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Abstract— The principal purpose of this
work is to test the TUC strategy in a simple
case using a micro-simulator designed ad hoc,
previous to its real implementation.

Using concepts of traffic engineering we de-
scribe a well known dynamic linear model of
traffic flow in a urban traffic network that is
controlled using the traffic-light times. This
simplified model allows to obtain a Riccati feed-
back matrix and compute traffic-light times
that will improve the congestion levels.

We present some numerical experiments
made with the model on an academic exam-
ple and we validated them with a microscopic
simulator that we have created based on Car
Following theory and discrete event models.

Keywords— Optimal Control, LQ-Control,
Urban traffic models

I. INTRODUCTION

The reduction of urban traffic congestion is nowadays
obtaining more and more attention. The traffic de-
mand increases continuously and it cannot be followed
by the improvement of the offer because it would im-
ply the enlargement of the road infrastructure. The
only way to cope with it is to improve the efficiency of
the urban network.

Many research lines are currently active inside Traf-
fic Engineering, some of them to determine the av-
erage distribution of the traffic on some time inter-
val and how to manage it. The classical notions of
Wardrop equilibrium and social optimum help to ana-
lyze and optimize medium or long term planning prob-
lems. This can help to reduce the congestion on av-
erage, but when there is some fluctuations around the
mean traffic it is important to be able to reduce the
possible negative impact. A practical way to reduce
congestion is through an adaptive traffic light setting
strategy.

When there is a technology capable of coordinating
traffic lights, with green times calculated through so-
phisticated mathematical algorithms, a moderate re-
duction of travel times (or congestion) can be expe-
rienced as it is stated by the references Diakaki et al.

(2002), Dinopoulou et al. (2006). We have also verified
this reduction at least in numerical examples made on
microscopic simulators.

Our aim is to apply this methodology in the real
case of the medium-sized city of Tandil, Argentina.
This city is making up an Urban Traffic Control Sys-
tem which in its final stage will consist of a set of dy-
namic observers implemented through video-cameras
in some junctions linked to a central computer that
will compute the optimal green times and send them
back to the linked junctions.

The methodology presented here is fundamentally
based on the work of M. Papageorgiou and his cowork-
ers and students (see Diakaki et al. (2002), Dinopoulou
et al. (2006) and the references therein). It is called
Traffic-responsive Urban Control (TUC) and is derived
from a discrete time controlled model of the evolution
of vehicle queues in each junction where the control of
the system is made through the green times.

More precisely, we consider the macroscopic traf-
fic model proposed by Gazis and Potts (1963) known
as “store and forward” which is a linear model. The
control variables are the traffic-light times at each in-
tersection and the observed variables are the queue
lengths on each arc. The desired objective is to mini-
mize the total waiting time, so we consider as control
objective the reduction of the number of cars actually
present on the network during the analyzed period.

The TUC strategy can be described as follows.
Thanks to the linearity of the system and the quadratic
form of the objective function LQ methodology can be
used to obtain a feedback matrix. Nevertheless, the re-
strictions imposed by traffic-light duration cannot be
considered as LQ theory could not afford them, so the
solution must be modified. This is done by a projec-
tion of the computed solution on the feasible solution
set with an efficient algorithm that allows almost real
time computation.

In the next sections we present the model (section
II) and the control design and its projections over the
feasible control set (section III). In the section IV we
describe a micro simulator based on discrete event sys-
tem theory, designed and developed to test the strat-
egy. In section IV we present numerical results and
tests and finally, we present the conclusion.
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Figure 1: Variable definition.

II. DYNAMIC MODEL

The dynamic equations for the mathematical model
are based on, the now well established, Store and For-
ward model due to Gazis and Potts (1963). The choice
of this model is due to the simplifications it imposes on
the equations that will allow us to write them as lin-
ear equations on the number of vehicles and the green
time of the junctions.

The network is represented by a directed graph com-
posed of nodes and arcs. The nodes j ∈ J represent
intersections and the arcs a ∈ A the unidirectional
travel links. On every arc, the dynamic equation rep-
resents the progress of the total number of vehicles on
the arc, expressed as private vehicle unit (PVU) (for
example a bus equals 2,3 PVU).

The traffic dynamics on each arc a is modeled us-
ing the vehicle-conservation equation (Diakaki et al.,
2002),

xa(k + 1) = xa(k) + T [qa(k)− ua(k)], (1)

where xa is the number of cars on the link expressed
in PVU, qa and ua are the inflow and the outflow of
link a during [kT, (k + 1)T ] where k is the discrete
time step and T is the sampling time. See Fig. 1 to
clarify the relations between the variables. Here we
have neglected the traffic generated and consumed in
each link, it would be easy to include them without
substantially changing the current development.

In order to formulate the equations for q and u we
will consider the saturation flow of each link Sa, that
represents the maximum traffic flow that can exit the
link, expressed in PVU/s. The Store and Forward
model assumes that the vehicles reaching the arc’s end
are stored there and exit with rate Sa during the green
light. Hence, we can transform queue-legth quantities
into flow ones writing:

ua(k) =
Sa.Ga(k)

C
, (2)

where C is the cycle time and Ga(k) is the effective
green time of link a, i.e., the green light duration at-
tributed to arc a during the traffic light cycle C of the
intersection situated at the arc exit, and will be the
control variable in our approach. If the green light pe-
riods are attributed to arc a during different phases
(see Fig. 2), Ga(k) is equal to the sum of all of these

Figure 2: A typical junction with two possible phase
definitions.

green light durations,

Ga(k) =
∑

j,i∈Pa
j

Gj,i(k), (3)

where P a
j is the set of the intersection phases j during

which arc a has the green light. It also assumes that
the outflow is distributed among the different following
links according to the coefficients τab, called turning
rates, that represent the proportion of outflow from a
entering in arc b.

If the link a originates at the junction M , the inflow
traffic rate entering arc a can be written as the sum of
the outflow traffic rates coming from the arcs entering
junction M (other than a). If the arc b precedes arc
a, the corresponding flow is τbaub, so the total flow
entering arc a is

qa(k) =
∑
b∈IM

τb,aub(k), (4)

where IM is the set of arcs entering junction M , and
we have defined τaa = 0.

Replacing all the previous definitions in the Eq. (1),
we obtain the following model :

xa(k + 1) = xa(k) +
T

C
[
∑
b∈IM

τb,aSbGM,b(k)

− Sa

∑
j,i∈Pa

j

Gj,i(k)]
(5)

or in matrix form :

X(k + 1) = X(k) +B.G(k), (6)

where B is a matrix of dimension NL ×NP , NL is the
number of links and NP is the total number of phases
on the network.

This modeling is possible under the following as-
sumptions:

• the sampling time interval T is at least equal
to the duration of the light cycle C, we will use
T = C,

• the gaps between the intersections are not taken
into account,

• variations in the queue are neglected, which
means that the model considers that all the in-
put flows on the arc have the green phase at the
same time.
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III. OPTIMAL CONTROL PROBLEM

Here we describe the TUC methodology as it is pre-
sented in Diakaki et al. (2002), Dinopoulou et al.
(2006). We pose the optimal control problem, the con-
trol means that we will be able to choose the green
light times in order to modify the flows. The opti-
mality will be measured in terms of the number of
vehicles on the system. In this section, we will make
explicit these definitions, when doing so, we keep in
mind that we want to obtain a simply computable
global green time. As we have linear dynamics, choos-
ing a quadratic objective function and imposing no re-
strictions will make the optimal control problem over
an infinite horizon belong to the LQ class. The impor-
tance of that relies in the fact that the optimal solution
can be written as a feedback law and the matrix that
defines this law is the solution of a matrix equation
(Riccati equation) stated in terms of the given data.

From the viewpoint of the traffic regulation, our ob-
jective is to improve the traffic conditions on the net-
work. The objective function need to be quadratic in
terms of the state and control variables to rest in the
LQ case, the general form of these functions is

J(x, u) =

∫ ∞

0

αx‖x‖2Qx
+ αu‖u‖2Qu

, (7)

where Qx and Qu are positive definite matrices that
allow to weigh differently the components of x and u,
and αx and αu are non negative coefficients. These
conditions guarantee that the function J will be con-
vex (strongly if αx,u > 0) which in turn guarantees
the existence (and uniqueness) of the solution over the
closed convex set defined by the linear dynamic Eqs.
(1).

The choice of the matrices Qx and Qu could be
used to obtain different relative improvements among
the arcs. For example, bus traversed arcs could be
given heavier weights in order to reduce congestion
given priority to those arcs, and so to public transport.
This and other strategies with public transport prior-
ity have been analyzed in Bhouri and Lotito (2005).

In our (discrete time) case we propose the following
objective function

J(G) =

∞∑
k=0

(α‖X(k)‖2 + β‖G(k)‖2), (8)

where α and β are non-negative weighing parameters
and the values of X are given by the dynamic equa-
tions (5) and (6).

We can give an interpretation to each term in the ob-
jective function (8), the first term of the criteria aims
at reducing the number of vehicles on every arc on the
network and thus to equalize the congestion on every
arc; the second term helps to avoid large variations of
the control (green light times).

A. Control Law

The problem of optimal control consists in minimizing
the criteria given by Eq. (8) respecting the dynam-
ics of the system given by the Eqs. (6). In order to
avoid working with the input and exit flows we define
a nominal green time GN that solves BGN = 0, in
such case the corresponding nominal state is constant
and we can work with the following dynamic equation

X(k + 1) = AX(k) +BΔG(k), (9)

where ΔG(k) = G(k)−GN .
Using the LQ optimization method, the applied

command law is given by the following equation

G(k) = GN − F.X(k), (10)

where F is the Feedback matrix defined as F = (R +
BTPB)−1BTPA and the matrix P solves the Riccati
matrix equation P = Q + ATPA − ATPBF which
depends on the coefficients α, β, and γ of the objective
function through matrices Q ad R.

Applying the Eq. (10) to G(k) and to G(k − 1), by
a simple substraction, one obtains

G(k) = G(k − 1)− F.(X(k)−X(k − 1)), (11)

the use of this equation rather than of equation (11),
avoids the estimation of the nominal values of the con-
trol.

It should be noted that the choice of an infinite time
horizon in Eq. (8) implies that the Feedback matrix
F is time independent. This choice is justified by the
will for a real time command of the intersection lights
and thus by the simplification of the calculations for
each command.

B. The constraints

The solution of the optimal command problem by
the LQ method doesn’t enable us to take the con-
straints into account because the Riccati equation will
no longer be valid. However, for operative needs, at ev-
ery intersection j, the durations of green lights should
comply with a certain number of constraints:

• the cycle duration (C),

• the phase diagram : all of phases Pj should have
their green light within the cycle,

• the clearance times between phases Rj ,

which implies: ∑
i∈Pj

Gj,i +Rj = C, ∀j. (12)

On the other hand, the duration of every green light
is limited by a maximum and a minimum. Indeed, a
too long red light duration can be interpreted by users
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as a malfunction of the intersection lights and imply
their non-compliance:

Gj,i,min ≤ Gj,i ≤ Gj,i,max. (13)

We solved this problem through a projection of the
obtained command values onto the set of feasible val-
ues defined by the above constraints. It means to ob-
tain the closest (in some distance) values to the opti-
mal but not feasible ones. The projection step means
to solve the following quadratic optimization problem
that includes the constraints (12) and (13),

min
G

∑
i∈Pj

(Gj,i −Gj,i)
2,

s.t. (12) and (13).
(14)

This problem belongs to the class of Quadratic
Knapsacks problems and the numerical solution was
done according to the algorithm presented in Lotito
(2006).

The authors of the TUC strategy (Diakaki et al.,
2002, Dinopoulou et al., 2006) propose another algo-
rithm to compute the projection, we have not tested
in practice if it outperforms the one presented here, as
the theoretical results show that their computational
complexity is similar.

IV. MICROSCOPIC SIMULATOR

The availability of mathematical models describing the
dynamics of vehicles is fundamental in order to ap-
ply control theory. The model previously presented,
stated in terms of continuous vehicle flows, is consid-
ered as a Macroscopic model, in comparison to Mi-
croscopic models, which consider the position of each
vehicle.

In order to perform computational tests, it is cru-
cial to use a model of a different nature from the
one used to design the control strategy. Microscopic
simulators are mostly based mostly in Cellular Au-
tomata (Nagel, 2002, Lotito et al., 2005), or on the
Car-following model (Papageorgiou, 1983). The last
one was chosen to develop our simulator. Hence we
considered a discrete event system such that at each
time step there are vehicles entering at fixed rates and
interacting following certain rules.

The position of the vehicles evolves according to the
equations:

yn − yn+1 = L+ Sẏn+1 (15)

where n is the precedent vehicle, L is the vehicle
length, and S is a separation coefficient. In this for-
mula, the vehicle n+1 is separated from the precedent
by a fixed distance (L) plus a distance proportional to
its speed.

After differentiating Eq. (15) it results:

ÿn+1 =
1

S
(ẏn(t)− ẏn+1(t)) (16)

calculate distance
between yn and yn+1
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Figure 3: Flow diagram of the micro-simulator algo-
rithmic kernel.

showing that the acceleration (or deceleration) is pro-
portional to the relative speed between successive ve-
hicles. Defining the factor 1/S and introducing a delay
coefficient, the following formula for the speeds is ob-
tained:

ÿn+1(t+ τ) =
1

S
(ẏn(t)− ẏn+1(t)) (17)

Even if these considerations are common in prac-
tice, a set of parameters that are randomly distributed
among the different vehicles is used here. These
parameters include: maximum speed, length of the
vehicle, behavior, anxiety, etc. Now, in the pro-
posed model, the vehicle position is given by a set
of rules that includes: precedent vehicle position, rel-
ative speed, maximum speed, maximum acceleration
(or deceleration).

In Fig. 3 we presented a flow diagram of the algo-
rithmic kernel of the microsimulator.

With the aim to develop a microsimulator that fit
as good as possible the real traffic dynamic, the car
following model has been complemented with multi-
lines and lane changing strategies (Hidas, 2002). A
lane change may be necessary for a number of reasons,
for example, when a driver wants to turn left or right
at the end of the line, he should be located in the
corresponding line. However, if the driver can not take
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Figure 4: Flow diagram of the lane changing process.

Figure 5: Screen-shot of the micro-simulator.

the correspond line, he should stop and wait for the
next time step to located in the right line. This case
is named compulsory lane change.

In the other hand, if the driver wants to change
because he will overtake another driver, or take the
correct line for a future turn, the lane change is called
desirable. In this case, if the driver can not change, it
keeps moving in the original lane.

In Fig. 4 we presented a flow diagram of the lane
changing process used in the microsimulator. Another
addition to the model was the inclusion of several ve-
hicles types as an urban traffic network generally has.
For example, trucks and public transport vehicles have
very different dynamics. The developed microsimula-
tor has a vehicle type modelling a public transport
that interacts with private cars.

Consequently, at each time step new vehicles enter
the system according to predefined rates of entering
arcs, and interact with the existing ones following the
described rules. The simulation is shown with the aid
of a graphical interface, which also serves to enter the
entering rates. A screen-shot of the simulator is shown
in Fig. 5.

The calibration made for the city of Tandil (Ar-
gentina) in a study requested by the Transit Authori-
ties (Lotito and Mayorano, 2008) has shown that the
simulation really fit the dynamic behavior. Indeed, the

Figure 6: The resulting traffic fundamental diagram.
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Figure 7: The example network

simulation results approach very well the Fundamen-
tal Diagram of Traffic provided by the city (see Fig.
6).

V. NUMERICAL EXPERIMENTS

In this section we expose numerical tests made over a
small example network. The numerical tests have been
made using a micro simulator based on car following
models (Gabard, 1991, Helbing et al., 2002). This sim-
ulator has been validated with real data taken from
the city of Tandil in Argentine (Lotito and Mayorano,
2008).

A. Example Network

The chosen example network has 8 intersections, 32
links, and a bus line (highlighted) as shown in the Fig.
7.

Each intersection has the general form given in
Fig. 8 and has three phases. In the nominal state,
each one is given 50%, 10%, and 30% of the green
time respectively, as shown in Fig. 9. In this figure
the turning rates for each movement are also shown.

The saturation flow is 0.5 veh./s everywhere and the
entering flows are given in the following table:

Arcs / Flow (veh./s)
1 3 11 16 20 26 30 32

0.25 0.15 0.15 0.25 0.25 0.15 0.25 0.15

The flow d originated and consumed at each link is
determined in such a way that B ∗ Ḡ + d = 0, thus
guaranting that the proposed ’nominal’ state is indeed
nominal.
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Figure 8: Diagram of a general junction
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Figure 9: Diagram of the different phases with the
proportion of green time and the turning rates, for a
given junction

In this example, the bus line (see Fig. 7 in yellow)
enters on node 12 and traverses intersections 1, 5, 9,
14, 28 and 31, making a stop before intersections 1, 9
and 28, (shown with an S in the Fig. 7). The frequency
of the bus line is 1 bus every 3 time steps.

The feedback matrices are used to compute the vari-
ation on phases duration from the variation of the
number of cars on every arc, as it is described math-
ematically by Eq. (11). Hence the rows of the feed-
back matrices correspond to phase durations and the
columns to arc occupancy. Each phase allows for some
movements (see Fig. 8 and Table 1).

Phase 1 2 3 4
1 → 5 4 → 2 3 → 2 8 → 7

Turning 1 → 6 4 → 6 3 → 6 8 → 4
mov. 4 → 2 3 → 5 5 → 9

Phase 5 6 7 8
5 → 9 10 → 4 9 → 13 12 → 8

Turning 5 → 7 10 → 7 9 → 14 12 → 14
mov. 10 → 9 12 → 8

Phase 9 10 11 12
11 → 8 16 → 12 13 → 17 18 → 17

Turning 11 → 14 16 → 15 13 → 15 18 → 15
mov. 11 → 13 13 → 17 18 → 13

Table 1: Turning movements corresponding to each
phase

B. Numerical results

In order to see the control in action, the following per-
turbation scheme was considered: From 0:00 to 1:00,
the entering rates are the nominal ones. From 1:00 to
1:30, the entering rates on arcs 1, 11 and 16 are in-
creased by 50%. From 1:30 to 5:00, the entering rates
are reduced to nominal values.

The numerical results obtained by the described
simulations are presented in Table 2. In order to re-
duce the impact of stochastic variations, the values
correspond to an average of 100 runs of the simula-
tor. The first one row, named None, corresponds to
the base case in which no strategy is applied, and the
second one with the base in which TUC strategy is
applied. In the column Total, the total congestion is
shown, it is computed as

∑
a

∑
k Xa(k). The column

Bus, is the sum of the number of cars only for the arcs
traversed by bus, and column Xb is the sum of the
numbers of cars, which are at the same arc of a bus at
the same time. The column BMT corresponds to the
bus mean travel time measured in seconds.

Total Bus Xb BMT (s) Sat.

None 774.6 171.2 88.8 1106.6 100%
TUC 762.0 152.5 77.0 1061.8 65%

Table 2: Simulation results

For the sake of comparison we have defined ΔX and
ΔXb by the formulae:

ΔX =

(
T∑

t=0

‖X(t)− X̃(t)‖2
) 1

2

(18)

and

ΔXb =

(
T∑

t=0

Xb(t)‖X(t)− X̃(t)‖2
) 1

2

(19)

The value of ΔX measures the distance to the nominal
state for the total number of vehicles in the system
during the whole period. The value of ΔXb measures
the distance to the nominal state for the total number
of vehicles that are present at the same time with a
bus on the same arc during the whole period. Those
values are shown in the corresponding columns in the
table 3.

ΔX ΔXb

None 81.7 39.9
TUC 62.3 16.7

Table 3: Simulation results

We call an arc saturated when there is a bus on
it and the number of cars is greater than the nominal
state increased by 25%. The definition is taken from
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Diakaki (1999) but modified to take into account the
bus. In the column Sat. the percentage of saturated
arcs with respect to the base case is shown.

In Table 2, the numbers in bold represent the best
value in each column. From the results shown we can
see that the TUC strategy is the best for each partic-
ular criterium.

In Fig. 10 we can see the evolution of ΔX and ΔXb,
for the uncontrolled case and the TUC strategy. We
can observe that the TUC strategy restores the nom-
inal flow over all the arcs faster than None (see left
graph), and in the case of the flow together with buses
it is too the strategy which better restores the nominal
regime (see right graph).
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Figure 10: Evolution of ΔX (left) and ΔXb (right) in
the uncontrolled case (none) and when the TUC and
the NetPrior Strategies are applied. The graphs of the
uncontrolled case have been truncated, the peaks are
61307 and 15487.

VI. CONCLUSION

In this work we have considered the problem of the
reduction of congestion in an urban traffic network.
The application of the TUC strategy to a simple ex-
ample and the development of a microscopic simulator
to test it have been presented. The obtained numer-
ical results confirmed the results obtained previously
by the authors of TUC and show that, at least for
the micro simulations, TUC is a good option for con-
gestion reduction. This strategy is realistic and easily
implementable, facilitating the real time computation
of green times. More advanced tests on the real traf-
fic urban network of Tandil, with traffic real data will
be achieved to validate it thoroughly. The application

of this methodology can also be envisaged to reduce
congestion giving priority to public transport as it has
been done in the related work Farhi et al. (2006).
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