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ABSTRACT: A pair of precedence-based continuous-time formulations addressing the combined lot sizing and scheduling of
order-driven multistage batch facilities is presented. The proposed mixed-integer linear programming (MILP) models can handle
multiple orders per product with different delivery dates, variable processing times, and sequence-dependent changeovers. As
each order may be filled by one or more batches, enough batches for each order ensuring optimality are initially defined. The two
monolithic formulations are intended for sequential batch processes where batch integrity is preserved throughout the entire
production system. However, lots of final products can be split to satisfy two or more orders. One of the approaches is based on a
detailed MILP formulation allocating individual batches to units and ordering them in every unit. In contrast, the second
methodology is specially designed for large scheduling problems. It first gathers batches for the same order into clusters, and then
assigns clusters to units and sequences groups of batches in every unit. The larger the number of groups, the more rigorous is the
cluster-based formulation. Alternative sequencing constraints based on reliable assumptions were also tested. Several examples
involving up to 92 batches have been successfully solved using one or both formulations.

1. INTRODUCTION
Chemical batch processes are very attractive for producing low
volumes of a wide variety of products in a highly flexible
manner. In addition to the flexibility advantage, they require
lower investment costs in facilities and equipment and reduced
time for introducing new products to the market. Besides, they
can readily accommodate the manufacture of seasonal items
and variations in production volume, feedstock, and product
specifications. Batch processes are very common in the
production of foods, pharmaceuticals, cement, paints, adhesives,
and specialty chemicals. Production is mostly driven by
customer orders with specific delivery dates. Every week several
dozens of batches are processed in industrial facilities. The
major challenge of batch processes is to cope with their
inherent inefficiencies. Once the processing of a batch is
completed, the equipment must be stopped and reconfigured
and its output should be tested before starting the production
of the next batch. Moreover, setup times are important because
of frequent changes of product in the production system.
Maximizing the productivity of manufacturing resources and
the customer satisfaction are then the major operational goals
for order-driven batch facilities. Scheduling is the process of
allocating resources to processing tasks over time in such a way
that some performance measure is optimized. Batch scheduling
methods usually help to reduce unproductive time and to
deliver customer orders on time. At present, there is a lack of
efficient computational tools for the scheduling of industrial-
sized multistage batch processes.
In multiproduct batch plants, each batch follows a

manufacturing route defined by the related product recipe
that usually includes several processing stages to convert the
input material into the desired final product. Many batch
facilities additionally have a sequential structure with several
nonidentical units working in parallel at each stage. After

completing the batch processing in stage s, the whole batch is
transferred to another unit in the next stage (s + 1). Then, the
identity of every batch is preserved throughout the whole
processing system and material balance equations can be
omitted. In other words, batch mixing and splitting as well as
material recycles never arise. Such production systems are
termed multiproduct, multistage sequential batch processes.
Depending on whether the set of batches to be processed and
their sizes are or are not problem data, batch scheduling
methodologies can be broadly classified into two types:
sequential and monolithic approaches. Sequential method-
ologies mostly assume that the number and size of batches are
known beforehand; i.e., the lot-sizing problem has already been
solved. Moreover, task processing times are fixed data. In
contrast, monolithic approaches not only assign batches to
equipment units at every stage and sequence the batches in
each unit but also simultaneously solve the lot-sizing problem.
In this work, a pair of mixed-integer linear programming

(MILP) formulations addressing the combined lot sizing and
scheduling of sequential, multistage batch processes are
presented. One of them has been specially designed for solving
very large scheduling problems. Both approaches can schedule
multiple customer orders for the same product due at different
delivery dates, with each order requiring the production of
several batches. Moreover, they allow splitting a batch of final
product to satisfy more than one customer order.

Literature Review. Thorough reviews on batch scheduling
methods can be found in Meńdez et al.1 and Floudas and Lin.2

Most approaches can be regarded as rigorous solution methods
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relying on mathematical programming models. According to
the process topology and the use of single or multifunctional
equipment, batch processes can be classified into two major
categories: network type and sequential multistage batch
facilities. In network-type processes, product recipes are rather
complex and include splitting and mixing operations and
recycle streams. In addition, multifunctional units can carry out
different kinds of processing tasks. Discrete and continuous-
time monolithic approaches for the scheduling of network-type
batch processes based on state−task−network (STN) and
resource−task−network (RTN) representations have been
proposed.3−8 Though quite general and applicable to any
type of batch scheduling problem, their computational
efficiency for sequential batch processes cannot compete with
those of methodologies explicitly exploiting the series structure.
Most of the approaches specially designed for sequential batch
processes just perform the scheduling of a known set of batches
with fixed sizes. Sequential methods are classified into three
categories: slot-based,9 unit-specific time grids,10 and prece-
dence-based formulations in terms of global11,12 or immediate
precedence variables.13,14 Using the so-called constant batch
ordering rule (CBOR), Marchetti and Cerda ́15 developed an
approximate MILP formulation for larger scheduling problems.
The CBOR rule states that any pair of batches allocated to the
same equipment item at different stages present the same
relative ordering on the batch queues of the shared units.
Only in recent years has attention been paid to the

development of monolithic methods for sequential batch
processes. Lim and Karimi16 developed an MILP model to
decide simultaneously the product batches to be processed and
their schedule in single-stage batch plants equipped with
nonidentical parallel units. It is a slot-based formulation that
explicitly considers multiple orders per product with different
due dates, batch size-dependent processing times, and finite
changeover times between consecutive batches processed in the
same unit. The model assumes that a single batch may fill
multiple orders of a product, but the allocation of batches to
orders with earlier due dates is favored. Moreover, an order
may be filled by one or more batches that may be produced in
different units. The plant objective is to maximize some
measure of customer satisfaction (e.g., tardiness) or plant
performance (e.g., makespan). Prasad and Maravelias17 first
introduced an MILP precedence-based formulation for the
simultaneous batching and scheduling of sequential, multistage
batch processes. The proposed model assumes that every
product goes through all the stages following the same route,
the intermediate storage capacity between consecutive stages is
unlimited, and enough amounts of resources other than
equipment units are available to prevent them from becoming
production bottlenecks. Several customer orders with different
due dates are to be satisfied, but each one involves a different
product. Multiple orders for the same product are not
considered. By modeling the problem through a global
precedence-based formulation, sequence-dependent change-
over times are readily handled. To enhance the computational
efficiency of the approach, symmetry-breaking constraints
based on batch-selection variables have also been considered.
In addition, the model size is reduced through using time
window information for fixing some sequencing variables,
identifying forbidden paths, and developing a class of valid
knapsack inequalities to exclude subsets of infeasible assign-
ments. Sundaramoorthy and Maravelias18 extended the
formulation of Prasad and Maravelias17 to account for variable

processing times. In this new model, processing times are
functions of both batch selection and sizing decisions.
Marchetti et al.19 presented a pair of MILP continuous-time
formulations for the simultaneous lot sizing and scheduling of
single-stage multiproduct batch facilities. Both global prece-
dence-based models account for variable processing times and
consider several customer orders per product with different
delivery dates. Moreover, several batches may be necessary to
meet a single order and each lot of final product can be used to
satisfy more than one order. One of the MILP models
rigorously arranges individual batches in each unit, while the
other sequences clusters of batches sharing the same product
and due date and processed in the same equipment item.
Grouping batches into clusters aims to reduce the number of
product changeovers and at the same time significantly decrease
the number of sequencing variables. Contents of clusters are
model decisions. Powerful symmetry-breaking constraints
based on allocation variables were also developed.
On the other hand, Sundaramoorthy and Maravelias20

further generalized the precedence-based formulation for the
batching and scheduling of multistage batch processes to also
consider storage constraints. Storage vessels are modeled as
additional processing units for which assignment and
sequencing constraints are also written. However, the identity
of every lot is preserved by storing just one batch at a time, and
therefore batches are never mixed. A general classification of
storage policies in multistage batch processes based upon
possible combinations of storage capacity and timing
constraints is presented. The proposed MILP representation
can easily accommodate all the combinations of such
constraints. Later, Sundaramoorthy et al.21 presented a
discrete-time framework for the batching and scheduling of
multistage batch processes that accounts for storage and utility
constraints. They consider several types of utilities such as
cooling water, steam, and electricity. In contrast to previous
formulations, the approach handles batching decisions without
the usage of explicit batch selection variables. A common time
grid is defined by dividing the time horizon into a number of
fixed-length periods using a set of time points. In this way,
utility constraints can be accurately represented and the
sequencing of batches can be enforced on each unit/vessel.
Tasks can start and finish at some time points of the grid, and
changes in the status of units and in both inventory and utility
consumption levels can only occur at those times. As before,
the identity of batches is still preserved and the formulation is
able to handle different types of storage policies.
This paper presents two new monolithic approaches

addressing the combined lot sizing and scheduling of multistage
sequential batch facilities. They generalize the global prece-
dence-based continuous-time formulations introduced by
Marchetti et al.19 for single-stage batch plants. A predefined
set of generic batches for each customer order containing
enough elements to guarantee optimality is initially proposed.
Again, the two formulations handle batch allocation and
sequencing decisions in a different manner. The first one
arranges individual batches processed in the same equipment
item, while the second defines clusters of batches allocated to
the same order and following the same route and sequences
them in every unit. Contents of clusters in the best schedule are
model decisions. The cluster-based approach has been
proposed to tackle very large multistage batch scheduling
problems in a very efficient manner.
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2. PROBLEM STATEMENT AND MAIN ASSUMPTIONS
The unified lot-sizing and scheduling problem for multistage
batch facilities processing multiple production orders per
product can be stated as follows. Given

(i) a multiproduct batch plant with several processing stages
s ∈ S, each one equipped with nonidentical parallel units
j ∈ Js

(ii) the set of products i ∈ I to be manufactured
(iii) the set of customer orders for each product i and their

delivery dates d ∈ Di
(iv) the size rid of every order (i, d) involving product i ∈ I

and due at time d ∈ Di
(v) the set of units Jis ⊆ Js available at stage s ∈ S for

processing product i ∈ I
(vi) the minimum (qij

min) and maximum (qij
max) batch sizes for

product i at every unit j ∈ Jis of any stage s ∈ S
(vii) the parameters (ftij, vtij) for the expression used to

evaluate the processing time of a batch of product i in
unit j ∈ Jis as the sum of a fixed-term and a size-
dependent time contribution

(viii) sequence-dependent changeover times τii′j for each
ordered pair of products (ii′) that can be processed in
unit j ∈ Jis

(ix) the length of the time horizon H

The problem goal is to determine (a) the number and size of
batches to be processed for fulfilling every customer order (i,
d), (b) the allocation of units to batches at every stage, (c) the
batch processing sequence at each equipment unit, and (d) the
starting and completion times of batch processing tasks, such
that production orders and operational constraints are all
satisfied at minimum total tardiness or makespan.
To model the problem, the following assumptions have been

made:

(1) Model parameters are all deterministic.
(2) A nonpreemptive operation mode is used.
(3) All products require the same sequence of processing

stages.
(4) Batch mixing and splitting operations are not allowed at

intermediate stages; i.e., batch integrity is preserved
throughout the entire processing structure.

(5) Production orders all feature a single product. In other
words, customer orders involving multiple products and
a common due date are decomposed into single-product
orders with the same promised date.

(6) Production orders for the same product are fulfilled in
chronological order; i.e., the one featuring the earlier due
date is first completed.

(7) A single batch can be used to satisfy multiple orders of
the same product.

(8) There is an unlimited intermediate storage between
consecutive processing stages (UIS mode), and enough
capacity of resources aside from equipment (i.e., raw
materials, manpower, or utilities) is always available at
every stage.

(9) Changeover time between batches containing the same
product is negligible.

By assumption 7, batches can be split when the final product
is ready, but not at intermediate stages (see assumption 4).
Assumptions 3 and 4 are specially suited for sequential batch
processes and usually lead to a simpler problem formulation
and a lower number of alternative solutions. Because of

assumption 4, the entire content of a batch leaving a processing
stage is always transferred to the next one, and material balance
constraints are not needed. Moreover, assumption 6 allows
postulating beforehand a predefined set of batches for each
production order (i, d), thus avoiding the need of binary
decisions to allocate batches to orders.

3. DETAILED BATCHING AND SCHEDULING MODEL
A detailed mixed-integer linear programming (MILP) for-
mulation for batching and scheduling of multistage sequential
batch facilities is first presented. The proposed model is based
on a continuous-time general-precedence representation, where
decision variables (either continuous or binary) are explicitly
related to individual batches. In order to decide how many lots
for each order should be manufactured, an initial set of generic
batches Bid for each production order (i, d) is to be proposed.
The cardinality of every set Bid (∀ d ∈ Di, i ∈ I) should be large
enough to account for all feasible schedules. Figure 1 presents a

schematic representation of the hierarchical decisions simulta-
neously performed by the proposed detailed MILP model.
They are as follows: (a) the selection of batches b ∈ Bid (∀ d ∈
Di, i ∈ I) to be processed, (b) the allocation of processing units
to selected batches, and (c) the relative ordering of any pair of
batches (b, b′) at each equipment item of every stage s ∈ S.
Such discrete decisions are handled through the binary variables
Wb, Ybj, and Xb,b′,s, respectively. Besides, continuous decision
variables are defined to properly choose the batch size BSb and
the processing starting/completion times for any selected batch
b at every stage s (STbs, CTbs). Although discrete decisions are
typically handled through binary variables, in some occasions
this is not necessary. Sometimes continuous variables in the
range [0, 1] can be used because some model constraints force
them to take integer values.
In the next sections, the methodology used to define proper

sets of batches Bid (d ∈ Di, i ∈ I) ensuring the discovery of the
optimal schedule, the model constraints, and the objective
functions of the proposed MILP formulation are all presented.

3.1. Proposed Number of Batches for Each Product. A
simple procedure to find a conservative estimation of the
number of batches required to meet all customer orders for
every product i is first presented. It aims to improve the
methods of Marchetti et al.19 by generating a more convenient
number of batches. Equation 1 gives the minimum (qi

min) and
maximum (qi

max) batch sizes for product i in a multistage
processing structure with several units at every stage. In turn, eq

Figure 1. Hierarchical decisions simultaneously taken by the detailed
formulation.

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie202275y | Ind. Eng. Chem. Res. 2012, 51, 5762−57805764



2 provides a rigorous upper bound on the integer number of
batches of product i (nbi) needed to satisfy all production
orders.

= =

∀ ∈

∈ ∈ ∈ ∈
q q q q

i I

max[min( )]; min[max( )]i s S j J ij i s S j J ij
min min max max

is is

(1)
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∑
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⎡
⎢
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⎤
⎥
⎥⎥

r

q
i Inbi

d D id

i
min

i

(2)

3.2. Proposed Number of Batches for Each Produc-
tion Order. In the proposed model, batches of product i are
associated beforehand with production orders (i, d) and,
consequently, binary variables linking batches to orders are not
necessary. Certainly, a number of batches nbid = |Bid| large
enough to meet every production order (i, d) has to be defined.
Although eq 2 gives a conservative value for |Bi|, a few
additional batches will be needed to generate an adequate
partition of the set Bi such that

= ∪ ∈B Bi d D idi (3)

Every generic batch b ∈ Bid will have a specific due date d ∈
Di. If b is selected by the model, it will be processed and
assigned to order (i, d). Because of assumption 6 (section 2),
production orders must be fulfilled in chronological order.
Then, order (i, d) should be satisfied before order (i, d′)
whenever d′ > d. If the size of batch b is large enough (BSb >
rid), it can be used to fulfill not only order (i, d) but also some
other orders (i, d′) with d′ > d. Then, a selected batch may
satisfy more than one order and, consequently, it cannot be
known in advance which batches will be allocated to order (i, d)
at the best solution. This fact further complicates the estimation
of nbid. Nonetheless, a reference batch size is needed for
computing nbid. By adopting a batch reference size bsi larger
than qi

min, a lower number of batches for each order (i, d) will
be required and the model size consequently decreases.
However, the optimality of the solution found is no longer
guaranteed. Alternative choices for the reference size bsi are
given by eqs 4, 5a, or 5b.
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The procedure used to define |Bid| is now presented. Let Di =
{d0, ..., dm} be the set of delivery dates for the production orders
of product i, such that dk < dk+1 for k = 0, 1, 2, ..., m − 1. In
other words, the elements of Di are arranged by increasing due
dates. The integer parameter nbid defined by eq 6 represents
the cardinality of Bid, i.e., the number of generic batches
associated beforehand with order (i, d). In turn, the parameter
εid is the inventory of product i that is available for order (i, d)
from a batch b ∈ Bid′ with an earlier due date d′ < d. For the first
due date d0 of product i, there is no inventory available and eq 7

sets the value of εid0 at zero. The available inventory for each
successive due date d > d0 of product i is given by eq 8.

=
− ε

∀ ∈ ∈
⎡
⎣
⎢⎢

⎡
⎢⎢

⎤
⎥⎥
⎤
⎦
⎥⎥

r
i I d Dnb max 0,

bs
,id

id id

i
i

(6)

ε = ∀ ∈i I0i d, 0 (7)

ε = ε + · −+ rmax{0, ( bs nb )}i d id i id id, 1 (8)

Figure 2 shows a flow diagram describing the procedure for
the calculation of εid and nbid. Due dates for each product i are

considered in consecutive order, starting from d = d0 and an
available inventory εi,d0 = 0, ∀ i. If εid ≥ rid for some d ≥ d0, then
nbid = 0 and Bid is an empty set. If so, an excess portion of batch
b ∈ Bid′ with d′ < d is enough to meet order (i, d). Regarding
this case, some precautions are taken by the estimation
procedure of nbid to protect against nonoptimality or problem
infeasibility due to an insufficient number of batches for some
production order. Such corrective steps arise at the bottom part
of Figure 2.
It frequently happens that the size of some batches b ∈ Bid at

the best solution is greater than the reference size bsi. Under
these conditions, it is possible that the number of batches
selected by the model to meet the demand ri,d at the best
solution will be lower than the value of nbi,d obtained using the
reference size together with eqs 6−8; for instance, (nbi,d − 1)
or less. Moreover, it may occur that no inventory of product i

Figure 2. Procedure for estimating the number of batches allocated to
each order.
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will remain from batches b ∈ Bid to meet the order (i, d + 1) by
a proper choice of the batch sizes, i.e., εi,d+1 = 0. In such a case,
the use of eqs 6−8 may lead to defining Bi,d+1 with at least one
batch less than needed. As a result, a nonoptimal solution may
be found or even the problem could become infeasible.
To prevent the occurrence of this kind of situation, the

proposed procedure given in Figure 2 sets εi,d+1 = 0 when the
condition (nbid − 1)qi

max ≥ rid − εid holds. Such a condition
means that (rid −εid) units of product i are satisfied by
processing a number of (nbid − 1) batches or less featuring the
maximum size qi

max. Under these circumstances, an appropriate
selection of batch sizes can produce exactly (rid − εid) units of
product i, and therefore εi(d+1) = 0. To anticipate this situation,
the procedure described in Figure 2 directly sets εi(d+1) = 0 to
guarantee that Bi,d+1 includes a sufficient number of batches for
order (i, d + 1) . In other words, eq 8 is replaced by eq 8′.

ε =

−
≥ − ε
≥

ε −
+ ·

+

⎧

⎨
⎪⎪⎪

⎩
⎪⎪⎪

q
r

r

0, if (nb 1)

0

max{0, (
bs nb )},

otherwise

i d

id i

id id

id id

i id

, 1

max

(8′)

Though it may lead to a higher nbi, this modification ensures
the availability of enough batches for every order (i, d). Once
the value of nbid for each order (i, d) is determined, the
proposed number of batches for product i is given by

∑= ∀ ∈
∈

i Inb nbi
d D

id
i (9)

The total number of batches (nbi) given by eq 9 is expected
to slightly overestimate the one really needed at the optimal
schedule. If bsi is defined by eq 4, the set Bi will include at most
|Di| − 1 more batches if eqs 6, 7, 8′, and 9 instead of eq 2 are
used to compute nbi.
3.3. Model Constraints. The detailed mathematical

formulation to be presented is closely related to the
sequence-based batch scheduling models of Prasad and
Maravelias17 and Sundaramoorthy and Maravelias.18 However,
some differences on modeling both the batch selection and the
symmetry-breaking constraints arise. The proposed MILP
model includes the selection variable Wb denoting the existence
of batch b, but unlike previous work, it is a continuous variable.
Besides, another main difference can be found on the
symmetry-breaking constraints used to avoid redundant
solutions. By formulating them in terms of batch selection
and allocation decision variables, such constraints are stronger
than those used in previous methods based on batch sizes.
Moreover, the proposed approach considers several alternatives
to reduce the number of sequencing variables by restraining the
ordering of lots in the batch queue of any equipment unit.
3.3.1. Allocation Constraints. The batch existence variable

Wb ∈ [0, 1] is a continuous variable determining if batch b ∈
Bid will be processed. If Wb = 1, batch b does exist and must be
assigned to an equipment unit at every stage as prescribed by eq
10. Binary allocation variables Ybj for batches containing
product i are defined for each unit j ∈ Jis of every stage s ∈
S where product i can be processed. They all are driven to zero
when Wb = 0.

∑ = ∀ ∈ ∈ ∈ ∈
∈

Y W b B d D i I s S, , ,
j J

bj b id i

is (10)

3.3.2. Symmetry-Breaking Constraints. Symmetry-breaking
constraints based on batch allocation decisions have been
defined to avoid equivalent solutions. As already pointed out by
Marchetti et al.,19 different approaches can be used to reduce
the search space by implicitly eliminating duplicate solutions.
One of them consists of restraining the sizes of consecutive
batches.17,18 However, such constraints only affect the values of
continuous variables, and therefore have a limited impact on
the model computational performance. In contrast, the
symmetry-breaking constraints presented by Marchetti et al.19

for single-stage multiproduct facilities are based on the idea of
restraining the allocation of consecutive batches in the set Bid to
a particular unit j ∈ Ji. To this end, it exploits the fact that
batches b ∈ Bid are generic batches with no predefined sizes
that may or may not be processed. The basic idea is as follows.
If batch b ∈ Bid is allocated to unit j (Ybj = 1), then the
preceding batch (b − 1) in the set Bid, if any, must be assigned
to the same unit j or to a unit j′ < j, with j, j′ ∈ Ji. In other
words, consecutive batches of the set Bid that were selected
must be allocated either to the same unit or to consecutive
units.
To apply this approach to a multistage scenario, the

symmetry-breaking constraint (11) given in terms of allocation
variables should be applied to only one stage s* ∈ S arbitrarily
chosen. It is suggested to choose as stage s* the one with the
lowest capacity, i.e., the bottleneck stage. Equation 11 cannot
be applied to every stage s ∈ S because it will impose some
further restrictions on the processing routes of consecutive
batches, thus cutting some portion of the problem feasible
space.

∑≤
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′∈
′≤

− ′

*

*

Y Y

b b B j J d D i I( 1), , , ,

bj
j J
j j

b j

id is i

( 1)
is

(11)

3.3.3. Batch Size Constraints. Equation 12 defines the value
of the continuous variable BSb representing the size of batch b
∈ Bid (in terms of the related final product) at all stages. It
involves two components. The first one, given by qij

minYbj,
denotes the constant part of the batch size for any selected lot
of product i allotted to unit j. The second component, given by
the variable Qbj ∈ [0, Δij], represents the variable portion of the
batch size when b is allocated to unit j. An upper bound on the
value of Qbj is given by Δij = (qij

max − qij
min), i.e., the difference

between the maximum and minimum batch sizes for product i
in unit j. If batch b is not selected, then Ybj = Qbj = 0, ∀ j ∈ Ji,
and BSb = 0, according to eqs 12 and 13. Otherwise, the value
of Qbj cannot exceed Δij and the size BSb will belong to the
range (qij

min, qij
max).

∑= +
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∈
q Y Q

b B d D i I s S

BS ( )

, , ,

b
j J

ij bj bj

id i

min

is

(12)

≤ Δ ∀ ∈ ∈ ∈ ∈ ∈Q Y b B d D i I j J s S, , , ,bj ij bj id i is

(13)

3.3.4. Production Demands. Equation 14 guarantees that all
production orders (i, d) are accomplished by stating that the
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accumulated requirement of product i up to due date d ∈ Di
must be fulfilled using batches associated with product i with
due dates d′ ≤ d.

∑ ∑ ∑≥ ∀ ∈ ∈
′∈
′≤

∈ ′∈
′≤

′
′

r d D i IBS ,
d D
d d

b B
b

d D
d d

id i
i id i

(14)

3.3.5. Task Processing Times. Equation 15 gives the
relationship between the starting and completion times of
batch b ∈ Bid at each stage s. The processing time PTbj for batch
b ∈ Bid in unit j ∈ Jis, defined by eq 16, takes a nonzero value
only if batch b does exist and has been allocated to unit j in
stage s, i.e., Ybj = 1. Otherwise, Ybj = 0 and PTbj = 0. Similar to
eq 12 for BSb, the processing time PTbj is the sum of two
components: a fixed component and a size-dependent
component. When qij

min = qij
max and Ybj = 1, then Δij = Qbj = 0

and the processing time PTbj becomes equal to (ftij + vtijqij
min).
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j J
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id i

is

(15)

= + +

∀ ∈ ∈ ∈ ∈ ∈

Y q Y Q

b B d D j J i I s S

PT ft vt ( )

, , , ,

bj ij bj ij ij bj bj

id i is

min
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3.3.6. Technological Constraints. Technological constraints
(17) define the relationship between the completion and
starting times for every pair of consecutive stages of the same
batch. Stage sl stands for the last processing stage.

≤

∀ ∈ ∈ ∈ ∈ −
+

b B d D i I s S s

CT ST

, , , { }

bs b s

id i

( 1)

l
(17)

3.3.7. Topological Constraints. An equipment unit running
at stage s may not be physically connected to every unit of the
next stage s + 1. If batch b ∈ Bid is assigned to unit j in stage s,
the topological constraint (18) ensures that batch b can only be
allocated to an available unit j′ ∈ Ji,s+1 that is physically
connected to j ∈ Ji,s . The set Js+1

(j) stands for the set of units in
stage s + 1 connected to unit j ∈ Ji,s.

∑≤

∀ ∈ ∈ ∈ ∈ ∈ −

′∈ ∩
′

+ +

Y Y

b B d D j J i I s S s, , , , { }

bj
j J J

bj

id i is

( )

l

i s s
j

, 1 1
( )

(18)

3.3.8. Sequencing Constraints. Three alternative sets of
sequencing constraints, called S1, S2, and S3, are proposed to
handle the ordering of every pair of batches allocated to the
same equipment unit at any stage. In any case, the sequencing
constraints are based on the general precedence concept
introduced by Meńdez et al.11 The first sequencing constraint
set S1 given by eqs 19, 20a, and 20b ensures the optimality of
the solution found. Note that a different treatment is followed
for stage s* with regard to the other stages s ≠ s*. Stage s* is
the one already discussed in section 3.3.2 to which eq 11
applies. Generic batches b ∈ Bid for the same production order
(i, d) are preordered just at stage s*. Equation 19 states that
batch b should be processed before batch b′ at stage s* if
batches (b, b′) ∈ Bid (b < b′) are associated with order (i, d) and
share the same unit at stage s*. In this way, the number of
redundant solutions is decreased. Every other pair of batches
not considered by eq 19 is sequenced using constraints 20a and

20b. Such constraints are written for every stage s ∈ S if i ≠ i′ or
i = i′ and d ≠ d′, and for any stage s ≠ s* if i = i′ and d = d′. By
applying the global precedence concept, they include a single
sequencing variable Xb,b′,s for each pair of batches b ∈ Bid and b′
∈ Bi′d′ (b < b′) potentially sharing an equipment unit. Three
cases should be considered to explain the criterion used to
establish which one of the two batches (b, b′) plays the role of
batch b. If both batches are associated with the same order (i,
d), then batch b is the one first arising in the set Bid. If both are
associated with different production orders (i, d) and (i, d′)
with d < d′ but contain the same product i, batch b is the one
featuring the earlier due date d. If both contain different
products i and i′ with i < i′ in the set I, batch b is the one
containing product i. If Xb,b′,s = 1, then eq 20a is enforced and
batch b is to be completed before starting batch b′ at stage s.
Otherwise, Xb,b′,s = 0 and eq 20b indicates that batch b′ should
be processed earlier. Equations 19, 20a, and 20b define the
rigorous batch sequencing scheme S1. In such equations, τiij is
assumed to be 0.

≤ + − −
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Two less conservative sets of sequencing constraints, called
S2 and S3, are also proposed. The sequencing scheme S2 is
more in line with assumption 6 (section 2) because it supposes
that a pair of batches containing the same product and allocated
to the same unit is always queued according to their relative
order in the set Bi = ∪d∈DiBid at any stage s. If both lots (b, b′)
with b < b′ are associated with the same order (i, d), then the
batch b arising first in the set Bid is processed before. On the
other hand, if the two batches are related to different orders (i,
d) and (i, d′) with d < d′, the one featuring the earlier due date d
is first processed. Sequencing constraints for batches involving
the same product are given by eq 21. Moreover, a single binary
variable Xb,b′,s (with b < b′) for each pair of batches containing
different products is to be defined and the sequencing
constraints for ordering them on the queue of any unit are
given by eqs 22a and 22b. No special consideration is given to
stage s* when the set of sequencing constraints S2 is used.

≤ + − −

∀ ′ ∈ ∈ ∈ ∈ < ′

′ ′H Y Y

b b B j J i I s S b b

CT ST (2 )

, , , , : ( )

bs b s bj b j

i is (21)

Industrial & Engineering Chemistry Research Article

dx.doi.org/10.1021/ie202275y | Ind. Eng. Chem. Res. 2012, 51, 5762−57805767



+ τ ≤ + − + − −
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+ τ ≤ + + − −
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(22b)

The remaining sequencing scheme S3 introduces an
additional assumption to reduce the size of the solution space
and the problem complexity. The sequencing constraint S3
relies on the constant batch ordering rule introduced by
Marchetti and Cerda.́15 It assumes that any pair of batches b ∈
Bi and b′ ∈ Bi′ containing different products (i ≠ i′) presents the
same relative ordering at all stages where both share the same
equipment unit. In the sequencing constraints 23a and 23b, just
a single sequencing binary variable X̂b,b′ is defined for each pair
of batches b ∈ Bi and b′ ∈ Bi′ (with i ≠ i′) potentially sharing a
processing unit at some stage s. Then, the variables Xb,b′,s in eqs
23a and 23b are replaced by a unique global sequencing
variable X̂b,b′ that controls the relative ordering of batches (b, b′)
throughout the whole processing structure. Assuming that b <
b′, then batch b precedes b′ if both were allocated to the same
unit at any stage s and X̂b,b′ = 1. Otherwise, X̂b,b′ = 0 and batch b′
is queued before. Because eq 21 is still applied for ordering the
batches containing the same product, and the set of sequencing
constraints S3 is given by eqs 21, 23a, and 23b.
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Sequencing schemes based on the idea of global precedence
have the advantage of reducing the number of sequencing
binary variables while properly handling sequence-dependent
changeovers. Besides, additional preordering rules based on the
due dates associated with batches can be easily introduced.
3.3.9. Tardiness and Makespan Definitions. Equations 24

and 25 define the schedule makespan and the delivery tardiness
of order (i, d), respectively. Equation 26 replaces eq 25 when
every order must be delivered on time.

≤ ∀ ∈ ∈b B i ICT MK ,bs il (24)

− ≤ ∀ ∈ ∈ ∈d T b B d D i ICT , ,bs id id il (25)

≤ ∀ ∈ ∈ ∈

=

d b B d D i I

s

CT , ,

( last stage)
bs id i

l

l

(26)

Because of assumption 6 (section 2), order (i, d′) must be
completed before order (i, d) if d, d′ ∈ Di and d′ < d. Since a
batch b′ ∈ Bid′ can also be used to fulfill the order (i, d), it may
potentially increase the tardiness Tid of order (i, d) if it is
completed after time d. In this situation, the condition d′ + Ti,d′

> d holds and eq 27 is required to set the appropriate value for
Tid. This constraint (27) is written for each pair of consecutive
due dates (d′, d) ∈ Di, and it becomes redundant if Ti,d′ = 0. As
stated by eq 25, the lower bound of Ti,d′ is defined by the
finishing time of the batch b′ ∈ Bid′ assigned to the order (i, d′)
that is completed last.

′ + ≤ + ∀ ′ ∈ ∈ ′ = −′d T d T d d D i I d d, , : 1id id i
(27)

3.4. Alternative Objective Functions. The alternative
problem goals given by eqs 28 and 29 aim to minimize either
the overall weighted tardiness or the schedule makespan.
Additional tightening constraints A1 and A2 helping to enhance
the model’s computational performance for those objective
functions are presented in the Appendix.

∑ ∑ α
∈ ∈

Tminimize
i I d D

id id
i (28)

minimize MK (29)

When the objective function 28 is adopted, the proposed
detailed MILP formulation using the sequencing scheme S1
comprises the set of constraints 10−19, 20a, 20b, 25, 27, and
A1. If instead the minimum makespan 29 is the problem goal,
the MILP model includes the constraints 10−19, 20a, 20b, 24,
and A2. In case some production orders have specific delivery
dates and the makespan is minimized, it will be assumed that
the delivery dates are strictly satisfied by also considering
constraint 26. When the sequencing scheme S2 is applied, eqs
19, 20a, and 20b are replaced by eqs 21, 22a, and 22b in the
problem constraint set. The third alternative is to use the
sequencing scheme S3 based on the constant batch ordering
rule. In such a case, eqs 19, 20a, and 20b are replaced by eqs 21,
23a, and 23b. Whatever is the selected objective function, the
tentative number of batches for each production order (i, d) is
computed through the procedure depicted in Figure 2 based on
eqs 4, 6, 7, and 8′. The reference size bsi is usually computed
using eqs 1 and 4.

4. THE GROUP-BASED MONOLITHIC FORMULATION
Real-life problems usually require scheduling dozens or
hundreds of batches every week in order to satisfy multiple
customer orders at different promised due dates. As a result, the
number of 0−1 allocation and sequencing variables to be
included in a detailed problem formulation shows an
exponential increase and the computational cost becomes
extremely large. To reduce the size and complexity of the
mathematical model for huge problems, an approximate group-
based formulation has been developed. It relies on a realistic
methodology commonly used by industry practitioners. Its
main purpose is to substantially reduce the computational effort
for large multistage batch scheduling problems and still find
good solutions reasonably quickly.
In real production environments, the scheduler often

assumes that batches destined for the same production order
follow the same manufacturing route and are consecutively
processed. In other words, batches of the same product due at
the same date are packed together and treated as a single entity
for allocation and sequencing purposes. In this way, a
significant decrease in the number of 0−1 allocation and
sequencing variables is achieved.
To improve this approximate methodology used in industry,

more than one group of batches k ∈ Kid that may be processed
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in parallel at different units of any stage s ∈ S will be defined for
each customer order (i, d). Moreover, each generic batch b ∈
Bid for order (i, d) should at most belong to one of the groups k
∈ Kid. Figure 3 shows a schematic representation of the

hierarchical decisions simultaneously taken by the approximate
cluster-based formulation. Tentative sets of generic batches Bid

and clusters Kid for each production order (i, d) are both
defined by the user. As shown in Figure 3, the group-based
formulation selects the elements of Bid to actually process and
simultaneously assigns them to one of the selected clusters k ∈
Kid. A cluster with no assigned batch is a dummy group ignored
by the formulation. In addition, a manufacturing route is
assigned to each existing cluster by allocating units to existent
groups, and the sizes of allotted batches are also selected to
establish the content of every group. Also, the clusters allocated
to the same unit at each stage are sequenced and the starting/
finish processing times for each group are determined. At the
same time, the individual batches in each cluster are also
scheduled. In contrast to the detailed approach, where
allocation and sequencing decisions are associated with
individual lots, such variables in the cluster-based approach
are related to groups of batches sharing the same manufacturing
route and processed one after another in common equipment
units. As the number of groups is well below the number of
batches, a significant saving in binary variables is thus obtained.
4.1. Defining Generic Groups for Each Order (i, d). In

section 3.2, a simple methodology for defining a tentative set of
batches Bid for each order (i, d) that guarantees the discovery of
the optimal schedule was presented. In a similar way, the
cluster-based approach needs to adopt an adequate number of
clusters for each order (i, d). When |Bid| = |Kid|, the cluster-
based model becomes equivalent to the detailed batch
scheduling formulation but it includes a significant number of
redundant solutions. On the other hand, |Kid| = 1 stands for the
practical scheme used in industry. Then, a good option is to
start with |Kid| = 1 and iteratively rise the cardinality of Kid by 1,
especially for large production orders, until no further
improvement in the objective function is achieved.
In order to define an adequate number of clusters for each

order (i, d), a new parameter ksi for each product i is
introduced. The parameter ksi represents an estimation of the
average number of batches in each cluster of product i. Given
the value of ksi, the cardinality of the proposed set of clusters k
∈ Kid for the order (i, d) can be computed through eq 30.

| | =
| |

∀ ∈ ∈
⎡
⎢⎢

⎤
⎥⎥K

B
ks

i I d D,id
id

i
i

(30)

4.2. Model Constraints. 4.2.1. Selecting Groups and
Allocating Batches to Existing Groups. The continuous
variable Zk ∈ [0, 1] is used to indicate that cluster k ∈ Kid
does exist and a number of batches have been assigned to it.
Besides, the binary variable Wbk indicates that batch b ∈ Bid has
been allocated to cluster k ∈ Kid whenever Wbk = 1. If Wbk = 1
for some batch b ∈ Bid, then eq 31 makes Zk = 1 and cluster k is
included in the solution. If none of the batches b ∈ Bid is
assigned to cluster k, then eq 32 drives Zk to 0 and k becomes a
dummy cluster. Moreover, eq 33 states that each batch can at
most take part of a single cluster.

≤ ∀ ∈ ∈ ∈ ∈W Z b B k K d D i I, , ,bk k id id i (31)

∑≤ ∀ ∈ ∈ ∈
∈

Z W k K d D i I, ,k
b B

bk id i
id (32)

∑ ≤ ∀ ∈ ∈ ∈
∈

W b B d D i I1 , ,
k K

bk id i
id (33)

4.2.2. Allocating Clusters to Equipment Units. A selected
cluster k ∈ Kid featuring Zk = 1 must be allocated to an available
equipment item j ∈ Jis at every processing stage s ∈ S. Such a
condition forcing one of the variables Ykj, j ∈ Jis, to be equal to 1
at any stage s ∈ S is imposed through eq 34.

∑= ∀ ∈ ∈ ∈ ∈
∈

Z Y k K d D i I s S, , ,k
j J

kj id i

is (34)

4.2.3. Symmetry-Breaking Constraints. Two sources of
redundant solutions must be eliminated to speed up the search
for the optimal group-based schedule through the addition of
the so-called symmetry-breaking constraints. Such redundancy
sources enlarge the solution space by generating a substantial
number of equivalent schedules. They come from (a) the
process of allocating batches to clusters and (b) the process of
assigning clusters to equipment units. In order to eliminate the
first source (a), batches b ∈ Bid associated with order (i, d) are
orderly allocated to clusters k ∈ Kid in such a way that (1) a
batch b cannot be assigned to cluster k if the prior cluster (k −
1) has not been activated (i.e., Zk−1 = 0) and (2) a batch b can
be assigned to cluster k only if the previous batch (b − 1) in the
set Bid has been allocated either to cluster k or to the previous
cluster (k − 1). These two rules are enforced through eqs 35
and 36, respectively.

≤ ∀ − ∈ ∈ ∈−Z Z k k K d D i I( 1), , ,k k id i( 1)

(35)

≤ +

∀ − ∈ − ∈ ∈ ∈
− − −W W W

b b B k k K d D i I( 1), , ( 1), , ,

bk b k b k

id id i

( 1) ( 1)( 1)

(36)

Constraint 35 specifies that group k cannot be activated if
group (k − 1) is a dummy cluster. By eq 36, batches for order
(i, d) effectively assigned to the active cluster k ∈ Kid are always
consecutive elements of the set Bid. As a result, nonselected
batches and clusters will always arise at the end of sets Bid and
Kid, respectively.
Equivalent solutions can also be generated during the

allocation of groups to units, i.e., source b. To partially
eliminate source b, the active clusters k ∈ Kid should be orderly

Figure 3. Hierarchical decisions taken by the cluster-based approach.
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assigned to equipment units at some selected stage s*. In other
words, a cluster k can be allocated to unit j ∈ Jis* only if the
previous group (k − 1) is processed in unit j′ ≤ j with j′ ∈ Jis*.
Then, constraints similar to those presented in section 3.3.2 to
avoid symmetric solutions when assigning individual batches to
equipment items should be applied, but in this case batches are
replaced by groups. As previously discussed, the additional
constraint 37 restrains the process of orderly allocating groups
to units in the selected stage s* ∈ S. As already discussed in
section 3.3.2, eq 37 cannot be applied to all processing stages
because it will cut a portion of the problem feasible region by
creating some artificial links among the cluster processing
routes.

∑≤

∀ − ∈ ∈ ∈ ∈

′∈
′≤

−

*

*

Y Y

k k K d D j J i I( 1), , , ,

kj
j J
j j

k j

id i i s

( 1)

,

is

(37)

Constraint 37 does not completely prevent the generation of
symmetric solutions during the unit allocation process because
two groups related to the same order (i, d) may still have a
common processing route. Fortunately, the sequencing
constraints presented in section 4.2.9 further reduce the impact
of the redundancy source b.
4.2.4. Allocating Individual Batches to Equipment Units.

The continuous variable Vbkj ∈ [0, 1] is used to indicate that
batch b ∈ Bid associated with an existent cluster k ∈ Kid should
be assigned to exactly one unit j ∈ Jis at every stage s. Such a
condition is enforced by eq 38. Besides, eq 39 establishes that
batch b cannot be allocated to unit j if the associated cluster k is
not processed in unit j. Then, the condition Vbkj = 1 will hold
only if Wbk = 1 and Ykj = 1.
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4.2.5. Choosing Batch Sizes To Meet Customer Orders. If
batch b ∈ Bid is allocated to unit j, its size must be limited to the
allowable range [qij

min, qij
max]. Then, the size of an existent batch

b processed in unit j can be regarded as composed by two parts:
a fixed part equal to qij

min and a variable portion Qbkj that ranges
between 0 and Δij. The continuous variable Qbkj ∈ [0, Δij] may
take a positive value only if b is a selected batch associated with
cluster k (i.e., Wbk = 1) and cluster k is processed in unit j (i.e.,
Ykj = 1). In other words, Qbkj may be positive only if Vbkj = 1.
Compact constraints 40 and 41 work together to guarantee

an appropriate value for Qbkj. Constraint 40 drives the value of
the variable portion Qbkj for all batches b ∈ Bid belonging to
cluster k ∈ Kid to 0 if group k has not been allotted to unit j. In
turn, eq 41 either drives Qbkj to 0 when Vbkj = 0 or imposes the
upper bound Δij on the value of Qbkj if Vbkj = 1. Variables Qbkj

are not defined if Δij = 0.
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Based on the definition of Qbkj given by constraints 40 and 41
for every stage s ∈ S, the size of batch b ∈ Bid can be defined
through eq 42 as follows:
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(42)

Constraint 42 replaces eq 12 at the group-based approximate
formulation. Instead, eq 14 ensuring the fulfillment of all
customer orders can be still included without any change in the
group-based model.

4.2.6. Batch Processing Times at Every Stage. After
choosing the batch size, the processing time of batch b ∈ Bid

given by PTbkj is defined by eq 43 as the sum of two
contributions: (a) a fixed component ftij that is common to all
batches associated with cluster k ∈ Kid processed in unit j ∈ Js
(i.e., Vbkj = 1) and (b) a variable contribution that rises with the
total size of batch b at a rate vtij.

= + +
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V q V Q

b B k K d D j J i I s S
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, , , , ,
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id id i is

min
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4.2.7. Starting/Finishing Times for Selected Batches and
Clusters at Every Stage. Each selected cluster or group k ∈ Kid

for order (i, d) includes a number of consecutive elements of the
set Bid with a common processing route. Let us suppose that
batches b, (b + 1) ∈ Bid were selected and assigned to group k.
To avoid equivalent solutions, it will be assumed that the
generic batch b is processed right before (b + 1) in the unit
allotted to group k at every stage s ∈ S. Let STbks and CTbks

denote the starting and completion times for the stage s of
batch b ∈ Bid belonging to cluster k ∈ Kid. Equations 44 and 45
provide lower bounds on the value of STbks for any batch b in
the existing cluster k ∈ Kid. Equation 44 indicates that
nonfictitious batches assigned to cluster k ∈ Kid are
consecutively processed one by one in the same unit j ∈ Jis
at every stage s ∈ S. On the other hand, eq 45 accounts for the
fact that stage (s + 1) of batch b can be started only if the
previous stage s has ended. The new continuous variables STks

G

and CTks
G stand for the starting and completion time of cluster k

at stage s, respectively. Every batch b ∈ Bid of cluster k ∈ Kid

must start and finish within the time slot [STks
G, CTks

G] at any
stage s ∈ S. Such conditions hold if the processing of cluster k
at stage s begins before the starting time of its first batch bid

f

(STb
f
ks) and after the completion time of its last batch bid

l

(CTb
l
ks). These bounds on the values of STks

G and CTks
G for every

existing group k are given by eqs 46 and 47.
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As every existent cluster k ∈ Kid always contains consecutive
elements of Bid, batches b ∈ Bid not allocated to group k (i.e.,
featuring Vbkj = 0 and Qbkj = 0 for every unit j ∈ Jis at any stage
s) will arise in the set Bid either before the first lot (b < bk

f ) or
after the last one (b > bk

l ) belonging to group k. Such lots may
be dummy or have been assigned to other groups k′ ∈ Kid (k′ ≠
k). According to eq 43, their associated processing times
(∑j∈JisPTbkj) at any stage s will be equal to 0, and consequently
eqs 44 and 45 reduce to the following: (i) STbkj ≤ STb

f
ks for any

b < bk
f , and (ii) STb

l
ks + ∑j∈JisPTb

l
kj ≤ STbks for any b > bk

l ,
respectively. If the makespan or the total tardiness is to be
minimized, the values of STbks for such batches, if necessary,
will move toward the related bounds. In this way, STks

G will tend
to coincide with STb

f
ks and CTks

G will approximate CTb
l
ks.

4.2.8. Topological Constraints. Topology constraints are
needed to restrict the number of alternative routes a group can
follow throughout the plant. If group k ∈ Kid is processed in
unit j ∈ Jis (i.e., Ykj = 1) at stage s, constraint 48 guarantees that
the unit allocated to group k at the next stage (s + 1) not only
belongs to the set of eligible units Ji,s+1, but also is reachable
from unit j.
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4.2.9. Sequencing Clusters Processed in the Same
Equipment Item. Groups of batches of the same or different
products allocated to the same equipment item must be
processed one by one. To determine the queue of clusters at
every unit, 0−1 sequencing variables Xk,k′,s

G ordering pairs of
existent clusters k, k′ ∈ K at every stage s are to be defined. If
Xk,k′,s
G = 1, cluster k is processed before k′ at stage s, and Xk,k′,s

G = 0
denotes that cluster k′ is first completed. The value of the
sequencing variable Xk,k′,s

G will be meaningful only if both
clusters k, k′ ∈ K exist and have been assigned to the same unit
at stage s. As said before, sequencing variables can also be used
to further prevent the generation of symmetric solutions.
Constraints 49, 50a, and 50b are the clustered versions of the
sequencing constraint set S2 that replace eqs 21, 22a, and 22b
of the proposed formulation at the level of individual batches.
Equation 49 is used to queue clusters associated with the same
product and processed in the same unit, whether they belong or
do not belong to the same production order. The definition of

set Ki is such that k appears before k′ if either (k, k′) both
belong to the same order (i, d), or k ∈ Kid, k′ ∈ Kid′ and the
group k features the earlier due date (d < d′). For clusters
associated with different products, the sequencing constraints
are given by eqs 50a and 50b and the value of Xk,k′,s

G is found by
solving the group-based approximate formulation.
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The number of sequencing variables can be further decreased
by using a sequencing pattern often found at good feasible
solutions. It is the so-called constant batch ordering rule
prescribing that clusters sharing an equipment item in two or
more stages present the same relative ordering on the queues of
such units. An identical rule was already applied in section 3.3.8
but at the level of individual batches. If the constant ordering
rule is applied, constraints 50a and 50b should be replaced by
eqs 51a and 51b, and the new set of sequencing constraints S3
therefore includes eqs 49 , 51a, and 51b. It is observed that a
unique sequencing binary X̂k,k′

G for each pair of clusters k and k′
(with i ≠ i′) potentially sharing the same unit at some
processing stage is to be defined. Clusters k and k′ contain
batches of products (i, i′) with i ≠ i′.
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4.2.10. Tardiness and Makespan Definitions. As stated by
constraint 52, the makespan MK is defined as the lowest upper
bound for the completion time of any existent cluster. Besides,
the cluster k ∈ Kid associated with the production order (i, d)
last completed determines the tardiness of order (i, d) through
eq 53. If every production order must be delivered on time, eq
53 should be replaced by eq 54.

≤ ∀ ∈ ∈i I k KCT MK ,
ks i
G

l (52)

− ≤ ∀ ∈ ∈ ∈d T i I d D k KCT , ,
ks id i id
G

l (53)

≤ ∀ ∈ ∈ ∈d i I d D k KCT , ,
ks i id
G

l (54)

4.3. Objective Functions. The objective functions 28 and
29 defined in section 3.4 are also applied when the cluster-
based formulation is used. If the total weighted tardiness is to
be minimized, the MILP group-based formulation assuming the
sequencing scheme S2 includes the set of constraints 14,
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31−49, 50a, 50b, 53, and A1. If instead the makespan is
minimized and some production orders have strict due dates,
the group-based model comprises the constraints 14, 31−49,
50a, 50b, 52, 54, and A2. In case the sequencing scheme S3
based on the constant batch ordering rule is applied, eqs 50a
and 50b are replaced by eqs 51a and 51b. Tightening
constraints A1 and A2 are given in the Appendix. Equation
30 is usually applied to determine the proposed clusters for
each order.

5. COMPUTATIONAL RESULTS AND DISCUSSION
In this section, five case studies of increasing size and
complexity are presented to test the computational efficiency

of the two proposed scheduling approaches for multistage batch
processes. The first two examples taken from the work of
Prasad and Maravelias17 consider a single customer order per
product. Since each order involves a few batches, the problem
size is rather small and only the exact formulation (at the level
of individual batches) is applied to solve examples 1 and 2. In
addition, three new large examples (examples 3−5) were
introduced to illustrate the significant savings in CPU time that
can be attained by using the group-based scheduling method.

Table 1. Model Statistics and Computational Results for Examples 1 and 2

example 1 (makespan) example 2 (tardiness)

detailed model: section 3 detailed model: section 3

ref 17a S1 S2 S3 ref 17a S1 S2 S3

binary variables 287 171 168 116 578 325 316 205
continuous variables 34 131 131 131 65 199 199 199
constraints 712 819 810 810 1510 1664 1637 1637
MILP solution 30.8 30.8 30.8 30.8 0.0 0.0 0.0 0.0
CPU time (s) 2.8 0.56 0.53 0.49 126.3 1.99 2.84 2.63
nodes 1667 528 1059 822 48710 1953 1859 2417
iterations 4827 7432 5778 14508 16468 20089

aPentium 4 2.8 GHz computer running GAMS 22.0/CPLEX 10.0.

Table 2. Product Requirements at Every Due Date (in kg)
for Example 3

due dates

product 30 h 50 h

P1 90 60
P2 75
P3 60
P4 80 85

Table 3. Proposed Batches for Each Customer Order at
Example 3

due dates

product d1 d2

P1 b1−b4 b5−b7
P2 b1−b3
P3 b1−b3
P4 b1−b4 b5−b8

Table 4. Computational Results for Example 3

model
sequencing
scheme

batches/group param
(ksi) binary variables, cont variables, constraints obj function CPU time (s) nodes

detailed formulation S1 − 512, 252, 2593 1.5 104.01 243 175
S2 − 429, 252, 2356 1.5 84.38 250 482
S3 − 274, 252, 2356 1.5 27.77 87 950

group-based formulation S2 4 81, 338, 532 2.0 0.59 65
3 138, 513, 890 2.0 2.64 6 004
2 214, 648, 1332 1.5 9.66 52 647

S3 4 68, 338, 532 2.0 0.34 298
3 111, 513, 890 2.0 2.62 8 105
2 162, 648, 1332 1.5 7.44 24 501

Figure 4. Optimal schedule for example 3 using the detailed
formulation.

Table 5. Number of Batches and Groups for Example 3

no. of batches per
order

no. of groups proposed/used per value of
ksi

product d1 d2 ksi = 4 ksi = 3 ksi = 2

P1 4 3 2 3 4/3
P2 3 1 1 2
P3 3 1 1 2
P4 4 4 2 4 4
total 6 9 12/11
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Example 3 is based on the same two-stage production facility
of examples 1 and 2, but considers multiple customer orders
per product with different delivery dates. Example 4 deals with
a more complex four-stage production facility that takes into
account (a) multiple orders per product with different due
dates, (b) sequence-dependent changeovers, (c) variable batch
sizes, and (d) processing times depending on both the unit and
the batch size. No longer can this example be solved to
optimality using the formulation at the level of individual
batches. The only alternative tool to find good feasible
solutions is the proposed cluster-based approach. Three
instances of example 4 with a growing number of production
orders and the minimum total tardiness as the problem goal
have been tackled. In each case, the group-based model has
been evaluated using different values for the average number of
batches per cluster (ksi) to study its impact on the model size,
the CPU time, and the solution quality.
Example 5 involves the same four-stage batch facility of

example 4, but it now includes large make-to-stock orders for
six products and the minimum makespan as the problem target.
This example permits showing the computational advantage of
the group-based approach even if order due dates are omitted
and the minimization of the makespan is the problem objective.
The two proposed monolithic approaches have been
implemented using the GAMS modeling system. Computa-
tional results were obtained using GUROBI 4.0 64 bits with an
Intel Core i7 960 at 3.2 GHz clone PC having 16 GB of RAM
and allowing up to eight parallel threads. The examples were
solved to optimality within a CPU time limit of 1 h. An
optimality gap of 10−3 has been adopted as the stopping
criterion.

5.1. Examples 1 and 2. Examples 1 and 2 both consider a
batch facility with two processing stages and three units per
stage that produces eight different products (P1−P8). The
parallel units in each stage have different capacities, and
processing times are batch-size independent. Changeover times
between consecutive tasks are assumed to be negligible. Data
for examples 1 and 2 can be found as problems P1.M and P2.L
in Prasad and Maravelias.17 Products A−H have been renamed
as P1−P8 in this work. For comparison purpose, eq 55 was
applied to estimate the batch size used to calculate the
proposed number of batches for each product i.

* = ∀ ∈
∈ ∈

q i Ibs min[min( )]i
s S j J ij

max

is (55)

In this way, bsi* = 25 is the reference batch size for every
product in both examples.
In example 1, eight customer orders, each one involving a

different product, are to be manufactured. Each order has an
associated delivery date to be strictly satisfied, and the
minimum makespan is the problem goal. On the other hand,
example 2 also considers eight orders of different products with
different delivery dates, but now the problem goal is the
minimization of the total tardiness. Batches are never used to
fulfill more than one order in examples 1 and 2. Because bsi* =
25 for all i, a maximum of two batches is needed for products
P1, P2, and P3 and just one batch is needed for products P4−P8
at example 1. The total number of batches is equal to 11.
Similarly, two batches are defined for products P1−P4, P6, and
P7, three are defined for P5, and just one is defined for P8 at
example 2. Therefore, a total of 16 batches have been proposed
for example 2. In both examples, symmetry-breaking
constraints were just applied to the initial stage s* = s1.

Figure 5. Best schedule for example 3 using the group-based
formulation.

Table 6. Detailed Schedule of the Activated Batch Clusters for Example 3

selected groups

product due date req group batches total size processing route start end order completion tardiness remaining inventory

P1 30.0 90.0 k1 b1−b4 100.0 U2−U6 0.0 31.0 31.0 1.0 10.0
50.0 60.0 k3 b5 25.0 U2−U6 26.0 37.5

k4 b6 25.0 U2−U6 39.0 50.5 50.5 0.5 0.0
P2 50.0 75.0 k1 b1−b2 50.0 U1−U4 21.9 41.7

k2 b3 25.0 U2−U6 32.5 44.0 44.0 0.0 0.0
P3 30.0 60.0 k1 b1 25.0 U1−U4 0.0 12.5

k2 b2−b3 50.0 U1−U5 7.3 28.9 28.9 0.0 15.0
P4 30.0 80.0 k1 b1 30.0 U3−U5 0.0 15.5

k2 b2−b3 50.0 U3−U4 8.5 30.0 30.0 0.0 0.0
50.0 85.0 k3 b5 25.0 U1−U4 36.5 47.5

k4 b6−b7 60.0 U3−U5 25.5 49.5 49.5 0.0 0.0

Figure 6. Multistage batch facility for examples 4 and 5.
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Table 1 presents the computational results for examples 1
and 2 reported by Prasad and Maravelias,17 and those obtained
with the detailed approach presented in section 3. Our detailed
formulation has been solved using the three alternative
sequencing schemes S1, S2, and S3. The best schedule for
example 1 features a makespan of 30.8 h, while the minimum
tardiness for example 2 is equal to 0. In any case, the detailed
approach always provides the optimal solution for both
examples. The agreement with the results reported by Prasad
and Maravelias17 holds for the three sequencing schemes (see
Table 1). However, the proposed problem model includes a
lower number of binary variables and requires a shorter CPU
time compared with the model of Prasad and Maravelias,17

even if the exact sequencing scheme S1 is considered. This
saving in binary variables can be easily explained because the
model of Prasad and Maravelias17 requires defining 0−1 batch
selection variables and two sequencing binary variables for each
pair of batches that can be processed in the same unit. Despite

the large difference in CPU times (at least 5 times faster in
example 1 and 44 times faster in example 2), it cannot be
claimed that the proposed detailed method outperforms the
model of Prasad and Maravelias,17 because their results were
obtained with a machine/solver having a lower performance
than the one used in this contribution.
Examples 1 and 2 both involve a rather small number of

batches for each order, and their optimal schedules can be
found in a few CPU seconds by the proposed detailed
approach. As a result, there is no sense in solving them again
using the group-based method. To deal with adequate examples
for the group-based formulation, a higher number of
production orders with larger sizes rid must be considered. By
doing so, the size of the problem will increase very quickly,
hence making the problem unsolvable using the detailed
formulation within reasonable CPU times. A medium-size case
study based on the same production facility of examples 1 and
2, called example 3, is presented in section 5.2 and solved using
the two proposed monolithic approaches to compare their
computational efficiencies.

Table 7. Batch Size Limits and Processing Time Coefficients for Examples 4 and 5

processing time coefficients

batch size
(kg) fixed (h) variable (h/kg)

unit qj
min qj

max P1 P2 P3 P4 P5 P6 P7 P8 P1 P2 P3 P4 P5 P6 P7 P8

U1 75 120 6 6 5 4 7 5 0.15 0.06 0.12 0.1 0.08 0.1
U2 50 90 4 6 7 6 4 5 0.1 0.08 0.12 0.12 0.1 0.15
U3 75 100 5 5 7 5 4 7 0.12 − 0.1 0.15 0.12 0.1 0.05
U4 70 95 6 8 7 4 8 9 5 0.08 0.08 0.12 0.1 0.15 0.06 0.1
U5 50 85 5 4 6 4 7 0.12 0.12 0.06 0.1 0.15
U6 50 80 4 5 5 6 4 3 8 0.1 0.1 − 0.1 0.12 0.18 0.05 0.1
U7 75 105 4 7 5 6 5 0.1 0.12 0.12 0.18 0.08
U8 70 110 6 4 4 8 7 0.08 − 0.08 0.1 0.15 0.1
U9 60 90 6 5 8 6 4 5 4 0.08 0.12 0.08 0.12 0.1 0.06 0.2
U10 80 115 4 8 8 6 5 0.1 0.08 0.15 0.1 0.04

Table 8. Sequence-Dependent Changeovers (h) for
Examples 4 and 5

τii′

P1 P2 P3 P4 P5 P6 P7 P8

P1 0.0 3.1 3.4 1.6 5.1 3.3 4.1 2.1
P2 6.1 0.0 2.5 3.4 1.3 1.7 2.3 1.8
P3 4.3 6.9 0.0 1.8 3.1 1.7 3.3 1.5
P4 3.3 3.3 1.2 0.0 1.6 4.4 2.0 3.7
P5 2.7 3.0 1.4 4.7 0.0 1.4 3.1 2.7
P6 1.8 1.7 3.1 2.0 5.5 0.0 2.5 1.3
P7 2.3 3.5 2.7 1.5 1.7 4.0 0.0 3.2
P8 3.1 1.8 3.5 2.9 2.2 1.1 1.3 0.0

Table 9. Customer Orders for the Three Instances of Example 4 at Various Due Dates

example 4a example 4b example 4c

product 120 h 192 h 240 h 168 h 336 h 480 h 144 h 288 h 480 h 600 h

P1 340 450 560 310 475
P2 270 290 330 250 240 250 360
P3 390 210 500 200 350 335
P4 275 120 380 255 240 235
P5 270 470 310 175 165
P6 400 500 180 270 155
P7 315 205
P8 160 250 390

Table 10. Number of Batches and Groups for Example 4a

no. of batches per order
no. of groups proposed/used

per value of ksi

product d1 = 120 d2 = 192 d3 = 240 6 5 4 3

P1 6 1 2 2 2
P2 5 5 2 2 4 4
P3 6 3 2 3 3 3
P4 4 2 2 2 2 3/2
Total 7 9 11 12/11
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5.2. Example 3. Example 3 is a new case study introduced
in this work to evaluate the computational effectiveness of the
cluster-based scheduling approach in comparison with the
proposed detailed formulation. Example 3 considers the same

production facility of the two previous examples, but in this
case only four products (P1−P4) are manufactured. Moreover,
production orders for products P1−P4 are to be fulfilled at two
different due dates (30 h, 50 h) as shown Table 2. The problem
goal is to find the feasible schedule with the least total tardiness.
Table 3 displays the proposed batches for each customer

order that were obtained using both the reference batch size
given by eq 55 and the procedure presented in section 3.2. In
order to calculate the number of batches for each set Bid, bsi =

Table 11. Computational Results Using the Detailed Model for Example 4

example sequencing scheme binary variables, cont variables, constraints obj function CPU time (s) nodes iterations/nodes

4a S1 1843, 529, 5198 2.8a 3600b 2 297 783 20.25
S2 1459, 529, 4556 1.5904 160.41 117 591 17.75
S3 565, 529, 4556 1.5904 50.59 24 377 17.06

4b S1 9730, 1240, 29 032 1408.08a 3600b 159 055 34.87
S3 2576, 1240, 26 398 22.78a 3600b 147 959 53.72

4c S1 16 310, 1619, 48 196 3339.8a 3600b 58 757 44.86
S3 4360, 1619, 44 888 663.95a 3600b 51 378 51.46

aBest possible solution =0.0, relative gap =100%. bTime limit exceeded.

Table 12. Computational Results Using the Group-Based Method for Example 4

batches/group param (ksi) binary variables, cont variables, constraints obj function CPU time (s) nodes

example 4a
sequencing scheme S3 6 96, 648, 1050 12.8 0.29 245

5 134, 882, 1435 4.2904 1.78 4995
4 172, 1080, 1810 1.5904 5.31 9657
3 191, 1153, 1975 1.5904 11.97 21389

sequencing scheme S2 6 140, 648, 1050 12.8 1.08 3066
5 208, 882, 1435 4.2904 3.23 11175
4 284, 1080, 1810 1.5904 11.03 20378
3 323, 1153, 1975 1.5904 8.94 17040

example 4b
sequencing scheme S3 10 201, 1502, 2429 8.5 8.63 9239

8 227, 1691, 2733 8.3 13.62 12289
7 306, 2182, 3634 0 15.90 6311

sequencing scheme S2 10 337, 1502, 2429 8.5 9.86 10691
8 388, 1691, 2733 8.3 25.34 30810
7 558, 2182, 3634 0 44.50 21566

example 4c
sequencing scheme S3 8 439, 2025, 4796 36.6 63.20 60356

6 473, 2178, 5168 36.6 306.93 311372
5 609, 2670, 6660 12.4 110.14 48662
4 757, 3076, 8199 10.8 427.98 120456
3 958, 3561, 10319 10.8 280.09 46187

sequencing scheme S2 8 963, 2025, 4796 37.85a 3600b 6839940
6 1052, 2178, 5168 37.85a 3600b 4139105
5 1417, 2670, 6660 14.45c 3600b 3280813

aBest possible solution = 35.7, relative gap = 5.68%. bTime limit exceeded. cBest possible solution = 10.8, relative gap = 25.2%.

Figure 7. Best schedule found for example 4a.

Table 13. Number of Batches and Groups for Example 4b

no. of batches per order
no. of groups proposed/
used per value of ksi

product d1 = 168 d2 = 336 d3 = 480 10 8 7

P1 8 10 2 3 4/3
P2 6 4 2 2 2
P3 7 3 2 2 2
P4 6 1 1 1
P5 5 8 2 2 3
P6 6 8 2 2 3/2
total 11 12 15/13
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25 and qi
max = 30 have been adopted for every product i. As a

result, product P1 requires nbP1,d1 = 4 and nbP1,d2 = 3 batches to
meet its demand at due dates d1 = 30 h and d2 = 50 h,
respectively. Thus, batches of P1 are numbered b1−b4 for order
(P1, d1) and b5−b7 for order (P1, d2). Similar results for the
remaining products are shown in Table 3. Overall, 21 batches
should be considered by the problem formulation. Additional
parameters for the example are H = 120 h and s* = s1.
Example 3 has first been solved to optimality by using the

detailed formulation introduced in section 3. Computational
results obtained with the alternative sequencing constraint sets
S1, S2, and S3 are presented in Table 4. Using the sequencing
scheme S1, a CPU time of 104 s was needed to find the best
schedule featuring a total tardiness of 1.5 h. The S1 detailed
model includes 512 binary variables and 2593 constraints.
When the less conservative sequencing constraint sets S2 and
S3 are used, the true optimal solution is still found and the
number of binary decisions and the CPU time both significantly
decrease. The application of the constant batch ordering rule at
every processing stage (scheme S3) reduces the number of
binary variables by almost half to 274, and the CPU time
decreases more than 3.7 times to 27 CPU s.
Figure 4 presents the Gantt chart for the optimal schedule.

Each selected batch has been identified through two indices,
with the first one standing for the product and the second
standing for the batch number shown in Table 3. The
bottleneck stage of the plant is stage s1 (units U1−U3).
Inspecting the solution, batch (P1, b4) associated with due date
d1 ends at time = 31 h, thus generating a tardiness of 1 h.
Besides, batch (P1, b6) associated with d2 is completed at 50.5 h
with a tardiness of 0.5 h. Of the original 21 batches proposed,
only 18 were selected by the model at the optimum. The

constant ordering of batches at every processing stage and the
symmetry-breaking condition allocating batches of the same
production order to consecutive units at stage s* = s1 can both
be verified with the Gantt chart shown in Figure 4.
Next, the group-based approximate model has also been

applied to example 3. The average number of batches per group
(ksi) for each product i is an important parameter of the group-
based method that determines the model size and the difficulty

Figure 8. Optimal schedule for example 4b.

Table 14. Number of Batches and Groups for Example 4c

no. of batches per due date no. of groups proposed/used per value of ksi

product d1 d2 d3 d4 8 6 5 4 3

P1 6 8 2 3 4/3 4 5/4
P2 4 5 6 3 3 4 5 6/5
P3 5 5 2 2 2 4/3 4/3
P4 4 3 3 3 3 3 3 4/3
P5 6 3 3 3 3 4 4 4
P6 3 4 3 3 3 3 3 4/3
P7 5 3 2 2 2 3 3/2
P8 3 4 6 3 3 4 4 5
total 21 22 26/25 30/29 35/29

Figure 9. Best solution found for example 4c.

Table 15. Make-to-Stock Orders for Example 5

product make-to-stock orders

P1 620
P2 520
P3 610
P4 490
P5 550
P6 480

Table 16. Number of Batches and Groups for Example 5

no. of groups proposed/used per
value of ksi

no. of batches per product 11 10 9 7

P1 11 1 2 2 2
P2 9 1 1 1 2
P3 9 1 1 1 2
P4 7 1 1 1 1
P5 10 1 1 2 2
P6 7 1 1 1 1
total 53 6 7 8 10
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to solve it. If a small number of groups is proposed (higher ksi),
poor quality solutions may be found. As the value of ksi
decreases, the number of groups for each order (i, d) and the
chance to find a near-optimal solution both increase. On the
left side of Table 5, the proposed number of batches for each
production order already included in Table 3 is reported. On
the right side, the total number of groups proposed/selected for
each product i when ksi is set at 4, 3, and 2, respectively, is
shown. The number of selected groups used at the optimal
schedule is just indicated when it is lower than the one
proposed. For ksi = 2, the total number of groups amounts to
12 while the total number of batches rises to 21. This fact
explains the computational advantage of the cluster-based
formulation. Computational results obtained with the group-
based model using the sequencing schemes S2 and S3 for
different values of the parameter ksi are included at the bottom
of Table 4. Notice that the true optimal solution featuring a
total tardiness of 1.5 h is found using ksi = 2 for any i ∈ I. The
S2-group based formulation needs a CPU time of 9.66 s to find
the best solution against 84.3 s required by the exact
formulation, i.e., a reduction factor of 8 (see Table 4).
Moreover, the number of binary variables decreases by a half by
using the group-based problem model. Near-optimal solutions
found with ksi = 4 and ksi = 3 both present a total tardiness of 2
h by obviously activating all the proposed groups (6 and 9,
respectively). Although never chosen in this work, fractional
values of ksi are permitted.
The Gantt chart for the optimal schedule found by the

group-based approach using ksi = 2 is depicted in Figure 5.
Each group is identified through two indices, with the first one
standing for the associated product and the second indicating
the cluster number. In parentheses, the individual batches that
each selected group comprises are additionally indicated.
Detailed data about the clusters activated by the model to

fulfill every customer order are included in Table 6. When a
cluster satisfies, partially or totally, two production orders, the
remaining portion after fulfilling the first one is reported. This
is the case for cluster k1 of product P1 featuring a total size of
100 kg: 90 kg has been assigned to order (P1, d1) and 10 kg has
been assigned to order (P1, d2). From Table 6, it is observed
that 11 clusters are used instead of the 12 proposed, because
group k2 associated with order (P1, d1) is a dummy cluster at
the optimum.
This case study shows that the cluster-based approach is able

to find a solution proven optimal by the detailed formulation,
but at much lower computational cost. Moreover, the size of
the cluster-based model can be controlled by adjusting the
value of the parameter ksi. Decreasing model sizes are obtained
for higher values of ksi. Even for rather large ksi, the group-
based approach provides good feasible solutions. This model
feature is quite important for the solution of large batch
scheduling problems.

5.3. Example 4. In order to cope with industrial-sized
scheduling problems featuring larger number of batches,
additional case studies have been tackled. Example 4 includes
three instances of increasing size and complexity, all involving a
batch plant with four processing stages and a total of 10
equipment units. Eight different products (P1−P8) are to be
manufactured. The plant topology is depicted in Figure 6. The
allowable batch size range together with unit-dependent fixed/
variable processing time coefficients are presented in Table 7.
Besides, Table 8 includes the sequence-dependent changeover
time data. Customer orders for each product and their
promised delivery dates for the three instances of example 4
are presented in Table 9. The selected problem goal is the
minimization of the overall tardiness.

5.3.1. Example 4a. In example 4a, seven customer orders for
products P1−P4 with three different delivery dates are to be
satisfied (see Table 9). In Table 10, the proposed number of
batches for each customer order using the reference batch size
given by eqs 1 and 4 and the procedure presented in section 3.2
are reported. Then, bsi = 60 kg for products P1 and P2 and 75
kg for P3 and P4. Moreover, qj

max = 80 kg for P1 and P4, 90 kg
for P2, and 95 kg for P3. A total of 31 batches are to be handled.
For this example, symmetry-breaking constraints were just
applied to the last stage s* = s2. The computational results
obtained with the detailed formulation using sequencing
constraint sets S1−S3 are presented in Table 11. When the
exact sequencing scheme S1 is applied, the detailed approach
fails to find the optimal schedule within the CPU time limit of 1
h. The best schedule discovered presents a total tardiness of 2.8
h. If the other sequencing schemes are adopted, the solution
algorithm converges to an improved solution featuring a total
tardiness of 1.59 h. As reported in Table 11, it was found in

Table 17. Results for Example 5 Using the Group-Based Approach

sequencing scheme batches/group param (ksi) binary variables, cont variables, constraints obj function CPU time (s) nodes iterations/nodes

S3 11 111, 1082, 1478 361.2 1.38 2 048 18.22
10 134, 1289, 1750 361.2 5.23 3 738 34.77
9 158, 1498, 2029 351.4 41.96 48 149 43.60
7 205, 1840, 2542 341.1a 3070.13 2 869 944 54.25

S2 11 151, 1082, 1478 361.2 1.91 2 038 23.84
10 188, 1289, 1750 361.2 4.79 5 963 21.92
9 229, 1498, 2029 351.4 49.69 109 709 25.99
7 315, 1840, 2542 344.02b 3600c 4 110 208 40.60

aBest possible solution = 340.77, relative gap = 0.001. bBest possible solution = 336.3, relative gap = 0.022. cTime limit exceeded.

Figure 10. Best solution found for example 5.
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160.4 s with the suitable scheme S2, and in 50.6 s with S3.
These results show the advantage of using less conservative
sequencing schemes to discover near-optimal batch schedules
at relatively low CPU time. Of the proposed 31 batches, the
best schedule just includes 27.
The group-based approach has also been applied to example

4a. The proposed clusters for each product using different
values of ksi are shown on the right-hand side of Table 10. Even
for ksi = 3, the approximate formulation considers a number of
groups almost 3 times lower than the proposed number of
batches. Computational results for example 4a using the group-
based approach and the sequencing scheme S2 or S3 are shown
in Table 12. For either scheme, the solution algorithm always
reaches optimality in a few CPU seconds and the best schedule
featuring a total tardiness of 1.59 h was discovered by setting ksi
= 4 or lower. The use of the group-based approach instead of
the detailed formulation produces a significant reduction in
both the model size and the CPU time. The number of binary
variables and the CPU time both decrease from 1459 and
160.41 s (for the S2-detailed formulation) to 284 and 11.03 s
(for the S2-group based approach), respectively. For the
approximate scheme S3, a similar pattern is observed. In this
case, the number of binaries drops from 565 to 172, and the
CPU time decreases 10 times from 50.59 to 5.31 s.
The best schedule found is depicted in Figure 7. The two

tardy clusters are related to orders (P1, d2) and (P3, d1). In
Figure 7, they are labeled as group 1−2 (i.e., cluster k2 of
product P1) containing batch b5 and group 3−2 (i.e., cluster k2
of product P3) comprising two batches b4 and b5. Group 1−2 is
completed at time 192.59 h beyond d2 = 192 h, while the
processing of cluster 3−2 ends at 121 h one hour after the
promised date d1 = 120 h.
5.3.2. Example 4b. Eleven customer orders for six products

(P1−P6) with three different delivery dates must be fulfilled at
example 4b (see Table 9). Since the order sizes are larger
compared with the previous instance, a much higher number of
batches should be processed. The proposed number of batches
for each order is shown in Table 13. A total of 71 batches
should be considered to guarantee the discovery of the optimal
schedule.
When the detailed approach was applied using either the

exact sequencing scheme S1 or even the less conservative S3,
the optimality condition cannot be achieved within the CPU
time limit of 3600 s (see Table 11). This is so because the
required number of binary variables rises to 2576 for scheme
S3. The best solution found using the S3-detailed approach is
rather poor and features a total tardiness of 22.78 h (see Table
11). In contrast, the group-based formulation with either S2 or
S3 discovers the true optimal solution featuring zero tardiness.
The number of groups was determined for three different
values of the parameter ksi (see Table 13). In any case, the
group-based model was solved to optimality, but the true
optimum was found just for ksi = 7 using S2 or S3. Moreover,
the search takes 44.5 s of CPU time using S2 and 15.9 s with S3
(see Table 12). Compared with S3-detailed approach, the
number of binary variables in the S3 group based approach
drops from 2576 to 306. The optimal schedule for example 4b
is shown in Figure 8. Of the proposed 71 batches, just 54 lots
are processed. Besides, 13 out of the 15 proposed groups have
been selected.
5.3.3. Example 4c. Example 4c is the largest instance of

example 4. It involves the fulfilment of 21 customer orders for
eight products (P1−P8) due at four different promised dates

(see Table 9). The batches to be considered for each customer
order are given in Table 14. Overall, 92 batches and 368
processing tasks should be handled by the proposed
formulations. As before, the detailed formulation cannot be
solved to optimality within the time limit of 1 h, even if scheme
S3 is adopted. The best solution found presents a total
tardiness of 663.95 h, i.e., a very poor schedule (see Table 11).
On the other hand, the number of clusters to be considered by
the group-based approach is shown on the right-hand side of
Table 14 for five different values of ksi. For ksi = 4, the total
number of clusters amounts to 30, i.e., one third of the total
number of batches. The S3 group based approach has been
solved to optimality for each value of ksi. The best schedule
featuring a total tardiness of 10.8 h was discovered for ksi = 4 in
428 s of CPU time (see Table 12). Lowering ksi to 3 does not
produce any change in the optimal tardiness, but the CPU time
drops to 280 s. In contrast, when scheme S2 was adopted, the
group-based model cannot be solved to optimality. The best
schedule found for example 4c is shown in Figure 9. Just 73 out
of 92 batches are processed, and 29 out of 30 groups were
activated at the optimum for ksi = 4.
Results for the three instances of example 4 all clearly

confirm that the group-based approach together with the
effective sequencing schemes S2 and S3 is able to find good (or
even optimal) solutions for real-world batch scheduling
problems in very short computational times.

5.4. Example 5. Data for example 5 are given in Figure 6
and Tables 7 and 8. In addition, Table 15 lists the six make-to-
stock production orders to be processed with the minimum
makespan selected as the problem goal. Table 16 includes the
number of batches proposed for each order and the number of
groups per product for different values of ksi. A total of 53
batches are to be handled, and 6−10 groups should be
considered depending on the value of ksi. Computational
results for example 5 using the group-based model with the
sequencing constraint set S2 and the less conservative scheme
S3 are shown in Table 17. When scheme S3 is applied, example
5 is solved to optimality for the four proposed values of ksi. The
best solution was found for ksi = 7 in a CPU time of 3070 s and
features a makespan of 341.1 h (see Figure 10). However, good
feasible solutions were obtained in a much lower CPU time for
smaller ksi. The more suitable sequencing scheme S2 provides
results similar to those of S3 at comparable computational costs
except for ksi = 7.

6. CONCLUSIONS
Two new MILP monolithic approaches for the scheduling of
multistage batch facilities have been developed. The proposed
methods handle multiple customer orders for each product
with different due dates, variable processing times, and
sequence-dependent changeover times. Both models include
effective symmetry-breaking constraints in terms of allocation
variables. Production orders are first converted into a set of
batches all featuring the same due date through a novel
procedure that ensures the discovery of the optimal schedule.
One of the formulations performs selection, sizing, allocation,
sequencing, and timing decisions for the individual batches.
However, its computational efficiently rapidly deteriorates if
around 25 batches or more are to be scheduled. To allow its use
for larger problems, two other sequencing constraint sets
(called S2 and S3) were tested. If two batches of the same
product are allocated to the same unit, the set S2, in agreement
with the model assumptions, supposes that the batch with the
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earlier due date is processed before. Conversely, the less
conservative scheme S3 based on the constant batch ordering
rule of Marchetti and Cerda ́15 states that two batches sharing a
processing unit at different stages are queued in the same order
at the common units. By using the sequencing constraint set S2
or S3, the detailed formulation is able to solve problems
involving 30−35 batches at convenient CPU times. To deal
with industrial-sized scheduling problems, this work addition-
ally introduces an MILP cluster-based formulation. In this
approach, batches destined for the same customer order are
first grouped into clusters. Afterward, the proposed cluster-
based model simultaneously selects the clusters to be processed
and their contents (number and size of batches), and schedule
the clusters so as to minimize either the total tardiness or the
makespan. The group-based formulation in combination with
the sequencing constraint set S2 or S3 was applied to the
solution of very large examples involving up to 92 batches. In
every case, it was solved to optimality at reasonable
computational cost. The proposed number of clusters for
each order is defined by choosing the value of the parameter ksi
representing the average number of batches per cluster. For
higher ksi, the number of clusters, the model size, and the
solution time all significantly decrease. However, the chance of
discovering the true optimal schedule also diminishes. None-
theless, very good solutions for large case studies are still found
at low CPU times with rather high ksi values. Besides, the
cluster-based approach can efficiently handle problems
involving make-to-stock orders with no associated due dates
and the minimum makespan as the problem objective.

■ APPENDIX: TIGHTENING CONSTRAINTS FOR THE
PROPOSED FORMULATIONS

Additional constraints A1 and A2 are proposed to further
tighten the feasible region of the MILP detailed model. The
proposed cuts are conservative in the sense that they do not
remove integer solutions from the feasible space. They are
extensions of the tightening constraints proposed by Marchetti
et al.19 for single-stage batch plants. Equation A1 is applied
when the problem goal is the least overall tardiness, and eq A2
is used when the minimum makespan is sought. Constant
parameters estj,s

min and πj,s
min are the lowest possible earliest start

time for a task in unit j and the lowest time needed to complete
any batch in unit j, respectively.
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Tightening constraints A1 and A2 can also be applied in the
context of the group-based formulation by using PTbj = ∑k∈Kid

PTbkj, ∀ b ∈ Bid.
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■ NOMENCLATURE
Subscripts

b = batch
d = due date
i = product
j = unit
k = cluster or group of batches
s = stage

Sets
Bi = tentative batches of product i
Bid = tentative batches associated with order (i, d)
Di = due dates associated with product i
I = products
J = units
Ji = units available for product i
Js = units at stage s
Jis = units available for product i at stage s
Js+1
j = units in stage s + 1 physically connected to unit j ∈ Js
Ki = clusters proposed for product i
Kid = clusters proposed for order (i, d)
S = stages

Parameters
Δij = difference between qij

max and qij
min

αid = weighting penalty for the tardiness of order (i, d)
εid = lowest inventory of product i available for order (i, d)
τii′j = sequence-dependent changeover time between
products i and i′ in unit j
bsi = reference batch size for product i
ftij = fixed processing time for product i at unit j
ksi = average number of batches of product i per cluster
H = length of the scheduling horizon
nbi = maximum number of batches to meet the total demand
of product i
nbid = estimation of the number of batches needed to satisfy
order (i, d)
rid = requirement of product i at due date d
sl = last processing stage
qij
min, qij

max = minimum/maximum batch size for product i at
unit j
vtij = variable processing time rate for product i at unit j

Binary Variables
Xb,b′,s = denotes that batch b is run before b′ (b′ > b) at stage s
if Xb,b′,s = 1
X̂b,b′ = denotes that batch b is run before b′ (b′ > b) at any
stage if X̂b,b′ = 1
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Xk,k′,s
G = denotes that cluster k is processed before k′ (k′ > k) at

stage s if Xk,k′,s
G = 1

Ybj = denotes that batch b is allocated to unit j
Ykj = denotes that cluster k is allocated to unit j
Wbk = allocation of batch b to cluster k

Continuous Variables
BSb = size of batch b
CTbs = completion time of batch b at stage s
CTbks = completion time of batch b in cluster k at stage s
CTks

G = completion time of cluster k at stage s
MK = makespan
PTbj = processing time of batch b allocated to unit j
PTbkj = processing time of batch b in cluster k allocated to
unit j
Qbj = size of batch b above minimum when allocated to unit j
Qbkj = size of batch b in cluster k above minimum when
allocated to unit j
STbs = starting time of batch b at stage s
STbks = starting time of batch b in cluster k at stage s
STks

G = starting time of cluster k at stage s
Tid = tardiness of order (i, d)
Vbkj = denotes that batch b in cluster k is processed in unit j
Wb = denotes the selection of batch b
Zk = denotes the selection of cluster k
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