidant molecules. Carotenoids have different common biological 145 

functions due to their chemical structure. They are characterized by the covalent chemical 146 

bonding of polyene units, constituting a skeleton of at least 40 carbon atoms with conjugated 147 

double bonds which provide an extensive cloud of pi electrons that interact with free radicals 148 

conferring their antioxidant capacity (Galasso et al., 2017; Young and Lowe, 2018). This family 149 

of pigments includes carotenes and xanthophylls. Carotenes, such as β-carotene, have only 150 

carbon and hydrogen atoms and are therefore hydrophobic while xanthophylls, such as 151 

astaxanthin and fucoxanthin, have oxygen in their terminal rings, making them somewhat more 152 

polar than carotenes and enhancing their antioxidant properties (Galasso et al., 2017). The 1,4-153 

naphtoquinones polyhydroxylated, such as Spinochrome A (SpinA) and Echinochrome A 154 

(EchA) have a chemical structure that include several hydroxylated groups which are 155 

appropriate for free‐radical scavenging, diminishing ROS and preventing redox imbalance 156 

(Jeong et al., 2014). The position of OH groups and number in the quinoid fragment may be 157 

important since the OH groups in polyhydroxylated 1,4-naphthoquinones in the R1, R2, and R5 158 

positions play key roles in both iron-ion complexing and free radical scavenging (Lebedev et 159 

al., 2008).   160 

 161 

 162 

 163 

 164 

 165 



Table 1. Potentially bioactive pigments in sea urchins. 166 

N
° 

Compound 

Name 

IUPAC Compound 
Name 

2D Lineal Structure 

Molecula
r 

Weight 

 (g mol-1) 

1 
Spinochrome 

A 

1,4-Naphthalenedione, 2-acetyl-
3,5,6,8-tetrahydroxy 

6-acetyl-4,5,7,8-
tetrahydroxynaphthalene-1,2-dione 

2-Acetyl-3,6-dihydroxynaphthazarin 
Spinochrome A 

1. o (Yabuzaki.J 
2015) 

 

(2) o ( ©ChemExper Inc) 

 

264.19 

2 Echinochrom
e A 

6-ethyl-2,3,5,7,8-pentahydroxy-1,4-
Naphthoquinone, 

6-ethyl-2,3,5,7,8-pentahydroxy-1,4-
Naphthalenedione, 

6-Ethyl-2,3,7-
trihydroxynaphthazarin 

 

(4) o ( ©ChemExper Inc) 

 

 

(3) o ( PubChem®) 

266.22 

3 �-Carothene 

1,3,3-Trimethyl-2-
[(1E,3E,5E,7E,9E,11E,13E,15E,17E

)-3,7,12,16-tetramethyl-18-(2,6,6-
trimethylcyclohexen-1-yl)octadeca-

1,3,5,7,9,11,13,15,17-
nonaenyl]cyclohexene 

 
(5) o S. Kim et al., 2016 

 

 
(6) ohttps://hmdb.ca 

536.87 

4 Astaxanthine 

(6S)-6-hydroxy-3-
[(1E,3E,5E,7E,9E,11E,13E,15E,17E

)-18-[(4S)-4-hydroxy-2,6,6-
trimethyl-3-oxocyclohexen-1-yl]-

3,7,12,16-tetramethyloctadeca-
1,3,5,7,9,11,13,15,17-nonaenyl]-

2,4,4-trimethylcyclohex-2-en-1-one 

 

(7) o (S. Kim et al., 2016) 

 

(7) o ( PubChem®) 

596.80 

5 Fucoxanthin 

[(1S,3R)-3-hydroxy-4-
[(3E,5E,7E,9E,11E,13E,15E)-18-

[(1S,4S,6R)-4-hydroxy-2,2,6-
trimethyl-7-

oxabicyclo[4.1.0]heptan-1-yl]-
3,7,12,16-tetramethyl-17-

oxooctadeca-1,3,5,7,9,11,13,15-
octaenylidene]-3,5,5-

trimethylcyclohexyl] acetate 

(9) o ( PubChem®) 

 

(10) o ( PubChem®) 

658.90 



 167 

The ability of these molecules to interact with SARS-CoV-2 main protease (Mpro) was 168 

analyzed. Recently, Jin et al (Jin et al., 2020) identified new drugs that are able to inhibit this 169 

enzyme and hence they were included for comparison. The binding energies obtained from 170 

molecular docking analysis of Mpro with sea urchin pigments and known drugs are shown in 171 

Figure 1. All pigments presented low binding energy which indicates a higher affinity for the 172 

viral protein than the rest of the tested compounds (Vina docking scores, from -7.5 to -6.0 173 

Kcal.mol-1) with the exception of Astaxanthin (Vina docking score -3.0 Kcal.mol-1). Only 174 

Tideglusib showed a higher binding energy than the other tested pigments (Vina docking scores, 175 

-7.9 Kcal.mol-1). However, Tideglusib is a drug used in Alzheimer's disease and its ingestion 176 

can cause mild-moderate adverse reactions, as transient increases in serum creatine kinase, 177 

ALT—or gGT—diarrhea, nausea, cough, fatigue, and headache (Del Ser et al., 2013). 178 

 179 

 180 

Figure 1. Mpro Binding energies of sea urchin pigments (1,4-naphtoquinones 181 
polyhydroxylated in purple; carotenoids in orange) and chemical compounds (in grey) 182 
and tested drugs. 183 

 184 



Because of Mpro binding site flexibility (Bzowka et al., 2020; Bzówka et al., 2020) and 185 

considering that SpinA and EchA are small molecules with high affinity for this protein, the 186 

molecular interaction in the binding site was further evaluated. Both spinochromes have high 187 

affinity for the viral proteins (Vina docking scores, SpinA: -7.1 Kcal.mol-1, EchA: -6.8 188 

Kcal.mol-1), which suggests they are potential antiviral drugs. The best docking pose of SpinA 189 

involved seven H-bonds with amino acids S144, C145, H163, E166 and L141, no clashes and 190 

42 Van der Waals (VdW) contacts with G143, S144, L141, E166, M49, H163, C145, M165, 191 

Q189 and H41 (Figure 2). The best docking pose of EchA involved four H-bonds with amino 192 

acids S144 and E166, 51 VdW contacts with S144, C145, M165, Q189, E166, L141, M49, 193 

G143, H163, F40, H41, and N142 and no clashes (Figure 3). Mpro presents a homodimer with 194 

the pocket of the substrate-binding site formed by the interaction of Glu166 from one monomer 195 

with Ser1 from the other through an H-bond (Jin et al., 2020; Zhang et al., 2020b). Since EchA 196 

is a highly polar molecule, due to the presence of numerous hydroxyl groups, the bond between 197 

the Glu166 and EchA may interfere with the dimer interface. This is extremely important 198 

because the Mpro dimerization is essential for catalysis (Cheng et al., 2010), and if EchA is 199 

able to interfere in this matter it may inactivate Mpro. 200 

Spinochromes have been found to have cardioprotective activity against the cytotoxicity of 201 

doxorubic (Yoon et al., 2019) and antiallergic effects (Pozharitskaya et al., 2013). However, 202 

there is no pharmaceutical products based on SpinA available in the market yet. On the other 203 

hand, Echinochrome A (EchA), has satisfied all pharmaceutical requirements and products 204 

made from this pigment, have been approved. EchA is the active compound of Histochrome™ 205 

and Gistochrome™, two Russian preparations for cardiopathies and glaucoma diseases. There 206 

is a large amount of literature regarding EchA uses (Jeong et al., 2014; Lebed’ko et al., 2015; 207 

Oh et al., 2019; Vasileva et al., 2017). The pharmacological activity observed in patients with 208 

various health issues, together with the identified low toxicity profiles, strongly support the 209 

potential and therapeutic benefits of these natural pigments for the treatment of various human 210 

diseases, particularly inflammation, cardioprotection and diabetes (Shikov et al., 2018).  211 

Moreover, in animal models EchA has shown a wide range of biological properties, expanding 212 

possible therapeutic applications. For example, treatment with EchA in a neonatal murine 213 

model was able to prevent pulmonary fibrosis by reducing bleomycin-induced oxidative stress 214 

(Lebed’ko et al., 2015). In another study, mice with inflammatory bowel disease that were 215 

treated with EchA showed a reduced mortality and modulated the immune response, reducing 216 

inflammation and allowing tissue repair (Oh et al., 2019). In regard to COVID-19, the most 217 



important application is the in vitro antiviral evidences of EchA against certain types of human 218 

viruses, such as tick-borne encephalitis virus (TBEV) and herpes simplex virus type 1 (HSV-219 

1) (Fedoreyev et al., 2018). In these studies, infected cells were treated with EchA in 220 

combination with the antioxidants ascorbic acid and α-tocopherol in a ratio of 5:5:1, proving to 221 

be a mixture with powerful antiviral effects (Fedoreyev et al., 2018). The combination of EchA 222 

and the other antioxidants was able to neutralize virus infection, probably preventing the 223 

adsorption of the virus to the host cell receptors or causing damage in the viral capsid protein 224 

as it has been reported in other cases (Astani and Schnitzler, 2014; Fedoreyev et al., 2018; 225 

Garrett et al., 2012; Torky and Hossain, 2017). The antiviral activity of EchA with ascorbic 226 

acid and α-tocopherol has been hypothesized also to be a result of the interference with the 227 

redox imbalance normally caused by these viruses, resulting in no cytotoxicity (Di Sotto et al., 228 

2018). EchA has the ability to improve oxygen supply to peripheral tissues and due to its 229 

antioxidant power it protects the mitochondria, improving the rate of oxygen consumption, the 230 

production of ATP and the regulation of the transcription of some genes (Vasileva et al., 2017). 231 

As a consequence, EchA acts directly, either alone or in combination, on virus particles by 232 

inactivating them, and also acts indirectly improving antioxidant defense mechanisms of the 233 

host cell. 234 

 235 

 236 

Figure 2. One protomer of SARS-CoV-2 Mpro interaction with SpinA presents the best 237 
docking pose. On the left, SpinA is shown binded with the Mpro binding pocket. Mpro 238 
domains are shown in different colours, Domain I (residues 8-101) in aquamarine, 239 
Domain II (residues 102-184) in yellow and Domain III (residues 201-303) in pink. On 240 
the left, there is a zoomed view of the substrate-binding pocket with the best docking 241 
pose of SpinA. The key residues forming the binding pocket are shown in sticks and 242 
labeled. 243 

 244 



 245 

Figure 3. One protomer of SARS-CoV-2 Mpro interaction with EchA best docking pose. On 246 
the left EchA is shown binded with the Mpro binding pocket. Mpro domains are shown 247 
in different colours, Domain I (residues 8-101) in aquamarine, Domain II (residues 102-248 
184) in yellow and Domain III (residues 201-303) in pink. On the left, there is a zoomed 249 
view of the substrate-binding pocket with the best docking pose of EchA. The key 250 
residues forming the binding pocket are shown in sticks and labeled.  251 

 252 

EchA is already used as a drug therapy in humans and it also showed a good binding affinity to 253 

Mpro. The three-dimensional structures of Mpro of SARS-CoV and SARS-CoV-2 are quite 254 

similar. Both enzymes have a half-site activity and they only differ in a few amino acids and 255 

SARS-CoV-2 Mpro enzyme has a slightly higher catalytic activity (Jin et al., 2020; Zhang et 256 

al., 2020b). Moreover, substrate-binding pockets and substrate specificity from different CoV 257 

Mpro enzymes are conserved and suggest that targeting this site may lead to broad-spectrum 258 

inhibitors (Hegyi and Ziebuhr, 2002; Jin et al., 2020). Therefore, in vitro testing of Mpro of 259 

SARS-CoV and SARS-CoV-2 by EchA is necessary to confirm the inhibitory capacity. 260 

 261 

Conclusion 262 

In this in silico study, we used molecular docking to evaluate the potential interaction of natural 263 

sea urchin pigments with the Mpro protein of SARS-CoV-2. All pigment compounds presented 264 

a high molecular affinity to Mpro protein. However, EchA, a sea urchin pigment belonging to 265 

the family 1,4-naphtoquinones polihydroxilate, interacted with very high affinity to Mpro 266 

binding site. This may be related to its small size and the H-bond interactions between OH 267 

groups of EchA and Glu166 probably blocking the activity of Mpro. EchA is a natural marine 268 

pigment found in the test and spines of most sea urchin species in low concentrations. However, 269 



it is highly concentrated in the eggs of the sea urchin Arbacia dufresnii in aquaculture systems 270 

and hence it is available from a natural marine source. All these results provide novel 271 

information regarding sea urchin pigments as antiviral drugs against SARS-CoV-2, suggesting 272 

the need for further analysis to expand therapeutic uses.  273 
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