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Abstract

Memory for spatial sequences does not depend solely on the number of locations to be stored, but 

also on the presence of spatial regularities. Here, we show that the human brain quickly stores 

spatial sequences by detecting geometrical regularities at multiple time scales and encoding them 

in a format akin to a programming language. We measured gaze-anticipation behavior while 

spatial sequences of variable regularity were repeated. Participants’ behavior suggested that they 

quickly discovered the most compact description of each sequence in a language comprising 

nested rules, and used these rules to compress the sequence in memory and predict the next items. 

Activity in dorsal inferior prefrontal cortex correlated with the amount of compression, while right 

dorsolateral prefrontal cortex encoded the presence of embedded structures. Sequence learning 

was accompanied by a progressive differentiation of multi-voxel activity patterns in these regions. 

We propose that humans are endowed with a simple “language of geometry” which recruits a 

dorsal prefrontal circuit for geometrical rules, distinct from but close to areas involved in natural 

language processing.
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Introduction

In a classical paper entitled “the problem of serial order in behavior”(Lashley, 1951), Karl 

Lashley argued that complex sequential behavior, as occurs when we speak, write or type, 

cannot be reduced to an associative chain of conditioned responses, but involves a syntax of 

nested structures or ‘schemas’. Indeed, the ability to grasp the nested structure of sequences 

is essential for a variety of human cognitive activities such as language, music, mathematics, 

tool use and problem solving (Dehaene et al., 2015; Greenfield, 1991; Hauser et al., 2002; 

Rosenbaum et al., 1983). The frontal lobes are broadly known to encode such nested 

hierarchical structures and to use them for goal-directed behavior (Badre and D'Esposito, 

2009). Neuroimaging evidence has shown that the frontal lobes may be functionally 

organized along a rostral-to-caudal axis to support hierarchical cognitive control, with more 

rostral regions encoding more abstract forms of control (Badre et al., 2010; Koechlin and 

Jubault, 2006) (Balaguer et al., 2016; Desrochers et al., 2015).

Language provides a prime illustration of this human propensity for abstract rule-based 

behavior (Lashley, 1951). Humans can quickly learn new words, rules, or concepts from just 

one or a few examples, and children can generalize meaningfully via “one-shot learning” 

(Xu and Tenenbaum, 2007). Even infants can extract abstract patterns and learn hierarchical 

relations within a few minutes when presented with sequences made of three-syllable words 

(Kabdebon et al., 2015; Marcus et al., 1999; Saffran and Wilson, 2003). This ability is not, 

however, confined to auditory language learning. Using spatial sequences, we recently 

showed that a fast detection of geometrical regularities and embeddings exists in all humans, 

including Western adults, preschool Western children, and even adults and children with 

little access to mathematical education (the Munduruku, an indigene group in the Amazon). 

Within only two presentations of a sequence of 8 locations, participants could detect simple 

geometrical primitives and combine them in an efficient manner using nested structures, for 

instance detecting that the sequence comprised four parallel lines, two squares or two 

rectangles (Amalric et al., 2017).

To date, although simple geometrical regularities have been shown to engage dorsal inferior 

prefrontal cortex (Bor et al., 2003), how the human brain combines such primitives into 

complex embedded structures has not been studied. An exciting hypothesis is that the human 

brain possesses a specific ability, possibly unique amongst primates, to represent recursive 

structures (Fitch, 2014; Hauser et al., 2002). Comparative fMRI studies of responses to 

auditory sequences suggest that while both human and non-human primates can recognize 

algebraic patterns (e.g. AAAB or AAAA) (Wang et al., 2015) or regular languages generated 

by finite-state automata (Fitch and Hauser, 2004; Wilson et al., 2017), humans may possess 

the unique additional ability to recursively combine rules in a nested fashion (Dehaene et al., 

2015; Fitch and Friederici, 2012).

In the first few months of life, the inferior prefrontal cortex of human infants (“Broca’s 

area”) already responds to repeated sentences and hierarchical auditory rules and their 

violation (Basirat et al., 2014; Dehaene-Lambertz et al., 2006; Werchan et al., 2016). In 

humans compared to other primates, this region is anatomically enlarged, more 

asymmetrical, specifically interconnected (Neubert et al., 2014; Rilling et al., 2008; 
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Schenker et al., 2010; Smaers et al., 2017) and it shows unique patterns of brain activity 

during sequence processing (Wang et al., 2015; Wilson et al., 2015). It has therefore been 

suggested that Broca’s area and its associated fiber pathways could provide a shared and 

uniquely human substrate for recursion in all domains of human relevance (Jeon, 2014; 

Koechlin and Jubault, 2006; Makuuchi et al., 2009; Rilling et al., 2008).

The experimental evidence to date is limited and mixed, however. On the one hand, some 

data indicate that artificial grammars and musical nested structures engage neural circuits 

that overlap, at least in part, with those involved in language syntax (Patel, 2003). On the 

other hand, there is also evidence for dissociations. Mathematical thinking, in particular, 

although clearly involving nested formulas and recursive algebraic structures(Jansen et al., 

2003; Schneider et al., 2012), appears to dissociate from language processing (Amalric and 

Dehaene, 2016; Maruyama et al., 2012; Varley et al., 2005). A functional magnetic 

resonance imaging (fMRI) study of expert mathematicians has shown that high-level 

mathematical thinking makes minimal use of language areas, and instead recruit dorsal 

prefrontal cortex together with posterior circuits initially involved in space and number 

processing (Amalric and Dehaene, 2016). Furthermore, neurological patients with severe 

aphasia following left-hemisphere perisylvian lesions may exhibit preserved abilities to 

engage in algebraic problems involving recursion and structure-dependent operations 

(Varley et al., 2005).

These findings suggest, but do not prove, that at the brain level, the human ability to learn 

and to represent non-linguistic nested structures does not engage Broca’s area proper, but is 

distributed to multiple areas beyond the language network. Clarifying this point is crucial in 

order to understand the evolutionary origins of human abilities. In the present study, we 

therefore studied a simple formal language composed of geometrical primitives (symmetries 

and rotations) and combinatorial rules to produce spatial sequences in a regular octagon 

(Amalric et al., 2017). We designed a sequential saccade paradigm in which participants 

were merely required to view a repeating sequence and to move their eyes to successive 

locations. We then used gaze anticipations to infer whether they understood the underlying 

geometrical language. Our first goal was to examine whether and how the human brain 

combines simple primitives in a nested, language-like manner to encode regularities of 

variable degree of complexity in spatial sequences. If so, the second goal was to determine 

how nested rules are encoded in the brain with the specific aim of observing whether they 

share the same brain networks as language processing.

Materials and Methods

Stimulus sequences

Details of the visual sequences and mini-language used to form the sequences have been 

described in a previous study (Amalric et al., 2017). We designed a formal language capable 

of describing all 8-locations sequences around a symmetrical octagon. This language 

comprises a set of primitives shown in Figure 1A, including rotations (0: stay at the same 

location, +1: next element clockwise, +2, -1: next element counter-clockwise, -2), and 

symmetries either axial (H: horizontal symmetry, V; vertical symmetry, A & B: symmetries 

around diagonal axes) or rotational (P: point symmetry). Combining these primitives, any 8-
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locations sequence can be described. We thus endowed our formal language with recursive 

combination rules, allowing to repeat any instruction with or without change. For example, a 

square may be encoded as [+2]^4, i.e. four repetitions of +2). We generated all the 5040 

sequences of length 8 on the octagon that always began at the same location and sampled 

each location once. We then computed their minimum description length, as an 

approximation of their Kolmogorov complexity (K), in the language defined above. 

According to our previous study, this measure was a strong predictor of the degree of 

geometrical regularity and of subjects’ ability to memorize and predict the sequence 

(Amalric et al., 2017). In the present study, we aimed to search for the neural representation 

of sequences with different levels of nesting. We selected 12 sequences spanning simple 

sequences with linear structures, sequences with two or three embedded levels of regularity 

and sequences of the highest complexity, without any apparent geometrical regularity (Fig. 

1B). We briefly describe them below:

◦ Two simple sequences had a simple linear transition structure: one called 

“repeat” (complexity: K = 5) contained a single repeated primitive (either +1 or 

-1), and the other one called “alternate” (K = 7) was generated by applying 

alternatively +2 and -1 or -2 and +1. Both “repeat” and “alternate” sequences did 

not involve nesting, but a mere repetition of one or two primitives.

◦ Four sequences were composed of two embedded levels of regularity: a first 

level where instructions built a geometrical shape (e.g. a square), and a second 

level where the shape was repeated with a global transformation (e.g. the square 

was rotated using the +1/-1 instruction). Sequences of this category were called 

“2squares” (K = 8), “2arcs” (K = 8), “4segments” (K=7) and “4diagonals” (K = 

7). There are four subcategories of “4segments” sequences called 

“4segments_V”, “4segments_H”, “4segments_A” and “4segments_B”, 

according to their symmetrical axis

◦ Two sequences contained three embedded levels of regularity. They were 

respectively called “2rectangles” (K = 10) and “2crosses” (K = 7), and consisted 

in an initial segment built using an axial (respectively rotational) symmetry on 

which a global axial symmetry was applied to draw a rectangle (respectively a 

cross), on which, in turn, a +2 rotation was applied to transpose the shape to the 

remaining four points of the octagon.

◦ The most complex sequence, called “irregular” (K = 16), consisted in a serial 

presentation of all 8 locations in a fixed order with no apparent regularity.

In the fMRI (functional magnetic resonance imaging) experiment, to control for working 

memory load, three additional irregular sequences were included that spanned only a subset 

of the 8 locations, called “1point” (K = 5), “2points” (K = 6) and “4points” (K = 9).

Behavioral paradigm

Visual sequences were displayed on a regular octagon (Fig. 1A). The eight locations were 

indicated by white crosses (35 pixels for horizontal and vertical line) and were constantly 

visible on the screen (1280 × 1024 pixels) with gray background during experiments. The 

behavioral and fMRI experiments were organized in short blocks. In each block, subjects 
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were presented with a given sequence of spatial locations and were merely asked to 

sequentially saccade to each target as accurate and fast as possible. Each sequence was 

repeated four times in each block. On each trial, a yellow-dot flashing target appeared on 

one of the eight white crosses for duration of 1000 ms, and then jumped to the next ordinal 

location with a 150 ms inter-stimulus-interval. The order of sequence was randomized. Each 

run contained 15 blocks. One run usually took 9.2 minutes. In the fMRI experiment, each 

run was divided into 2 sub-runs. The behavioral experiment contained 6 runs, and 4 to 6 runs 

(i.e. 8 to 12 sub-runs) were examined depending on subjects in the fMRI experiment. Visual 

sequences were presented using the Matlab software (MathWorks, MA) with Psychtoolbox 

(http://psychtoolbox.org/).

Subjects

In the behavioral study, we tested 44 healthy human subjects (29 females; mean age 26 

years). In the fMRI study, we recruited 22 healthy human subjects (10 females, mean age 24 

years) with no known neurological or psychiatric pathology. Two subjects did not go 

through the entire fMRI experiment for being unable to complete the sequential saccade task 

in the scanner. We collected eye-movement data in twelve of the twenty subjects. Video 

monitoring allowed us to check the other eight subjects’ eye movements during the saccade 

task, but the software tracking system sometimes lost the pupil position. After each 

experimental run and also the end of scanning, we asked the subjects to describe whether 

there was any regularity in the sequence to ensure that they paid attention on the sequences. 

All subjects gave written informed consent to participate to this study, which was approved 

by the local Ethics Committee.

Data Acquisition

Functional images were acquired in a 3T scanner (Siemens, Tim Trio) with a 12-channel 

head-coil, using a T2*-weighted gradient echo-planar imaging (EPI) sequence (TR = 2.4 s, 

TE = 30 ms, Matrix = 64 x 64, 3 mm3 voxel size). Eye movements were collected using an 

EyeLink 1000 eye-tracker (SR Research, ON, Canada). A total of 42 runs from 20 human 

participants were acquired and analyzed. Human functional volumes were corrected for slice 

timing differences, realigned for motion correction and spatially normalized to the Montreal 

Neurological Institute (MNI) template (Lancaster et al., 2000). After image preprocessing, 

active brain regions were identified by performing voxel-wise GLM analyses implemented 

in SPM8 (http://www.fil.ion.ucl.ac.uk/spm).

Complete details of the experimental procedures are presented as Supplementary Materials.

Results

Experimental paradigm and behavioral performance

In previous work from our group, we introduced and tested a formal language capable of 

generating any sequence of movements on a regular octagon (Amalric et al., 2017). The set 

of primitive instructions is shown in Fig. 1A and includes rotations (0 = stay at the same 

location, +1 = next element clockwise; and, similarly, -1, +2, -2…) and symmetries (H = 

horizontal symmetry, V = vertical symmetry, A & B = symmetries around diagonal axes; P = 
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central point symmetry). These all correspond to what we perceive as natural geometric 

intuitions. The language also allows to recombine these atomic instructions into more 

sophisticated programs by appending them or by repeating any instruction n times, with or 

without symmetries and/or variations in starting point.

Although any sequence can be encoded in more than one manner, previous behavioral data 

showed that humans detect and encode regular sequences in a compressed form (Amalric et 

al., 2017). For instance, one of the simplest sequences, “Repeat” (Fig. 1A, Example 1) can 

be captured as a series of successive moves on the octagon, which can be compactly 

described by the formula [+1]^8 (repeat 8 times the instruction to move to the next item). 

Humans tend to select the more parsimonious expression that captures each sequence. The 

framework of minimum description length (MDL) allows to assign a measure of complexity 

to a given sequence as the length of the shortest expression capable of producing it (Ming, 

1997; Romano, 2013). We thus used the MDL as a mathematical definition of the 

complexity of each sequence, and examined whether this measure could explain saccade 

anticipation behavior and associated fMRI activity.

Out of all possible 5040 sequences of length 8 without repetition on the octagon, each 

participant was presented with eight sequences that spanned a broad range of geometrical 

primitives and regularities, plus one sequence of maximal complexity (called “irregular”). 

The eight sequences were called “repeat”, “alternate”, “2arcs”, “2squares”, “4segments”, 

“4diagonals”, “2rectangles”, and “2crosses” (Fig. 1B). Except for “alternate”, these 

sequences sampled the 8 vertices of the octagon without repetition. To control for the effect 

of memory demand, we included three additional sequences: “1point”, “2points” and 

“4points” (Fig. 1B and supplementary information), which were maximally irregular but 

repeated after spanning only a subset of 1, 2 or 4 locations.

Forty-four participants participated in the initial behavioral task (Fig. 1A). We asked them to 

track targets with their gaze, and monitored whether their eyes anticipated the next target at a 

given sequence location. Another twenty participants were recruited in the following fMRI 

experiment. The behavioral and fMRI experiments were organized in short blocks. In each 

block, a fixed sequence of 8 items was repeated 4 times (hereafter referred to as 4 “trials”, 

although note that the 32 locations followed each other seamlessly). From block to block, 

each category of sequence was presented with variable starting points, so that participants 

could not immediately recognize it, but could infer its organization after a few items. The 

length of the sequence (8 locations) challenged participants’ working memory and 

encouraged them to look for regularities.

Performance (correct response rate) was quantified by examining whether the eye position 

fell in the target area within a time window of 0-500 ms after the target onset. This window 

was adopted in order to tolerate a large variation in eye movement time (including 

anticipations) while still enforcing a relatively rapid response time (less than half of the 

stimulus onset asynchrony of 1150 ms). Performance was high, between 80% and 96% (see 

Fig. S1). There was a significant negative correlation between performance and sequence 

complexity as measured by MDL (r = -0.85, p < 0.003), indicating that participants made 

more errors for more complex sequences.
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Although participants were merely instructed to move their eyes to each successive target, 

their saccades often anticipated on target appearance. For each successive target location, we 

next calculated the anticipation index (AI) as the distance, at the onset of the current target, 

between the actual eye position and the current target position, divided by the distance 

between the current and the prior target. Thus, AI was equal to 0 when gaze was already 

focused on the target before it appeared (maximal anticipation), and to 1 when gaze had not 

left the previous location (no anticipation). The performance for irregular sequences, used as 

baseline (gray line in Fig. 2A), showed only a modest improvement across the four 

successive trials (thirty-two targets in total). By contrast, for all regular sequences, 

participants showed significantly higher anticipation compared to irregular sequences (Fig. 

2A, red star on top of each panel denoting p < 0.01 with Wilcoxon signed rank test). 

Crucially, the amount of anticipation was well predicted by our measure of complexity, as 

the mean anticipation index was significantly correlated with MDL across sequences 

(behavioral experiment. R2 = 0.86, p < 0.001; fMRI experiment. R2 = 0.74, p < 0.001) (Fig. 

2B and S2).

The participants’ anticipation profile across sequence was also measured by examining 

saccadic reaction time (Fig. S2A) and fraction of trials with eye position near the 

corresponding target area at target onset (Fig. S2B). The results showed consistent 

behavioral performance for all sequences. In subsequent data analysis, we averaged the 

behavioral indexes from the four variants of the 4segments sequence (“4segments_V”, 

“4segments_H”, “4segments_A” and “4segments_B”), as they showed highly similar 

patterns (Fig. S2C; note that only this category had multiple variants). Furthermore, since 

previous studies indicated that initiation times were influenced by sequence complexity 

(Hunt and Aslin, 2001; Schneider and Logan, 2006; Verwey et al., 2010), we also examined 

the anticipation index (AI) in the first points of the 2nd, 3rd and 4th trial (there could be no 

planning on the 1st trial of all the sequences) and found a significant correlation between AI 

and sequence complexity (R2 = 0.59, p < 0.02).

We then zoomed in on the structure of each trial by examining anticipation in each of the 8 

points of the regular sequence. For the “repeat” sequence, which had the minimum 

description length and consisted of the repeated application of the +1 or -1 rule, anticipations 

became evident starting with the fourth data point of the first trial (difference in AI from the 

corresponding point in the irregular baseline; all ps < 10-5, signed rank test, normality test 

violated) (Fig. 2A. The anticipation profile reached an asymptote during the second trial. 

Those results indicate that participants quickly learned the sequence within the first trial, i.e. 

during the first presentation of the sequence and before it was even repeated. The alternate 

sequence showed a similar anticipation effect as repeat (significance from the seventh data 

point in the first trial, all ps < 0.005, signed rank test) (Fig. 2A).

For other sequences, gaze anticipations showed a temporal structure that reflected the 

nested, hierarchical organization of the underlying “mental program”, with more anticipation 

(lower AI) on targets involving a shallower level of nesting (Fig. 2A). Consider for instance 

the “2arcs” and “2squares” sequences (Fig. 1B). Both involve two nested levels: an 

elementary operation (respectively +1 or +2) is first repeated four times, then repeated again 

with a shift in location, thus creating a repetition of repetitions. This structure was reflected 
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in performance. First, the data points corresponding to the application of the first-level rule 

(2nd, 3rd, 4th and 6th, 7th, 8th within each trial) showed the most anticipation (comparison 

with irregular: “2arcs”, all ps < 0.01; “2squares”, all ps < 0.05, signed rank test), suggesting 

that the superficial rule was easily learned. Second, the data points 1 and 5, corresponding to 

the second-level rule, showed less anticipation than the first-level points (“2arcs”, ps < 10-6; 

“2squares”, ps < 10-7, signed rank test), and became significantly different from the irregular 

baseline only in the 3rd and 4th trials (“2arcs”, all ps < 0.01; “2squares”, all ps < 0.05, signed 

rank test). Thus, participants learned both first- and second-level nested structures, but the 

second-level rule was more difficult to learn, perhaps because evidence for this level was 

scarcer (1/4 of locations for “2arcs” and “2squares”).

The observed behavioral pattern cannot simply be accounted for by sequence transition 

probabilities: within a sequence, each of the 8 locations is traversed only once in a 

deterministic manner, hence transition probability is 1. Could subjects adapt to specific 

transition rules such as +1 (move to the next item) or +2 (skip an item)? While this 

hypothesis could account for the reduced anticipation on data points 1 and 5 of the “2arcs” 

and “2squares” sequences, which violate the repetition of +1 or +2 established by the three 

preceding trials, it fails to explain why these data points still showed significant higher 

anticipation than all the points of the irregular sequence (ps < 0.001), which had similar 

transition probabilities. The latter finding establishes that participants ultimately learned two 

levels of regularities, rather learning merely the most frequent one (e.g. +1 for “2arcs”) and 

being surprising when it was violated. Performance on the “4segments” and “4diagonals” 

provided further evidence that both level of structure and amount of repetition are 

determinants of performance. In those sequences, every other location provides evidence 

respectively about 1st-level and 2nd-level structures (see supplementary information). 

Accordingly, anticipation relative to the irregular baseline was quickly observed at all data 

points (“4segments”, all ps < 10-4; “4diagonals”, all ps < 0.05, signed rank test), yet there 

were again several indications of a hierarchical program. First, for the “4segments” 

sequence, there were significantly fewer anticipations at data points 1 and 2 than at data 

points 3-8 (p < 10-6, signed rank test, anticipation index was averaged over corresponding 

points across 4 trials), corresponding to the initial segment. Second, for the “4diagonals” 

sequence, there were significantly fewer anticipations at odd- than at even-numbered points 

(p < 10-5, signed rank test), indicating greater difficulty for the more embedded structure 

even though it was repeated as often as the less embedded one. Finally, note that while the 

probabilities of transition rules on even-numbered points of “4segments” and “4diagonals” 

were identical to those of the “alternate” sequence, the latter did not a similar a jagged 

anticipation pattern characteristic of a two-level sequence.

We also obtained evidence that the “2rectangles” and “2crosses” sequences, with 3 levels of 

embedding in our language, were most difficult. Data points 1 and 5, corresponding to the 

3rd-level rule showed no difference compared to the irregular sequence (all ps > 0.1, signed 

rank test), and even in the fourth trial there was no improvement, suggesting that participants 

did not acquire the 3rd-level embedded structure (data points 1 and 5 in the 4th trial in both 

AI (Fig. 2A) and reaction time (Fig. S2A, all ps > 0.1, signed rank test). However, data 

points (3rd and 7th) corresponding to the 2nd-level structure were significantly lower than 

baseline in the 4th trial (“2rectangles”: point 3, p < 0.002 and point 7, p < 0.003; “2crosses”: 
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point 3, p < 0.009 and point 7, p = 0.052, signed rank test) (Fig. 2A), suggesting that the 

participants gradually learned the 2nd-level structures, but experienced difficulty with the 

higher 3rd-level rules in these two sequences.

For the “1point”, “2points” and “4points” sequences in the fMRI experiment, the 

anticipation patterns were similar to those in the repeat and alternate sequences, i.e. devoid 

of temporal structures. Those results indicate that, aside from detecting geometrical 

regularities, participants could also quickly memorize a small number of arbitrary and 

irregularly spaced locations (Fig. S3A).

A prominent feature of our task is fast rule learning. We quantified the learning rate by 

calculating the slope of the evolution of the anticipation index across the eight data points in 

each trial, and found three learning profiles, roughly corresponding to three levels of 

regularities. The sequence of “repeat” and “alternate” with only one-level regularity, showed 

a profile of “one-trial learning” (Fig. S4): the learning rate in the first trial was high and 

significantly higher than those in the subsequent ones (Tukey's HSD (honest significant 

difference) test, ps < 10-5), and the learning rates in the 2nd, 3rd and 4th trial were not 

significant and did not differ from each other (ps > 0.1, Tukey's HSD test). The two-level 

nested sequences (“2arcs”, “4segments”, “2squares” and “4diagonals”) exhibited a pattern of 

“incremental learning”, in which the 1st, 2nd and 3rd trials showed a moderate but significant 

learning rate (all ps < 0.05, Tukey's HSD test) (Fig. S4). For the remaining sequences 

(“2rectangles”, “2crosses” and “irregular”), the learning rate was small and generally did not 

reach significance in any trial (Tukey's HSD test, all ps > 0.1), not did it differ between trials 

(one-way repeated measures ANOVA, “2rectangles”: F (3,129) = 0.6, p > 0.8; “2crosses”: F 

(3,129) = 2.1, p > 0.6). This learning profile is compatible with a partial understanding of 

some but not all of the nested levels present in the sequence.

In summary, the behavioral results showed that complexity could predict participants’ 

saccade anticipation behavior, and that participants learned the single-level sequences 

(“repeat” and “alternate”) within one trial, and the two-level embedded sequences (“2arcs”, 

“2squares”, “4segment” and “4diagonals”) with an incremental learning profile, but showed 

difficulty in learning rules with three levels of embedding (“2rectangles” and “2crosses”). In 

addition, the 2nd-level rules were harder to acquire than 1st-level rules. Finally, the 

anticipation patterns characteristic of embedded structures could not be attributed to 

transition probabilities.

Brain activation correlating with complexity (MDL)

To uncover the brain regions associated with rule-based encoding of spatial sequences, we 

searched for brain activity positively correlated with sequence complexity (group analysis 

threshold at t > 3.1, p < 0.05 cluster-level FDR corrected). Several areas showed a positive 

correlation (Fig. 3A and Table S1), including inferior frontal gyrus (IFG), dorsal premotor 

cortex (PMd), superior parietal lobule and intra-parietal sulcus (IPS) and surrounding dorsal 

occipito-parietal cortex, and middle occipital cortex.

To evaluate alternative interpretations of our results, we also obtained maps of the brain 

areas where fMRI activation correlated with the average saccade distance in each sequence 
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(Fig. S5A, group analysis threshold at t > 3.1, p < 0.05 cluster-level FDR corrected), and 

with the memory demand in non-structured sequences (Fig. S5B, contrast of the sequence 

containing “4 points” versus “2 points”, group analysis threshold at t > 3.1, p < 0.05 cluster-

level FDR corrected). These parameters activated an occipito-parieto-premotor network 

partially similar to the brain regions whose activity increased with sequence complexity. To 

determine whether parts of this network would activate for complexity, independent of 

saccade distance and memory demand, we excluded from the brain map of sequence 

complexity all the voxels above threshold (p < 0.05, uncorrected; “exclusive masking”) in 

the brain maps of saccade distance and memory demand. We found a significant activation 

in bilateral IFG (Figs. 3B and 3C). Those results were confirmed by directly examining the 

voxel-wise contrast for a significantly larger effect of the normalized contrast for complexity 

than of the normalized contrast for saccade distance (Fig. S5D). Similarly, we also compared 

the effects of normalized contrasts for complexity and for memory demands (Fig. S5E). In 

both cases, the entire set of areas correlating with complexity also showed a significantly 

stronger effect of complexity than of the confounding variables. As an additional control, we 

also examined the effect of average saccade direction changes, but this map showed no 

activation in IFG and only weak activation mostly in occipital cortex (Fig. S5C).

Brain activation to participants’ anticipation of nested structures

While complexity provided an objective mathematical measure of the amount of structure 

underlying each sequence, the participants’ anticipation behavior provided a more direct 

measure of their degree of understanding of those sequences. From this perspective, we thus 

quantified the extent to which the participant’s anticipation behavior was driven by an 

understanding of the sequence’s nested structure, and used this behavioral index as a 

predictor of brain activity. The participants’ anticipation of nested structure (hereafter 

abbreviated to “sequence nesting”) was quantified as the difference in eye-gaze anticipation 

between data point 5 in each 8-location sequence (corresponding to second-level rules) and 

the mean of data points 3 and 7 (corresponding to first-level rules) (see Fig. 2A and 

supplementary information). We then probed the fMRI activity which was positively 

correlated with sequence nesting (group analysis threshold at t > 3.1, cluster-level p < 0.05 

FDR corrected) and found that the relevant areas included those previously identified with 

the objective complexity contrast, yet with higher significance in IFG and with additional 

activation in right mid-dorsal lateral prefrontal cortex (Mid-DLPFC) and bilateral anterior 

caudate (Fig. 4A upper and Table S2). When excluding the voxels that were above threshold 

(p < 0.05, uncorrected; “exclusive masking”) in the brain map for sequence complexity (Fig. 

3A), only the right Mid-DLPFC showed a significant selective effect of sequence nesting 

(Fig. 4A lower).

Could these activations, especially the Mid-DLPFC activity, be due solely to increasing task 

difficulty or working memory load (Bor et al., 2003; Braver et al., 1997), as opposed to a 

rule-based representation? To identify whether those areas were also involved in task 

difficulty or memory load in the absence of geometrical rules, we searched for increasing 

brain responses in control sequences (“1point”, “2points”, “4points” and “Irregular”) where 

the spatial sequence was irregular. Among the regions of interest identified by the previous 

contrasts (ROIs, Fig. 4A upper) analysis, PMd showed a significant main effect of memory 
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demand (Fig. 4C, one-way repeated measures ANOVA, F(3,57) = 11.88, p < 10-5) and IFG 

tended to show a similar effect (Fig. 4C, one-way repeated measures ANOVA, F(3,57) = 

2.34, p = 0.08), whereas Mid-DLPFC (Fig. 4C, one-way repeated measures ANOVA, 

F(3,57) = 0.29, p = 0.8) and anterior caudate (Fig. 4B, one-way repeated measures ANOVA, 

F(3,57) = 0.59, p = 0.6) did not exhibit such working memory effect (Fig. 4B, histograms 

with shaded area). In addition, in Mid-DLPFC and anterior caudate, the activity induced by 

the “irregular” sequence, which has the highest working memory load, was significantly 

lower than for the two-level embedded sequences “4diagonals” and “2squares” (Student’s 

paired t-test, Mid-DLPFC t39 = 3.58, p < 0.001; anterior caudate: t39=2.46, p < 0.05) (Fig. 

4B). This finding suggests that the Mid-DLPFC and anterior caudate activities were not 

solely driven by spatial working-memory requirements, but were more specifically 

associated with the organization of working memory into a structured sequence comprising 

multiple levels of nesting.

One might argue that the low activation of Mid-DLPFC for the irregular sequence could be 

simply due to a reduced attention (e.g. if participants gave up learning it). However, 

behavioral performance (gray lines, Fig. 2A& Fig.S1) indicated that the anticipation index 

of the “irregular” sequence decreased continuously across the 32 location forming the 4 

trials (repeated measures ANOVA, behavioral experiment: F(1,43) = 35.5, p<10-6; fMRI 

experiment: F(1,19) = 352.4, p < 10-12), suggesting a relatively high attention level even for 

the irregular sequence.

Spatial relationship with the language and mathematical calculation regions

Given that our spatial sequences involve both syntax and geometry, we then examined the 

relation of the observed activations to previously identified areas involved in language and 

mathematical calculation, as determined in the same participants using an independent 

functional localizer (Pinel et al., 2007) (supplementary information). At the whole-brain 

group level, the areas responsive to geometrical nested structures largely overlapped with the 

regions active during calculation (Fig. 5B), but not with those involved in sentence 

processing (Fig. 5A). We next sought to confirm those findings in individual participants by 

using our functional localizer to identify, within each participant, the subject-specific voxels 

activated during sentence processing within 7 left-hemispheric language-related regions of 

interest (ROIs) and during mental calculation within 7 math-related ROIs (supplementary 

information). The search regions were selected from two previous studies of language 

constituent structure (Pallier et al., 2011) and mathematical thinking (Amalric and Dehaene, 

2016).

Within those subject-specific voxels, identified from independent data, we could then extract 

and analyzed the activation evoked by each spatial sequence. The results confirmed that 

math-responsive voxels (Fig. 5D) were significantly activated by spatial sequences, with a 

profile that matched those reported at the group level (Fig. 4C). By contrast, strikingly, 

language-responsive voxels were essentially silent or even deactivated during our 

geometrical saccade anticipation task (Fig. 5C). Even the language-related areas IFG pars 

opercularis, pars triangularis and pars orbitalis show little or no activity. Examination of the 

IFG activation associated with geometrical sequence complexity showed that it was located 
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dorsal to any language-related activity, in the most dorsal sector of Brodmann area 44, as 

previously reported for abstract mathematical reflection (Amalric and Dehaene, 2016).

Examination of the spatial distribution of activations to saccade distance, complexity, and 

nesting revealed a rostro-caudal organization in prefrontal cortex (Fig. 4B), with saccade 

distance affected primarily the dorsal precentral sulcus, complexity a more anterior part of 

dorsal IFG, and nesting an even more anterior sector of dorsolateral PFC. Those findings, 

similar to previous work (Koechlin et al.), suggest a hierarchical representation of visual-

spatial sequences at an increasingly higher degree of abstraction (Fig. S6).

Evolution of representational similarity during learning

The previous analyses are all based on univariate analyses of the correlates of sequence 

complexity. However, fMRI also affords multivariate analyses of the topographical cortical 

code activated during a given task(Kriegeskorte et al., 2008). We therefore evaluated 

whether our fMRI images contained information about the internal code for spatial 

sequences and its evolution with repeated exposure. Over the course of learning, we 

hypothesized that the brain regions where the nesting effect was found may progressively 

converge to a neural code characteristic of the geometrical sequence being learned. 

Unfortunately, fMRI does not possess the temporal resolution required to identify how this 

neural code is dynamically organized, and whether it resembles the specific language-like 

nested structure postulated by our “language of geometry”. However, a simpler prediction is 

that, during learning, the topographic activation patterns evoked by distinct learned 

sequences should become increasingly different and unique to each sequence. Furthermore, 

this differentiation process should occur faster for sequences that are easier to learn.

To test this idea, we examined how the spatial pattern of BOLD signals over voxels evolved 

over the course of learning, using a multivariate analysis technique known as 

representational similarity analysis (RSA). Because this technique has reduced statistical 

power, we did not analyze each sequence individually, but we grouped the sequences based 

on their distinct behavioral learning profiles: those learned in a single trial, those learned 

incrementally, and the most complex ones that were only partially learned (Fig. S4). At 

single-subject level, we computed the representational similarities between all sequences 

within a group. As noted above, the differentiation hypothesis predicted a decrease in 

similarity. Such a learning effect was observed in both parietal and frontal ROIs (Fig. 4A) 

(two-way ANOVA, main effect of Trial, PMd: F(3,57) = 8.9, p < 10-4; IFG: F(3,57) = 2.7, p 

< 0.05; Mid-DLPFC: F(3,57) = 8.8, p < 10-4; IPS: F(3,57) = 8.9, p < 10-4; SPL: F(3,57) = 

6.6, p < 0.001) (Fig. S7). However, only the similarities in frontal IFG and Mid-DLPFC 

showed significant differences in the slope of this learning effect between groups of 

sequences (two-way ANOVA, Trial × Group interaction, PMd: F(6,114) = 1.96, p = 0.08; 

IFG: F(6,114) = 3.6, p < 0.01; Mid-DLPFC: F(6,114) = 3.1, p < 0.01; IPS: F(6,114) = 0.79, 

p > 0.5; SPL: F(6,114) = 0.64, p > 0.6). Multiple comparisons, performed separately for 

each trial, found that similarity was significantly different in the third and fourth trial 

between the partial learning group and the incremental learning group of sequences (IFG, ps 

< 0.01, t-test; Mid-DLPFC, ps < 0.05, t-test). On the 3rd trial, there was also a significant 

difference between the partial learning group and the one-trial learning group (IFG, p < 0.01, 
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t-test; Mid-DLPFC, p < 0.01, t-test) (Fig. S7). Furthermore, the differences observed on the 

3rd trial in the frontal regions were significantly larger than those in the parietal regions 

(two-way ANOVA, Sequence group × Region interaction, IFG vs. IPS: F(2,38)=4.32, p < 

0.03; IFG vs. SPL: F(2,38)=3.24, p < 0.05; Mid-DLPFC vs. IPS: F(2,38)=3.78, p < 0.04; 

Mid-DLPFC vs. SPL: F(2,38)=3.15, p = 0.054). These results suggest a progressive 

differentiation of the brain activation patterns in prefrontal cortex in the course of sequence 

learning, which occurred faster for simpler sequences, thus paralleling the behavior 

improvements.

Discussion

We designed a novel experimental paradigm in order to probe the human ability to represent 

spatial sequences using nested combinations of elementary geometrical primitives. Saccadic 

eye-movement data revealed that the spatial sequences that could be encoded by simple 

nested geometrical structures were quickly learned, and that the amount of saccadic 

anticipation could be predicted by the complexity of the sequence, as measured by minimum 

description length. Using fMRI, we identified a bilateral IFG activation correlating with 

objective complexity, and an activation in right Mid-DLPFC and bilateral anterior caudate 

correlating with the subjective anticipation of spatial sequences using embedded rules. 

Sequence learning was accompanied by a progressive differentiation of multi-voxel activity 

patterns in parietal-frontal networks. Finally, these parietal-frontal brain regions involved in 

geometrical sequences overlapped with those activated during mathematical reflection, but 

bore no relation to classical language-related areas.

Using the same octagon layout, we previously probed memory for spatial sequences using a 

behavioral task whereby subjects had to explicitly point to the next item, and found that 

errors increased with complexity in educated adults, uneducated Amazonian adults, and 

Western preschoolers (Amalric et al., 2017). The present results replicate and extend those 

findings using an implicit learning task in which subjects were merely asked to follow the 

items of the sequence with their eyes. In both studies, participants showed difficulties in 

learning the 2rectangles and 2crosses sequences with three-level embedded structures. This 

could be due to the fast presentation rate and limited number of sequence repetitions, both of 

which left participants limited time to think and generate predictions. The performance in 

these two sequences nevertheless was better than for the irregular sequence, suggesting that 

participants did learn some of the shallower primitives (e.g. +1/-1, +2/-2 and symmetries), 

though not the full overarching structure.

Our fMRI results indicate that such structures are represented in prefrontal areas such dorsal 

IFG and PFC. Several other experimental and psychological accounts can be excluded. First, 

could the IFG involvement be associated with basic parameters of the eye-movement 

behavior (e.g. saccade distance)? This seems unlikely as the group analyses showed that the 

IFG was more activated by complexity than by those eye movement parameters (Figs. 3 and 

S4). Brain activity associated with saccade parameters was observed, as expected, but it did 

not encompass the IFG region. Second, could the activation in Mid-DLPFC and basal 

ganglia reflect working memory load or general task demands rather than the extraction and 

representation of nested rules? We found no significant working memory load effect in Mid-
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DLPFC and basal ganglia when we examined the activity differences among the control 

sequences “1point”, “2points”, “4points” and “irregular” (Fig. 4C), which did not possess 

any geometrical regularities but varied in difficulty and load. Furthermore, crucially, Mid-

DLPFC activations during the “2squares” and “4diagonals” sequences were significantly 

higher than during the more demanding “irregular” sequence, suggesting that task demands 

or difficulty was not likely the main reason for the Mid-DLPFC activity. In this respect, our 

results replicate and extend previous work by Bor et al. (Bor et al., 2003), who found greater 

inferior prefrontal and parietal activity to structured spatial sequences than to unstructured 

ones, and concluded that the capacity to parse the sequence into meaningful chunks was the 

major determinant of PFC activity. Similar work done by Desrochers et al.(Desrochers et al., 

2015) also showed ramping activity in the rostrolateral prefrontal cortex and complexity 

effect in the pre-PMd region. Like them, we conclude that the IFG or Mid-DLPFC/basal 

ganglia activities in our task do not simply reflect eye movements, general task difficulty or 

attention level, but can only be explained by a parsing mechanism akin to a “language of 

geometry”, as initially demonstrated through behavioral analysis of a similar touch-screen 

task (Amalric et al., 2017).

Our finding that individual saccade movements, sequence complexity, and anticipation of 

nested rules were respectively represented along a rostro-caudal axis of the frontal lobe, 

from PMd (the peak of the cluster at [27 -1 52]) to IFG (peak at [48 11 28]) and to Mid-

DLPFC (peak at [39 45 15]), is consistent with previous proposals of a hierarchy of 

increasing abstract rules (Badre and D'Esposito, 2009; Badre et al., 2010) or an information 

cascade for executive control in prefrontal cortex (Koechlin and Jubault, 2006; Koechlin et 

al., 2003; Koechlin and Summerfield, 2007). Specifically, the spatial relationship of the three 

clusters is compatible with the hierarchical map in frontal cortex proposed by Badre et al. 

(Badre and Nee, 2018), where the first-order (sensory-motor, Y = -7), second-order 

(contextual control, Y = 15) and the third-order (schematic control, Y = 49) were defined 

hierarchically. Frontal cortex appears to be functionally organized to represent increasingly 

abstract frames of perception or action, with information gradually changing from a narrow 

(current stimulus) to an increasingly broader context (Bahlmann et al., 2015; Nee and 

D'Esposito, 2016; O'Reilly, 2010; Wendelken et al., 2012). In the present study, it seemed 

that the more anterior frontal regions (e.g. Mid-DLPFC and IFG) were sensitive to 

increasingly abstract encodings of saccade movements. A plausible hypothesis, which 

should be tested in future work, is that anterior regions generate top-down signals that help 

organize subordinately lower-level actions in more posterior regions (Dehaene and 

Changeux, 1997; Koechlin and Summerfield, 2007).

Human language abilities imply a unique competence for nested tree structures (Hauser et 

al., 2002). Previous studies have suggested a neural circuit involving left superior temporal 

sulcus, temporal poles, temporo-parietal junction and especially the left inferior frontal 

gyrus (“Broca’s area”) was highly correlated with the syntactic complexity of sentences 

(Pallier et al., 2011). A major goal of the present study was to examine whether our 

“language of geometry” with recursive embedding structures also engaged the same set of 

language-related areas. The answer was unambiguous: the language of geometry recruited a 

non-linguistic neural network, distinct from language areas, and involving the bilateral 

prefrontal, parietal and inferior temporal regions that were previously found to encode 
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number, space, time and other mathematical abstractions (Amalric and Dehaene, 2016; 

Dehaene, 2011). Their bilateral frontal recruitment might reflect the visuospatial nature of 

the stimuli used in current study. In that respect, the present results replicate, in a much 

simple geometrical setting, the previous findings that high-level mathematical thinking 

activates a cortical network distinct from, and dorsal to, classical language areas (Amalric 

and Dehaene, 2016, 2017). Importantly, Amalric et al. presented mathematical stimuli in 

sentential form, and thus activating temporal and inferior frontal language areas; as such, the 

results merely proved that language areas were not more activated by mathematical thinking 

than by reflection on general semantic knowledge. By contrast, the present results are 

stronger is that they show that with non-verbal stimuli generated by a formal spatial 

language, language areas remain strictly silent (Fig. 5C) even though behavior and brain 

activity in other math-responsive areas (Fig. 5D) provide direct evidence that those stimuli 

were represented as nested language-like structures. Thus, the human brain houses multiple, 

possibly parallel circuits for tree-like structures in mathematics versus sentence processing.

We recently proposed that any incoming sequence may be encoded internally at one of five 

possible levels of abstraction from transition probabilities, chunking, ordinal knowledge to 

algebraic patterns and nested tree structures (Dehaene et al., 2015). In agreement with Karl 

Lashley (Lashley, 1951), the present findings suggests that humans do not simply associate 

each successive item with the next one in a chain-like fashion, but also grasp multi-item 

sequential structures at different levels of abstraction. The neural representation of such a 

system with nested and hierarchical structures seems to lie in prefrontal and parietal areas. 

The fact that dissociated activation patterns during learning were found in the frontal but not 

parietal regions might reflect the distinct roles within the system. While parietal areas are 

activated whenever we learn or memorize low-level information about spatial locations, the 

present data suggest that prefrontal cortex is involved in encoding information in a more 

abstract, integrated and efficient fashion, thus compressing sequences into a structured 

representation that leads to enhanced spatial working-memory performance.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Experimental design.
On each trial, a dot appeared successively at one of eight target locations (A), and subjects 

were asked to move their eyes to each target as fast as possible. Each 8-location sequence 

was repeated 4 times in a row, thus allowing subjects to anticipate the next location. 

Sequences were constructed using basic geometrical rules including rotations (+1, +2, -1, 

-2), axial symmetries (H: horizontal, V: vertical, A, B: oblique) and point symmetry (P). The 

right panel shows two example sequences (“repeat” and “4segments”) and their 

corresponding eye movement trajectories in a representative trial from one subject. Each 
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color indicates one saccade step through the trial, starting from the top left location. (B) 

Overview of the twelve sequences presented to fMRI participants (in the behavioral 

experiment, “1point”, “2points” and “4points”, were omitted).
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Figure 2. Behavioral performance.
(A) Evolution of saccade anticipation across 4 consecutive presentations (4 “trials”) of each 

8-location sequence (shaded area = ±1 SEM). The x-axis represents the 32 consecutive 

target locations (vertical dashed lines indicate trial boundaries). The y-axis is the 

anticipation index, calculated as the distance between eye position and the target at the onset 

of appearance of each target, divided by the absolute distance between the current target and 

the prior one (Methods). 0 represents maximal anticipation, and 1 no anticipation. As a 

baseline, the gray curve in each panel shows the saccade anticipation index for irregular 
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sequences. (B) The anticipation index, across sequences, is significantly correlated with 

sequence complexity (p < 0.001, R2 = 0.86). For each sequence, the y-axis denotes the mean 

anticipation index, averaged across the four trials, and the x-axis indicates sequence 

complexity (minimum description length).
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Figure 3. Brain activation related to sequence complexity.
(A): Brain regions showing significant correlations of BOLD signal with the complexity 

(minimal description length) of each sequence (group analysis thresholded at t > 3.1, cluster-

level FDR p < 0.05 corrected) projected on lateral view of a slightly inflated brain. (B, C) 
Same map after exclusion of the voxels that were above threshold (p < 0.05, uncorrected; 

“exclusive masking”) in the brain map for saccade distance (Fig. S3, B) or memory demand 

(the contrast of 4points versus 2points sequence, Fig. S3, C) respectively. Abbreviations: 

PMd, dorsal premotor; IFG, inferior frontal gyrus.
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Figure 4. Brain activation related to sequence nesting.
(A) Upper: Brain regions showing significant correlation of the BOLD signal with a 

behavioral index of the extent to which the participant’s anticipations were driven by nested 

structures. This index was defined as the difference in anticipation to 2nd-level and 1st-level 

locations in sequences with at least two levels of nested structure (group analysis threshold 

at t > 3.1, cluster-level FDR p < 0.05 corrected). Lower: same brain map, excluding all 

voxels that were above threshold (p < 0.05 uncorrected; “exclusive masking”) in the contrast 

for sequence complexity (Fig. 3A). DLFPC, dorsal lateral prefrontal cortex. (B, C) Brain 

activations to saccade distance (green), sequence complexity (brown) and nesting (red) 
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effects, projected on a sagittal slice (p < 0.001, cluster-level FDR p < 0.05 corrected). 

Histograms show the average activation to each of the twelve sequences in the following 

ROIs by averaging over all the voxels: PMd (15 mm radius sphere at [27 -1 52]), IFG (15 

mm radius sphere at [48 11 28]), Mid-DLPFC (15 mm radius sphere at [39 45 15]) and 

Caudate (15 mm radius sphere at [15 5 4]). Error bars indicate one standard error. ***: p < 

0.001; ns: not significant.
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Figure 5. Comparison of brain activation in the geometrical task and in localizers for language 
and mathematics.
(A, B) Sagittal slices show the contrasts for: spoken and written sentence processing relative 

to rest (in red), calculation relatively to sentence processing (in cyan), and sequence nesting 

(in yellow). (C, D) Average activation during the geometry task at subject-specific peak 

voxels responsive to sentence (p < 0.001, uncorrected) and calculation (p < 0.001, 

uncorrected), within prespecified ROIs. *: p < 0.05 corrected. Abbreviations: TP, temporal 

pole; aSTS, anterior superior temporal sulcus; pSTS, posterior superior temporal sulcus; 

TPJ, temporoparietal junction; IPS, intraparietal sulcus; MFG, middle frontal gyrus; SFG, 

superior frontal gyrus; SMA, supplementary motor area.
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