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THE BRAUER-PICARD GROUP OF THE REPRESENTATION

CATEGORY OF FINITE SUPERGROUP ALGEBRAS

MARTÍN MOMBELLI

Abstract. We develop further the techniques presented in a previous ar-

ticle (M. Mombelli. Abh. Math. Semin. Univ. Hamb. 82 (2012), 173–192),
to study bimodule categories over the representation categories of arbitrary

finite-dimensional Hopf algebras. We compute the Brauer-Picard group of

equivalence classes of exact invertible bimodule categories over the represen-
tation categories of a certain large family of pointed non-semisimple Hopf

algebras, the so called supergroup algebras (N. Andruskiewitsch, P. Etingof

and S. Gelaki. Michigan Math. J. 49 (2001), 277–298). To obtain this result
we first give a classification of equivalence classes of exact indecomposable

bimodule categories over such Hopf algebras.

1. Introduction

The Brauer-Picard group BrPic(C) of a finite tensor category C, introduced
in [9], is the group of equivalence classes of invertible exact C-bimodule categories.
This group is a fundamental piece of information needed to compute extensions of
a given tensor category by a finite group. Also it has a close relation to certain
structures appearing in mathematical physics, see for example [7, 14].

In [9] the authors compute the Brauer-Picard group of the representation cat-
egory of an arbitrary finite Abelian group G. Given two semisimple bimodule
categories M,N over Rep(G) the authors compute the decomposition into inde-
composable bimodule categories of the tensor product M �Rep(G) N . Using this
result and some other techniques they compute BrPic(Rep(G)). The same methods
appear to be unsuccessful for an arbitrary finite-dimensional Hopf algebra H. The
problem of explicitly given a decomposition of the tensor product M �Rep(H) N
into indecomposable bimodule categories for arbitrary bimodule categories M, N
looks complicated.

Using Hopf theoretic techniques this problem was partially solved in [17] by
considering the tensor productM�Rep(H)N only in the case when both bimodule
categories M, N are invertible.
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The main result of this paper is the computation of the Brauer-Picard group
of the representation category of the so called supergroup algebras over Abelian
groups.

Let G be a finite group, u be an element of order 2 in the center of G and V
be a finite-dimensional G-module such that u acts by −1 in V . The vector space
V is a Yetter-Drinfeld module over G by declaring the coaction δ : V → kG⊗kV ,
δ(v) = u⊗v, v ∈ V . The Nichols algebra of V is the exterior algebra ∧(V ) and
the bosonization ∧(V )#kG is called a supergroup algebra [1]. We shall denote this
Hopf algebra by A(V, u,G). This family of Hopf algebras played a central role in
the classification of finite-dimensional triangular Hopf algebras [8].

If H is a finite-dimensional Hopf algebra then left module categories over Rep(H)
are parametrized by equivalence classes of certain H-comodule algebras. Since bi-
module categories over Rep(H) are the same as left module categories over the
Deligne’s tensor [5] product Rep(H) � Rep(H)op = Rep(H⊗kH

cop), then bimod-
ule categories over Rep(H) are parametrized by equivalence classes of certain left
H⊗kH

cop-comodule algebras. If M and N are invertible exact Rep(H)-bimodule
categories the tensor productM�Rep(H)N is an invertible exact Rep(H)-bimodule
category, therefore indecomposable. In Section 4 we collect all these results and
we recall results from [17] allowing us to give a precise description of the category
M�Rep(H) N .

If H is a coradically graded Hopf algebra then H⊗kH
cop is also coradically

graded, and indecomposable exact left module categories over Rep(H⊗kH
cop) are

parametrized by certain equivalence classes of deformations of coideal subalgebras
in H⊗kH

cop. This results are contained in Section 5.
If M is an exact indecomposable bimodule category over Rep(A(V, u,G)) then

there exists a certain left A(V, u,G)⊗kA(V, u,G)cop-comodule algebra K such that
M is equivalent to the category of finite-dimensional left K-modules. Since A(V, u,
G) is a coradically graded Hopf algebra then K is a certain deformation of a
coideal subalgebra of A(V, u,G)⊗kA(V, u,G)cop. In Section 6 we explicitly describe
coideal subalgebras in the tensor product A(V, u,G)⊗kA(V, u,G)cop. Using these
results, in Section 7, we prove that if M is an exact indecomposable left module
category over the category Rep(A(V, u,G)⊗kA(V, u,G)cop) there exists a 6-tuple
(W 1,W 2,W 3, β, F, ψ) where

(i) F ⊆ G×G is a subgroup, ψ ∈ Z2(F,k×) is a 2-cocycle,
(ii) W 1,W 2 ⊆ V W 3 ⊆ V ⊕ V are subspaces such that W 3 ∩W 1 ⊕W 2 = 0,

W 3 ∩ V ⊕ 0 = 0 = W 3 ∩ 0⊕ V , and all subspaces are invariant under the
action of F ,

(iii) β : ⊕3
i=1W

i×⊕3
i=1W

i → k is a bilinear form stable under the action of F ,
such that

β(w1, w2) = −β(w2, w1),

β(w1, w3) = β(w3, w1),

β(w2, w3) = −β(w3, w2),
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for all wi ∈ W i, i = 1, 2, 3, and β restricted to W i ×W i is symmetric for
any i = 1, 2, 3. If (u, u) /∈ F then β restricted to W 1 ×W 2 is null,

such thatM is module equivalent to the category of finite-dimensional left K(W 1,
W 2,W 3, β, F, ψ)-modules, where K(W 1,W 2,W 3, β, F, ψ) is a certain left comodule
algebra over A(V, u,G)⊗kA(V, u,G)cop. We also describe equivalence classes of
such module categories.

Using these results, in Section 8, we prove our main result:

Theorem 1.1. Assume G is Abelian. The group BrPic(Rep(A(V, u,G))) is iso-
morphic to the group of (certain equivalence classes of) pairs (T, α) where

• α ∈ O(G⊕ Ĝ), see Definition 8.1,
• T : V ⊕ V ∗ → V ⊕ V ∗ is a linear isomorphism such that

T (v, f) = x−1 · T (y · v, y · f),

T 1(0, f) = 0, T 2(0, f)(T 1(v, 0)) = f(v),

for all (v, f) ∈ V ⊕V ∗, (x, y) ∈ Uα. Here T (v, f) = (T 1(v, f), T 2(v, f)) for
all f ∈ V ∗, v ∈ V .

The product of two such pairs (T, α), (T ′, α′) is

(T, α) • (T ′, α′) = (T ◦ T ′, αα′).

As expected, this group is not finite, as is the case for fusion categories. The main
difficulty to prove this theorem relies on finding which of the comodule algebras
K(W 1,W 2,W 3, β, F, ψ) give invertible bimodule categories and give an explicit
description of the product of the group BrPic(Rep(A(V, u,G))). Most of Section 8
is dedicated to this task.

It is expected that this result led us to construct interesting new families of
finite non-semisimple tensor categories that are extensions by a finite group of the
category Rep(A(V, u,G)).

Acknowledgment. This work was supported by CONICET, Secyt (UNC), Min-
cyt (Córdoba) Argentina. It was written during a research fellowship granted by
CONICET, Argentina in the University of Hamburg, Germany. I would like to
thank professors Christoph Schweigert and Ingo Runkel for many conversations
from which I have benefited greatly and thanks also to professor Bojana Femić for
her many helpful remarks.

2. Notation and preliminaries

We shall work over an algebraically closed field k of characteristic 0. All vector
spaces and algebras are considered over k. We denote vectk the category of finite-
dimensional k-vector spaces. If A is an algebra we shall denote by AM (MA ) the
category of finite-dimensional left (right) A-modules.

If V is a vector space any bilinear form β : V × V → k determines a linear

morphism β̂ : V → V ∗

β̂(v)(w) = β(v, w), for all v, w ∈ V. (2.1)
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Let M be an Abelian category. A full subcategory N of M is called a Serre
subcategory if

• every object in M isomorphic to an object in N is in N ,
• every M-quotient and every M-subobject of an object in N lies in N ,
• every M-extension of objects in N lies in N .

It is well-known that if F :M→M is an exact functor then the full subcategory
of objects N ∈ M such that F (N) = 0 is a Serre subcategory. This fact will be
used without further mention.

2.1. Finite tensor categories. A tensor category over k is a k-linear Abelian
rigid monoidal category. Hereafter all tensor categories will be assumed to be over
a field k. A finite category is an Abelian k-linear category such that it has only
a finite number of isomorphism classes of simple objects, Hom spaces are finite-
dimensional k-vector spaces, all objects have finite lenght and every simple object
has a projective cover. A finite tensor category [10] is a tensor category with finite
underlying Abelian category such that the unit object is simple. All functors will
be assumed to be k-linear and all categories will be finite.

2.2. Twisting comodule algebras. Let H be a Hopf algebra. Let us recall
that a Hopf 2-cocycle for H is a map σ : H⊗kH → k, invertible with respect to
convolution, such that

σ(x(1), y(1))σ(x(2)y(2), z) = σ(y(1), z(1))σ(x, y(2)z(2)), (2.2)

σ(x, 1) = ε(x) = σ(1, x), (2.3)

for all x, y, z ∈ H. Using this cocycle there is a new Hopf algebra structure con-
structed over the same coalgebra H with the product described by

x.[σ]y = σ(x(1), y(1))σ
−1(x(3), y(3)) x(2)y(2), x, y ∈ H. (2.4)

This new Hopf algebra is denoted by H [σ]. If σ : H ⊗H → k is a Hopf 2-cocycle
and A is a left H-comodule algebra, then we can define a new product in A by

a.σb = σ(a(−1), b(−1)) a(0).b(0), (2.5)

a, b ∈ A. We shall denote by Aσ this new algebra with unchanged left H-comodule
structure.

Lemma 2.1. The algebra Aσ is a left H [σ]-comodule algebra. �

3. Representations of finite tensor categories

Let C be a tensor category. For the definition and basic notions of left and right
exact module categories we refer to [10, 19].

In this paper we only consider module categories that are finite categories. A
module functor between left C-module categoriesM andM′ over a tensor category
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C is a pair (T, c), where T : M → M′ is a functor and cX,M : T (X⊗M) →
X⊗T (M) is a family of natural isomorphism such that for any X,Y ∈ C, M ∈M:

(idX ⊗ cY,M )cX,Y⊗MT (mX,Y,M ) = mX,Y,T (M) cX⊗Y,M (3.1)

`T (M) c1,M = T (`M ). (3.2)

The direct sum of two module categories M1 and M2 over a tensor category
C is the k-linear category M1 ×M2 with coordinate-wise module structure. A
module category is indecomposable if it is not equivalent to a direct sum of two
non trivial module categories. Any exact module category is equivalent to a direct
sum of indecomposable exact module categories, see [10].

Definition 3.1. [2, 11] LetM be a left C-module category. A submodule category
of M is a Serre subcategory stable under the action of C.

The next Lemma is a straightforward consequence of the definitions.

Lemma 3.2.

1. Let M be an exact C-module category and N ⊆ M a submodule category.
If M = ⊕i∈IMi is a decomposition into indecomposable module categories
then there is a subset J ⊆ I such that N = ⊕i∈JMi.

2. If M is an indecomposable exact C-module category and (F, c) : N → M
is a C-module functor such that F is full and faithful, and the subcategory
F (N ) is Serre then F is an equivalence. �

3.1. Bimodule categories. Let C,D be tensor categories. For the definition of
a (C,D)-bimodule category we refer to [13, 9]. A (C,D)-bimodule category is the
same as left C �Dop-module category. Here � denotes Deligne’s tensor product of
Abelian categories [5].

A (C,D)-bimodule category is decomposable if it is the direct sum of two non-
trivial (C,D)-bimodule categories. A (C,D)-bimodule category is indecomposable
if it is not decomposable. A (C,D)-bimodule category is exact if it is exact as a
left C �Dop-module category.

If M is a right C-module category then Mop denotes the opposite Abelian
category with left C action C ×Mop →Mop, (M,X) 7→M⊗X∗ and associativity
isomorphisms mop

X,Y,M = m−1
Y ∗,X∗,M for all X,Y ∈ C,M ∈ M. Similarly if M

is a left C-module category. If M is a (C,D)-bimodule category then Mop is a
(D, C)-bimodule category. See [13, Prop. 2.15].

If M,N are (C,D)-bimodule categories, a bimodule functor is the same as a
module functor of C � Dop-module categories, that is a functor F :M→ N such
that (F, c) :M→N is a functor of left C-module categories, also (F, d) :M→N
is a functor of right D-module categories and

(idX⊗dM,Y )cX,M⊗rY F (γX,M,Y ) = γX,F (M),Y (cX,M⊗idY )dX⊗lM,Y , (3.3)

for all M ∈M, X ∈ C, Y ∈ D.
A (C,D)-bimodule category M is called invertible [9, Prop. 4.2] if there are

equivalences of bimodule categories

Mop �CM' D, M�DMop ' C.
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Lemma 3.3. [9, Corollary 4.4] IfM is an invertible (C,D)-bimodule category then
it is indecomposable as a bimodule category. �

Lemma 3.4. [9, Prop. 4.2] Let M be an exact (C,D)-bimodule category. The
following statements are equivalent.

1. M is an invertible.
2. There exists a D-bimodule equivalence Mop �CM' D.
3. There exists a C-bimodule equivalence M�DMop ' C.
4. The functor R : Dop → FunC(M,M), R(X)(M) = M⊗X, for all X ∈ D,
M ∈M, is an equivalence of tensor categories.

5. The functor L : C → FunD(M,M), L(Y )(M) = Y⊗M , for all Y ∈ C,
M ∈M, is an equivalence of tensor categories.

Proof. The proof of [9, Prop. 4.2] extends mutatis mutandis to the non-semisimple
case using results from [10]. �

3.2. Module categories over Hopf algebras. Let H be a finite-dimensional
Hopf algebra and let (A, λ) be a left H-comodule algebra. The category AM is a
representation of Rep(H). The action

⊗ : Rep(H)× AM→ AM, V⊗M = V⊗kM,

for all V ∈ Rep(H), M ∈ AM. The left A-module structure on V⊗kM is given by

a · (v⊗m) = a(−1) · v⊗a(0) ·m,
for all a ∈ A, v ∈ V , m ∈M . Here λ : A → H⊗kA, λ(a) = a(−1)⊗a(0).

If A is a H-comodule algebra via λ : A → H⊗kA, we shall say that a (right)
ideal J is H-costable if λ(J) ⊆ H⊗kJ . We shall say that A is (right) H-simple,
if there is no nontrivial (right) ideal H-costable in A. When A is right H-simple
then the category AM is exact, see [3, Prop. 1.20].

Theorem 3.5. [3, Theorem 3.3] Let M be an exact indecomposable module cat-
egory over Rep(H) then there exists a left H-comodule algebra A right H-simple
with trivial coinvariants such that M' AM as Rep(H)-modules. �

Two H-comodule algebras A, A′ are equivariantly Morita equivalent if the mod-
ule categories A′M, AM are equivalent.

4. Bimodule categories over Hopf algebras

4.1. Tensor product of invertible bimodule categories. Let A,B be finite-
dimensional Hopf algebras. A (Rep(B),Rep(A))-bimodule category is the same as
a left Rep(B⊗kA

cop)-module category. This follows from the fact that Rep(A)op '
Rep(Acop) and Rep(B) � Rep(Acop) ' Rep(B⊗kA

cop). Thus Theorem 3.5 im-
plies that any exact indecomposable (Rep(B),Rep(A))-bimodule category is equiv-
alent to the category SM of finite-dimensional left S-modules, where S is a finite-
dimensional right B⊗kA

cop-simple left B⊗kA
cop-comodule algebra.

Since Rep(A) is canonically a Rep(A)-bimodule category then there exists some
right A⊗kA

cop-simple left A⊗kA
cop-comodule algebra A such that Rep(A) ' AM
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as Rep(A)-bimodule categories. In [17] we computed this comodule algebra. Let
us recall this result.

We denote by diag(A) the left A⊗kA
cop-comodule algebra with underlying al-

gebra A and comodule structure:

λ : diag(A)→ A⊗kA
cop⊗k diag(A), λ(a) = a(1)⊗a(3)⊗a(2),

for all a ∈ A. Thus the category AM is a Rep(A)-bimodule category.

Lemma 4.1.

1. diag(A) is a right simple left A⊗kA
cop-comodule algebra and

diag(A)coA⊗kA
cop

= k1.
2. There is an equivalence of Rep(A)-bimodule categories

AM' diag(A)M.

Proof. 1. Let 0 6= I ⊆ A be a right ideal A-costable. Then for any a ∈ I,
a(1)⊗a(3)⊗a(2) ∈ A⊗kA⊗I which implies that a(1)⊗a(2) ∈ A⊗kI. Thus I is a
right ideal stable under the coaction, then I = A.

2. The identity functor Id : AM → diag(A)M is an equivalence of Rep(A)-
bimodule categories. �

Let us recall some constructions and results obtained in [17] concerning the
tensor product of bimodule categories over Hopf algebras. Set πA : A⊗B → A,
πB : A⊗B → B the algebra maps defined by

πA(x⊗y) = ε(y)x, πB(x⊗y) = ε(x)y,

for all x ∈ A, y ∈ B.
Let K be a right B⊗Acop-simple left B⊗Acop-comodule algebra and L a right

A⊗Bcop-simple left A⊗Bcop-comodule algebra. Thus the category KM is a
(Rep(B),Rep(A))-bimodule category and LM is a (Rep(A),Rep(B))-bimodule cat-
egory.

The categoryM(A,B,K,L) is the category B
KML of (K,L)-bimodules and left

B-comodules such that the comodule structure is a bimodule morphism. See [17,
Section 3]. It has a structure of (Rep(A),Rep(A))-bimodule category. Recall that
L is the left B⊗Acop-comodule algebra with opposite algebra structure Lop and
left B⊗Acop-comodule structure:

λ : L→ Acop⊗kB⊗kL, l 7→ (S−1
B ⊗SA)(l(−1))⊗l(0), (4.1)

for all l ∈ L. Also L is a right B-comodule with comodule map given by

l 7→ l(0)⊗πB(l(−1)), (4.2)

for all l ∈ L, and K is a left B-comodule with comodule map given by

k 7→ πB(k(−1))⊗k(0), (4.3)

for all k ∈ K. Using this structure we can form the cotensor product L�BK.
Define

λ(l⊗k) = πA(l(−1))⊗πA(k(−1))⊗l(0)⊗k(0), (4.4)
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for all l⊗k ∈ L�BK. Then L�BK is a left A⊗kA
cop-comodule algebra. See [17,

Lemma 3.6].
In [17] we have presented the functors

F : L�BKM→M(A,B,K,L), G :M(A,B,K,L)→ L�BKM

by F(N) = (L⊗kK)⊗L�BKN for all N ∈ L�BKM and G(M) = M coB for all

M ∈ M(A,B,K,L). We recall that the left B-comodule structure on F(N) is
given by δ : F(N)→ B⊗kF(N),

δ(l⊗k⊗n) = πB(k(−1))S−1(πB(l(−1)))⊗l(0)⊗k(0)⊗n, (4.5)

for all l ∈ L, k ∈ K,n ∈ N .
This pair of functors were studied in [6, 4]. In the following theorem we sum-

marize some results from [17].

Theorem 4.2.

(a) There is a Rep(A)-bimodule equivalence:

LM�Rep(B) KM'M(A,B,K,L).

(b) F and G are Rep(A)-bimodule functors.
(c) Assume that both bimodule categories LM, KM are invertible and L⊗kK '

C⊗kL�BK, as right L�BK-modules and left B-comodules. Here C is a
certain left B-comodule. Then there is an equivalence of Rep(A)-bimodule
categories

L�BKM' LM�Rep(B) KM.

Proof. For the proof of (a) and (b) see [17, Corollary 4.4, Prop. 4.7].
(c). We shall prove that the functors F , G establish an equivalence of module

categories.
Let us prove that F(G(M)) ' M for all M ∈ M(A,B,K,L). For any M ∈

M(A,B,K,L) there is a projection

πM : (L⊗kK)⊗L�BKM
coB →M, πM (l⊗k⊗m) = (l⊗k) ·m,

for all l⊗k ∈ L⊗kK, m ∈ M coB . Define the functor Φ : M(A,B,K,L) → vectk,
Φ(M) = ker(πM ). The functor Φ is a module functor. To see this it is enough to
prove that the diagram

F(G(X⊗M))
'−−−−→ X⊗F(G(M))

πX⊗M

y yidX⊗πM

X⊗M −−−−→
id

X⊗M.

is commutative. Then Φ is exact. The full subcategory N of M(A,B,K,L) con-
sisting of objects M such that Φ(M) = 0 is a submodule category. N is not the
null category since πL⊗kK = id, thus L⊗kK ∈ N . Since both LM, KM are in-
vertible the product LM�Rep(B) KM'M(A,B,K,L) is indecomposable. Hence

N =M(A,B,K,L). This implies that F(G(M)) = M for all M ∈M(A,B,K,L).

Rev. Un. Mat. Argentina, Vol. 55, No. 1 (2014)



THE BRAUER-PICARD GROUP OF FINITE SUPERGROUP ALGEBRAS 91

Since L⊗kK ' C⊗kL�BK, as right L�BK-modules and left B-comodules the
functor F is full and faithful, thus it is an equivalence of categories. �

Remark 4.3. In all examples the assumption L⊗kK ' C⊗kL�BK in Theorem 4.2
(c) seems to be superfluous, although I do not know any counterexample.

5. Graded comodule algebras over Hopf algebras

From the discussion on Section 3.2, equivalence classes of indecomposable exact
module categories over the representation categories of Hopf algebras are in cor-
respondence with equivariant Morita equivalence classes of right simple comodule
algebras. To study this class of algebras we developed a technique in [16] using
the Loewy filtration and the associated graded algebra. We briefly recall all this
notions.

If H is a finite-dimensional Hopf algebra then H0 ⊆ H1 ⊆ · · · ⊆ Hm = H
will denote the coradical filtration. When H0 ⊆ H is a Hopf subalgebra then the
associated graded algebra grH is a coradically graded Hopf algebra. If (A, λ) is
a left H-comodule algebra, the coradical filtration on H induces a filtration on A,
given by An = λ−1(Hn⊗kA), n = 1, . . . ,m. This filtration is called the Loewy
series on A.

Recall that if H = ⊕mi=0H(i) is a coradically graded Hopf algebra, a left H-
comodule algebra (A, λ) is a graded comodule algebra, if it is graded as an algebra
A = ⊕mi=0A(i) and for each 0 ≤ n ≤ m

λ(A(n)) ⊆
m⊕
i=0

H(i)⊗kA(n− i). (5.1)

A graded comodule algebra A = ⊕mi=0A(i) is Loewy-graded if the Loewy series is
given by An = ⊕ni=0A(i) for any 0 ≤ n ≤ m.

If A is a left H-comodule algebra the associated graded algebra grA obtained
from the Loewy filtration is a Loewy-graded left grH-comodule algebra. For more
details see [16].

The following result will be needed later.

Lemma 5.1. Let H = ⊕mi=0H(i) be a coradically graded Hopf algebra and (A, λA)
a left H comodule with a grading A = ⊕mi=0A(i) such that (5.1) holds. If B ⊆ A is
a subcomodule algebra and we set B(n) = B ∩A(n) then

B = ⊕mi=0B(i).

Proof. Let b ∈ B, then b =
∑m
i=0 bi where bi ∈ A(i). Let us prove that bi ∈ B for

all i = 0, . . . ,m. Denote p : H → H(0), πj : A → A(j) the canonical projections.
Observe that for any j = 0, . . . ,m

(p⊗πj)λ(b) = (p⊗id)λ(bj).

Since (ε⊗id)(p⊗id)λ(bj) = bj then bj = (ε⊗id)(p⊗πj)λ(b) ∈ B. �
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5.1. Comodule algebras over coradically graded Hopf algebras. Let G be
a finite group and H = ⊕mi=0H(i) be a finite-dimensional coradically graded Hopf
algebra where H(0) = kG is the coradical.

Let (A, λ) be a left H-comodule algebra right H-simple with trivial coinvariants
and with a grading A = ⊕mi=0A(i) making A a Loewy-graded left H-comodule
algebra. Since A is right H-simple with trivial coinvariants then A(0) = kψF
where F ⊆ G is a subgroup and ψ ∈ Z2(F,k×) is a 2-cocycle.

Set π : A → A(0) the canonical projection and ε : A(0) → k the map given by
ε(ef ) = 1 for all f ∈ F .

Remark 5.2. If ψ is trivial then ε : A(0)→ k is an algebra morphism.

Proposition 5.3. Assume that ψ is trivial and let φ : A→ H be the map defined
by φ = (idH⊗επ)λ. Then

(i) φ is an algebra morphism,
(ii) φ is a H-comodule map, and
(iii) φ is injective.

Proof. (i). It follows since all maps in the definition of φ are algebra morphisms.
(ii). ∆φ = ∆(idH⊗επ)λ = (idH⊗idH⊗επ)(∆⊗idA)λ. Using the coassociativity

of λ we obtain that ∆φ = (idH⊗φ)λ.

(iii). Let a ∈ kerφ. Assume that a 6= 0. Write a =
∑t
n=0 a

(n) where a(n) ∈ A(n)

and t ≤ m. We can assume that a(t) 6= 0. Then λ(a(n)) ∈ ⊕ni=0H(i)⊗kA(n − i).
Set λ(a(n)) =

∑n
i=0 bn,i where bn,i =

∑
k x

n,i
k ⊗c

n,i
k and xn,i ∈ H(i), cn,i ∈ A(n− i).

Since a(t) 6= 0 then bt,t 6= 0. Indeed, if bt,t = 0 then λ(a(t)) ∈ ⊕t−1
i=0H(i)⊗kA,

hence a(t) ∈ ⊕t−1
i=0A(i) = At−1, which is imposible unless a(t) = 0.

Also, ∆φ(a) = 0, then (idH⊗idH⊗επ)(idH⊗λ)λ(a) = 0 which implies that

t∑
n=0

n∑
i=0

∑
k

xn,ik ⊗(idH⊗επ)λ(cn,ik ) = 0

The element of the above summation that belongs to H(t)⊗kH(0)⊗kA(0) must be

equal to zero, hence
∑
k x

t,t
k ⊗(idH⊗ε)λ(ct,tk ) = 0. Since we have that∑
k

xt,tk ⊗(idH⊗ε)λ(ct,tk ) = bt,t

we get that bt,t = 0, which is a contradiction. Therefore a = 0. �

In other words, Proposition 5.3 implies that if A is a Loewy-graded right H-
simple left comodule algebra with trivial coinvariants and A(0) is a Hopf subalgebra
of H(0) then A is isomorphic to a left coideal subalgebra of H. The next step is
to study what happens if A(0) is not a Hopf subalgebra of H(0).

Let ψ̂ ∈ Z2(G,k×) be a 2-cocycle such that ψ̂ |F×F= ψ.
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Lemma 5.4. There exists a Hopf 2-cocycle σ : H⊗kH → k such that for any
homogeneous elements x, y ∈ H

σ(x, y) =

{
ψ̂(x, y), if x, y ∈ H(0);

0, otherwise.
(5.2)

Proof. See [12, Lemma 4.1]. �

The following result is a straightforward consequence of Proposition 5.3.

Lemma 5.5. Let A be a Loewy-graded right H-simple left comodule algebra with
trivial coinvariants and A(0) = kψF where F ⊆ G is a subgroup and ψ ∈ Z2(F,k×)
is a 2-cocycle. Then, there exists a Hopf 2-cocycle σ : H⊗kH → k such that Aσ is
isomorphic to a homogeneous left coideal subalgebra of H [σ] as a left H [σ]-comodule
algebras. �

Proof. From Lemma 5.4 there exists a Hopf 2-cocycle σ : H⊗kH → k such that
σ(x, y) = ψ−1(x, y) for all x, y ∈ F . The comodule algebra Aσ is Loewy-graded
and (Aσ)(0) = kF . Thus the Lemma follows from Proposition 5.3. �

6. Supergroup algebras and their coideal subalgebras

We shall recall the definition of supergroup algebras [1], their Hopf algebra
structure, and we describe the tensor product of two such Hopf algebras. We
compute also their homogeneous coideal subalgebras, a key ingredient to compute
module categories.

6.1. Finite supergroup algebras. Let G be a finite group, u ∈ G be a central
element of order 2 and V a finite-dimensional G-module such that u · v = −v
for all v ∈ V . The space V has a G-comodule structure δ : V → kG⊗kV given
by δ(v) = u⊗v, for all v ∈ V . This gives V structure of Yetter-Drinfeld module
over kG. The Nichols algebra of V is the exterior algebra B(V ) = ∧(V ). The
Hopf algebra obtained by bosonization ∧(V )#kG is called in [1] a finite supergroup
algebra. We will denote this Hopf algebra by A(V, u,G). Hereafter we shall denote
the element v#g simply by vg, for all v ∈ V, g ∈ G.

The algebra A(V, u,G) is generated by elements v ∈ V, g ∈ G subject to relations

vw + wv = 0, gv = (g · v)g, for all v, w ∈ V , g ∈ G.

The coproduct and antipode are determined by

∆(v) = v⊗1 + u⊗v, ∆(g) = g⊗g,

S(v) = −uv, S(g) = g−1,

for all v ∈ V, g ∈ G.

Lemma 6.1. There is a Hopf algebra isomorphism

A(V, u,G) ' A(V, u,G)cop.
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Proof. Let φ : A(V, u,G)→ A(V, u,G) be the algebra map determined by

φ(v) = vu, φ(g) = g,

for all v ∈ V, g ∈ G. It follows by a direct computation that φ is a Hopf algebra
isomorphism between A(V, u,G) and A(V, u,G)cop. �

6.2. Tensor product of supergroup algebras. Let G1, G2 be finite groups and
ui ∈ Gi be central elements of order 2. For i = 1, 2 let Vi be finite-dimensional
Gi-modules, such that ui acts in Vi as −1. We shall describe the tensor product
Hopf algebra A(V1, u1, G1)⊗kA(V2, u2, G2). From now on, we shall denote this
Hopf algebra by A(V1, V2, u1, u2, G1, G2). Let us give a presentation by generators
and relations of this algebra.

Set G = G1 ×G2. Both vector spaces V1, V2 are G-modules by setting

(g, h) · v1 = g · v1, (g, h) · v2 = h · v2,

for all (g, h) ∈ G, vi ∈ Vi, i = 1, 2. The algebra A(V1, V2, u1, u2, G1, G2) is gener-
ated by elements V1, V2, G subject to relations

v1w1 + w1v1 = 0, v2w2 + w2v2 = 0, v1v2 = v2v1,

gv1 = (g · v1)g, gv2 = (g · v2)g,

for all g ∈ G, vi ∈ Vi, i = 1, 2. The Hopf algebra structure is determined by

∆(v1) = v1⊗1 + (u1, 1)⊗v1, ∆(v2) = v2⊗1 + (1, u2)⊗v2,

∆(g1, g2) = (g1, g2)⊗(g1, g2),

for all (g1, g2) ∈ G, vi ∈ Vi, i = 1, 2.
We shall define a family of Hopf algebras that are cocycle deformations of tensor

product of supergroup algebras. Let (V1, V2, u1, u2, G1, G2) be a data as above.
Set V = V1 ⊕ V2. Define H(V1, V2, u1, u2, G1, G2) = ∧(V )⊗kkG with product
determined by

vw + wv = 0, gv = (g · v)g, for any v, w ∈ V1 ⊕ V2, g ∈ G,

and coproduct determined by

∆(v1) = v1⊗1 + (u1, 1)⊗v1, ∆(v2) = v2⊗1 + (1, u2)⊗v2,

for any vi ∈ Vi, i = 1, 2.

Proposition 6.2. Let H = A(V1, V2, u1, u2, G1, G2) and σ : H⊗kH → k a Hopf
2-cocycle coming from a 2-cocycle ψ ∈ Z2(G,k×) as in Lemma 5.4. Denote ξ =
ψ((u1, 1), (1, u2))ψ((1, u2), (u1, 1))−1. Then

(i) if ξ = 1 we have H [σ] ' A(V1, V2, u1, u2, G1, G2)
(ii) if ξ = −1 then H [σ] ' H(V1, V2, u1, u2, G1, G2).

Proof. Let v ∈ V1, w ∈ V2 then

(id⊗∆)∆(v) = v⊗1⊗1 + (u1, 1)⊗v⊗1 + (u1, 1)⊗(u1, 1)⊗v,
(id⊗∆)∆(w) = w⊗1⊗1 + (1, u2)⊗w⊗1 + (1, u2)⊗(1, u2)⊗w.
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Therefore, using (2.4), it follows that for any v1, w1 ∈ V1, v2, w2 ∈ V2

v1 ·[σ] w1 + w1 ·[σ] v1 = 0, v2 ·[σ] w2 + w2 ·[σ] v2 = 0,

v1 ·[σ] w2 − ξ w2 ·[σ] v1 = 0.

Also for any g ∈ G, i = 1, 2,

g ·[σ] v1 = ψ(g, (u1, 1)) gv1, v1 ·[σ] g = ψ((u1, 1), g) v1g,

g ·[σ] v2 = ψ((1, u2), g) gv2, v2 ·[σ] g = ψ((1, u2), g) v2g.

Hence

g ·[σ] v ·[σ] g
−1 = gvg−1,

for any v ∈ V . From these relations, and since the coproduct remains unchanged,
we deduce that if ξ = 1 then H [σ] ' A(V1, V2, u1, u2, G1, G2) and if ξ = −1 then
H [σ] ' H(V1, V2, u1, u2, G1, G2). �

6.3. Homogeneous coideal subalgebras in supergroup algebras. A homo-
geneous left coideal subalgebra of a coradically graded Hopf algebra H = ⊕mi=0H(i)
is a left coideal subalgebra K ⊆ H together with an algebra grading K = ⊕mi=0K(i)
such that K(i) ⊆ H(i). The main goal of this section is the classification of homo-
geneous coideal subalgebras in the tensor product of supergroup algebras.

Let (V1, V2, u1, u2, G1, G2) be a data as in Section 6.2. Denote V = V1 ⊕ V2

and u = (u1, u2) ∈ G = G1 × G2. Also set H = A(V1, V2, u1, u2, G1, G2) and

H̃ = H(V1, V2, u1, u2, G1, G2). If (v1, v2) ∈ V we denote

[(v1, v2)] = v1 + v2u ∈ H(1).

Remark 6.3. For any (v1, v2) ∈ V we have

[(v1, v2)]2 = 0, ∆([(v1, v2)]) = v1⊗1 + v2u⊗u+ (u1, 1)⊗[(v1, v2)]. (6.1)

Definition 6.4. A coideal subalgebra data is a collection (W 1,W 2,W 3, F ), where

• W 1 ⊆ V1 and W 2 ⊆ V2 are subspaces,
• W 3 ⊆ V is a subspace such that W 3∩W 1⊕W 2 = 0, W 3∩V1 = 0 = W 3∩V2,
• F ⊆ G is a subgroup that leaves invariant all subspaces W i, i = 1, 2, 3,
• if W 3 6= 0 we require that u ∈ F .

We denote C(W 1,W 2,W 3, F ) the subalgebra of H generated by kF and elements
in W 1 ⊕W 2 and {[w] : w ∈W 3}.

Lemma 6.5. The algebra C(W 1,W 2,W 3, F ) is a homogeneous left coideal subal-
gebra of H. �

Theorem 6.6. Let K = ⊕mi=0K(i) ⊆ H be a homogeneous left coideal subal-
gebra. There exists a coideal subalgebra data (W 1,W 2,W 3, F ) such that K =
C(W 1,W 2,W 3, F ).

Proof. Since K(0) ⊆ kG is a left coideal subalgebra then K(0) = kF for some
subgroup F ⊆ G. If K(1) = 0 then K = kF . Indeed, if x ∈ K(2) then ∆(x) ∈
H(0)⊗kK(2)⊕H(2)⊗K(0), hence x ∈ H1 and since H1 ∩H(2) = 0 then x = 0. In
a similar way we can prove that K(n) = 0 for all n.
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Thus we can assume that K(1) 6= 0. The vector space K(1) is a kG-subcomodule
of V⊗kkG via

(π⊗id)∆ : K(1)→ kG⊗kK(1),

where π : H → kG is the canonical projection. Thus K(1) = ⊕g∈GK(1)g, where
K(1)g = {k ∈ K(1) : (π⊗id)∆(k) = g⊗k}, and

K(1)g ⊆ V1⊗kk〈(u1, 1)g〉 ⊕ V2⊗kk〈(1, u2)g〉.

Therefore we can write

K(1)(u1,1) = W 1 ⊕ W̃ 2u⊕ U3,

K(1)(1,u2) = W 2 ⊕ W̃ 1u⊕ Ũ3,

whereW 1 is the intesection ofK(1)(u1,1) with V1, W̃ 2 is the intesection ofK(1)(u1,1)

with V2⊗kk〈u〉 and U3 is a direct complement, that is, a vector subspace of V1 ⊕
V2⊗kk〈u〉 consisting of elements of the form [w] where w ∈W 3 and W 3 ⊆ V1⊕V2.

Since U3∩W 1⊕W̃ 2u = 0 then W 3∩W 1⊕W̃ 2 = 0. The same is done for K(1)(1,u2),

that is W 2 is the intersection of K(1)(1,u2) with V2, W̃ 1u is the intersection of

K(1)(1,u2) with with V1⊗kk〈u〉 and Ũ3 is a direct complement. The space Ũ3

consists of elements of the form [w] where w ∈ W̃ 3 and W̃ 3 ⊆ V1 ⊕ V2.

Claim 6.1. If u /∈ F then W̃ 2 = W̃ 1 = W̃ 3 = W 3 = 0. We have that W̃ 2 = W 2,

W̃ 1 = W 1.

Proof of Claim. Let 0 6= (v, w) ∈ W 3, then 0 6= [(v, w)] ∈ U3. Since ∆([(v, w)]) ∈
H(0)⊗kK(1)⊕H(1)⊗kK(0), using (6.1), we get that u ∈ F . The same argument

works if W̃ 3 6= 0, W̃ 1 6= 0 or if W̃ 2 6= 0.

Let 0 6= w ∈ W̃ 2, then wu ∈ K(1)(u1,1). Since u ∈ F then w ∈ K(1)(1,u2) and

the only possibility is that w ∈ W 2. The other inclusion is proven similarly. Thus

W̃ 2 = W 2. The equality W̃ 1 = W 1 follows analogously. �

We claim that K(1) = W 1F ⊕W 2F ⊕ U3F . Indeed, take g ∈ G and 0 6= w ∈
K(1)g, then

w = w1(u1, 1)g + w2(1, u2)g,

for some w1 ∈ V1, w2 ∈ V2. Note that

∆(w) = w1(u1, 1)g⊗(u1, 1)g + g⊗w + w2(1, u2)g⊗(1, u2)g. (6.2)

If w1 6= 0, since ∆(w) ∈ H(0)⊗kK(1) ⊕ H(1)⊗kK(0), then (u1, 1)g ∈ F and
wg−1(u1, 1) ∈ K(1)(u1,1). Thus w ∈W 1F⊕W 2F⊕U3F . If w1 = 0 then w2 6= 0 and

using a same argument as before we conclude that (1, u2)g ∈ F , thus wg−1(1, u2) ∈
K(1)(1,u2). If Ũ3 = W̃ 1 = 0 then wg−1(1, u2) ∈ W 2 and w ∈ W 2F . If some of

the vector spaces Ũ3, W̃ 1 are not null then u ∈ F , from which we deduce that
g−1(u1, 1) ∈ F and wg−1(u1, 1) ∈ K(1)(u1,1). Hence w ∈W 1F ⊕W 2F ⊕ U3F .

If S = {bi} is any basis of V then H is generated as an algebra by the set

{[bi], g : bi ∈ B, g ∈ G}.
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Indeed, take v ∈ V1, w ∈ V2 then (v, 0) =
∑
i αi bi, (0, w) =

∑
i βi bi for some

families of scalars αi, βi ∈ k, then v =
∑
i αi [bi] and w =

∑
i βi [bi]u. Let {bi : i =

1, . . . , r} be a basis ofW = W 1⊕W 2⊕W 3 and extend it to a basis {bi : i = 1, . . . , t},
r ≤ t, of V . Let n > 1 and k ∈ K(n). Write

k =
∑

sj∈{0,1},gi∈G

αs1,...,st,i [b1]s1 [b2]s2 . . . [bt]
stgi,

for some αs1,...,st,i ∈ k. Let p : H → H(1) be the canonical projection. Then
(id⊗p)∆(k) ∈ H(n − 1)⊗kK(1). It follows from a straightforward computation
that (id⊗p)∆(k) is equal to∑

l

∑
sj∈{0,1},gi∈G

αs1,...,st,i
(
hs1,...,st,i⊗[bl]gi + h̃s1,...,st,i⊗[bl]ugi

)
,

for some 0 6= hs1,...,st,i, h̃s1,...,st,i ∈ H(n− 1). This implies that if r < l and sl = 1
then αs1,...,st,i = 0. Thus K is generated as an algebra by K(0) and K(1), whence
K = C(W 1,W 2,W 3, F ). �

Definition 6.7. If (W 1,W 2,W 3, F ) is a coideal subalgebra data denote C̃(W 1,W 2,

W 3, F ) the subalgebra of H̃ generated by kF and elements in W 1 ⊕ W 2 and
{[w] : w ∈W 3}.

Theorem 6.8. Let K = ⊕mi=0K(i) ⊆ H̃ be a homogeneous left coideal subal-
gebra. There exists a coideal subalgebra data (W 1,W 2,W 3, F ) such that K =

C̃(W 1,W 2,W 3, F ).

Proof. The proof follows the same argument as in the proof of Theorem 6.6. �

7. Module categories over tensor product of supergroup algebras

We shall use the same notation as in the previous section, so we have a data

(V1, V2, u1, u2, G1, G2) as in subsection 6.2, H = A(V1, V2, u1, u2, G1, G2) and H̃ =
H(V1, V2, u1, u2, G1, G2). Denote G = G1 × G2, Hi = A(Vi, ui, Gi) and u =
(u1, u2) ∈ G.

We shall define a family of comodule algebras over H that will parameterize
exact module categories over Rep(H).

Definition 7.1. We say that the collection (W,β, F, ψ) is a compatible data with
(V1, V2, u1, u2, G1, G2) if

(i) W = W 1 ⊕W 2 ⊕W 3 is a subspace of V such that (W 1,W 2,W 3, F ) is a
coideal subalgebra data;

(ii) β : W ×W → k is a bilinear form stable under the action of F , such that

β(w1, w2) = −β(w2, w1), β(w1, w3) = β(w3, w1),

β(w2, w3) = −β(w3, w2),

for all wi ∈ W i, i = 1, 2, 3, and β restricted to W i ×W i is symmetric for
any i = 1, 2, 3;

(iii) if u /∈ F then β restricted to W 1 ×W 2 and W 2 ×W 3 is null;

Rev. Un. Mat. Argentina, Vol. 55, No. 1 (2014)
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(iv) ψ ∈ Z2(F,k×).

Given a compatible data (W,β, F, ψ) define K(W,β, F, ψ) as the algebra gener-
ated by W and {ef : f ∈ F}, subject to relations

efeh = ψ(f, h) efh, efw = (f · w)ef ,

wiwj + wiwj = β(wi, wj)1, wi ∈W i, wj ∈W j ,

for any (i, j) ∈ {(1, 1), (2, 2), (1, 3), (3, 3)}, and relations

w2w3 − w3w2 = β(w2, w3) eu, for any w2 ∈W 2, w3 ∈W 3,

w1w2 − w2w1 = β(w1, w2) eu, for any w1 ∈W 1, w2 ∈W 2.

Define λ : K(W,β, F, ψ)→ H⊗kK(W,β, F, ψ) on the generators

λ(ef ) = f⊗ef , λ(w1) = w1⊗1 + (u1, 1)⊗w1, for all f ∈ F,w1 ∈W 1,

λ(w2) = w2⊗1 + (1, u2)⊗w2, for all w2 ∈W 2,

λ(v, w) = v⊗1 + w(1, u2)⊗eu + (u1, 1)⊗(v, w), for all (v, w) ∈W 3.

Remark 7.2. If (W,β, F, ψ) is a compatible data then W comes with a distinguished
decomposition W = W 1 ⊕W 2 ⊕W 3. To be more precise one should denote the
algebras K(W,β, F, ψ) by K(W 1,W 2,W 3, β, F, ψ). We shall do this only in case
we want to emphasize the direct decomposition of W .

Definition 7.3. If (0, 0,W, F ) is a coideal subalgebra data and (W,β, F, ψ) is a
compatible data with (V1, V2, u1, u2, G1, G2), we shall denote

L(W,β, F, ψ) = K(0, 0,W, β, F, ψ).

The algebras L(W,β, F, ψ) will be the relevant ones when computing the Brauer-
Picard group.

Proposition 7.4. If (W,β, F, ψ) is a compatible data then K(W,β, F, ψ) is a right
H-simple left H-comodule algebra with trivial coinvariants. Also grK(W,β, F, ψ) =
K(W, 0, F, ψ).

Proof. The proof that these algebras are comodule algebras is straightforward.
Also, it follows from a direct computation that

grK(W,β, F, ψ) = K(W, 0, F, ψ),

andK(W,β, F, ψ)0 = kψF . Thus, the fact that these algebras are rightA(V1, V2, u1,
u2, G1, G2)-simple follows from [16, Prop. 4.4]. �

Recall that in Section 4.1 we have defined a left Hi⊗kH
cop
i -comodule algebra

diag(Hi). It follows from Lemma 6.1 that there is an isomorphism of Hopf algebras

Hi⊗kH
cop
i ' Hi⊗kHi ' A(Vi, Vi, ui, ui, Gi, Gi).

For any i = 1, 2 we shall denote Bi = A(Vi, Vi, ui, ui, Gi, Gi). Also

diag(Vi) = {(v, v) ∈ Vi ⊕ Vi : v ∈ Vi},
diag(Gi) = {(g, g) ∈ Gi ×Gi : g ∈ Gi}.
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Lemma 7.5. For any i = 1, 2 there is an isomorphism of left Bi-comodule algebras

diag(Hi) ' K(0⊕ 0⊕ diag(Vi), 0,diag(Gi), 1).

Proof. Define σ : diag(Hi)→ K(0⊕ 0⊕ diag(Vi), 0,diag(Gi), 1) as follows. For all
v ∈ Vi, g ∈ Gi,

σ(v) = (v, v)(ui, ui), σ(g) = (g, g).

This gives a well-defined algebra isomorphism. It follows straightforwardly that σ
is a Bi-comodule map. �

Remark 7.6. In Lemma 7.5 we write the space W = 0⊕ 0⊕ diag(Vi) to emphasize
that W 1 = 0,W 2 = 0 and W 3 = diag(Vi).

Proposition 7.7. Let (W, 0, F, ψ) be a compatible data and ψ̂ ∈ Z2(G,k×) be a

2-cocycle such that ψ̂ |F= ψ. Let σ : H⊗kH → k be a Hopf 2-cocycle such that

σ(x, y) = ψ̂(x, y) for all x, y ∈ G, as defined in (5.2). Denote

ξ = ψ̂((u1, 1), (1, u2))ψ̂((1, u2), (u1, 1))−1.

If ξ = 1 there is an isomorphism of comodule algebras

K(W, 0, F, ψ) ' C(W 1,W 2,W 3, F )σ.

If ξ = −1 there is an isomorphism of comodule algebras

K(W, 0, F, ψ) ' C̃(W 1,W 2,W 3, F )σ.

Proof. One can verify that the relations that hold in C(W 1,W 2,W 3, F )σ are the
same relations in K(W, 0, F, ψ). Thus there is a well-defined projection C(W 1,W 2,
W 3, F )σ � K(W, 0, F, ψ) which is an isomorphism since both algebras have the
same dimension. �

The above Proposition can be extended when the bilinear form β is not null.
Let us begin by constructing a Hopf 2-cocycle in H.

Lemma 7.8. Let σ : H⊗kH → k be the map defined by

σ(x, y) =


ψ̂(x, y) if x, y ∈ G,
1
2 ψ̂(sg, th)β(v, w) if x = vg, y = wh, v ∈ Vg, w ∈ Vt, g, h ∈ G
0 otherwise.

Then σ is a Hopf 2-cocycle. �

Let ξ = ψ̂((u1, 1), (1, u2))ψ̂((1, u2), (u1, 1))−1 and let (W,β, F, ψ) be a compati-
ble data.

Proposition 7.9. If ξ = 1 then there is an isomorphism of comodule algebras

K(W,β, F, ψ) ' C(W 1,W 2,W 3, F )σ.

If ξ = −1 there is an isomorphism of comodule algebras

K(W,β, F, ψ) ' C̃(W 1,W 2,W 3, F )σ.
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Proof. One can verify that the relations that hold in C(W 1,W 2,W 3, F )σ are the
same relations that hold in K(W,β, F, ψ). Let us do this only for w2 ∈W 2, (v, w) ∈
W 3. By definition of σ we have

w2 ·σ [(v, w)] =
1

2
β(w1, v)1 +

1

2
β(w1, w)u+ ψ̂(u2, u1)w2[(v, w)],

[(v, w)] ·σ w2 =
1

2
β(v, w1)1 +

1

2
β(w,w1)u+ ψ̂(u1, u2)[(v, w)]w2.

Then

w2 ·σ [(v, w)]− [(v, w)] ·σ w2 = β(w1, w)u.

Thus there is a well-defined projection C(W 1,W 2,W 3, F )σ � K(W,β, F, ψ) which
is an isomorphism since both algebras have the same dimension. �

Theorem 7.10. Let (V1, V2, u1, u2, G1, G2) be a data as in subsection 6.2 and
H = A(V1, V2, u1, u2, G1, G2). Let M be an indecomposable exact left Rep(H)-
module category. Then there is a compatible data (W,β, F, ψ) such that M is
equivalent to the category K(W,β,F,ψ)M as Rep(H)-modules.

Proof. By Proposition 7.4 and [3, Prop. 1.20] the families K(W,β,F,ψ)M are exact
indecomposable module categories over Rep(H).

Let M be an indecomposable exact Rep(H)-module category. Then, by [3,
Thm. 3.3] there exists a right H-simple left comodule algebra with trivial coinvari-
ants (A, λ) such thatM = AM as Rep(H)-modules. Since H is coradically graded
then grA is a right H-simple left comodule algebra also with trivial coinvariants.

Since H0 = kG and A(0) is a left kG-comodule algebra right kG-simple then
there exists a subgroup F ⊆ G and ψ ∈ Z2(F,k×) such that A(0) = kψF .

Let ψ̂ ∈ Z2(G,k×) be a 2-cocycle such that ψ̂ |F= ψ. Let σ : H⊗kH → k be a

Hopf 2-cocycle such that σ(x, y) = ψ̂(x, y) for all x, y ∈ G, as defined in (5.2).
By Lemma 5.5 the algebra (grA)σ−1 is isomorphic to a homogeneous left coideal

subalgebra of H [σ−1]. Set ξ = ψ̂((u1, 1), (1, u2))ψ̂((1, u2), (u1, 1))−1. Since ξ2 = 1
then ξ = ±1. We shall analyze what happens in both cases.

Case ξ = 1. It follows from Proposition 6.2 that there is an isomorphism of

Hopf algebras H [σ−1] ' A(V1, V2, u1, u2, G1, G2), therefore (grA)σ−1 is isomorphic
as a comodule algebra to a coideal subalgebra of H. Hence, from Theorem 6.6
we deduce that (grA)σ−1 = C(W 1,W 2,W 3, F ) for some coideal subalgebra data
(W 1,W 2,W 3, F ). Proposition 7.7 implies that (grA) ' K(W, 0, F, ψ). Now, we
have to determine all liftings of K(W, 0, F, ψ), that is all comodule algebras A such
that (grA) ' K(W, 0, F, ψ).

For any w1 ∈ W 1, w2 ∈ W 2, (v, w) ∈ W 3 let be aw1 , aw2 , a(v,w) ∈ A1 elements
such that

λ(aw1) = w1⊗1 + (u1, 1)⊗aw1 , λ(aw2) = w2⊗1 + (1, u2)⊗aw2 ,

λ(a(v,w)) = v⊗1 + wu⊗eu + (u1, 1)⊗a(v,w),
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and the class of aw in A(1) = A1/A0 equals w. We can choose these elements so
that they satisfy that

av+w = av + aw, fawf
−1 = af ·w, for all f ∈ F , v, w ∈W.

The proof of the existence of such elements is the same as the proof of [16, Lemma
5.5]. Then A is generated as an algebra by elements {aw, f : w ∈W, f ∈ F}.

For any (i, j) ∈ {(1, 1), (2, 2), (1, 3), (3, 3)} take wi ∈W i, wj ∈W j . Then

λ(awiawj + awjawi) = 1⊗awiawj + awjawi ,

hence there exists an scalar β(wi, wj) ∈ k such that

awiawj + awjawi = β(wi, wj) 1.

If w1 ∈W 1, w2 ∈W 2 then

λ(aw1aw2 − aw2aw1) = u⊗aw1aw2 − aw2aw1 ,

hence there exists β(w1, w2) ∈ k such that

aw1aw2 − aw2aw1 = β(w1, w2) eu.

If u /∈ F then β(w1, w2) = 0. The same is done in the case w2 ∈W 2, w3 ∈W 3. One
can prove that (W,β, F, ψ) is a compatible data and there is a comodule algebra
projection

K(W,β, F, ψ) � A

which is injective since both algebras have the same dimension.

Case ξ = −1. The proof of this case is entirely similar to the case ξ = 1. �

7.1. Equivalence classes of module categories. We shall explain when two
module categories appearing in Theorem 7.10 are equivalent.

Let H be a finite-dimensional pointed Hopf algebra and A,A′ be right H-simple
left A-comodule algebras with trivial coinvariants. If g ∈ H is a group-like element
we can define a new comodule algebra Ag on the same underlying algebra A with
coaction given by λg : Ag → H⊗kAg, λg(a) = ga(−1)g

−1⊗a(0), for all a ∈ A.

Theorem 7.11. [12, Thm. 4.2] The algebras A, A′ are equivariantly Morita equiv-
alent if and only if there exists an element g ∈ G(A) such that A′ ' Ag as comodule
algebras. �

Theorem 7.12. Let (V1, V2, u1, u2, G1, G2) be a data as in subsection 6.2 and set
H = A(V1, V2, u1, u2, G1, G2). Let (W,β, F, ψ), (U, β′, F ′, ψ′) be two compatible
data. The module categories K(W,β,F,ψ)M, K(U,β′,F ′,ψ′)M are equivalent if and
only if there exists g ∈ G such that

W 1 = g ·U1, W 2 = g ·U2, W 3 = g ·U3, β′ = g ·β, F ′ = gFg−1, ψ′ = ψg.

Here g · β(v, w) = β(g−1 · v, g−1 · w) for all v, w ∈ U .
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Proof. Let us prove that if K(W,β, F, ψ) and K(W ′, β′, F ′, ψ′) are isomorphic as
H-comodule algebras then W = W ′, β = β′, F = F ′ and ψ = ψ′. Let ϑ :
K(W,β, F, ψ)→ K(W ′, β′, F ′, ψ′) be an isomorphism of H-comodule algebras, then
for any f ∈ F we have that

f⊗ϑ(ef ) = λ(ϑ(ef )).

This implies that ϑ(ef ) ∈ K(W ′, β′, F ′, ψ′)0 = kF ′ and has no other possibility
than being equal to ef . Hence F ⊆ F ′. The other inclusion can be proven using
the inverse of ϑ. Since ϑ is an algebra morphism we deduce that ψ = ψ′.

It is not difficult to prove that for any i = 1, 2, 3 we have that ϑ(W i) ⊆ U i.
Since ϑ is an isomorphism then W i = U i for any i = 1, 2, 3. Since ϑ is an algebra
morphism the bilinear forms β, β′ must be equal.

For any g ∈ G there is an isomorphism of comodule algebras

K(W,β, F, ψ)g ' K(g ·W, g · β, gFg−1, ψg).

Indeed, the algebra map θ : K(W,β, F, ψ)g → K(g ·W, g ·β, gFg−1, ψg) determined
by

θ(w) = g · w, θ(ef ) = egfg−1 ,

for all w ∈ W , f ∈ F , is an isomorphism of comodule algebras. The proof of the
Theorem follows now from Theorem 7.11. �

8. The Brauer-Picard group of supergroup algebras

The Brauer-Picard groupoid [9] BrPic is the 3-groupoid whose objects are fi-

nite tensor categories, 1-morphisms from C1 to C2 are invertible exact (C1, C2)-
bimodule categories, 2-morphisms are equivalences of such bimodule categories, and
3-morphisms are isomorphisms of such equivalences. Forgetting the 3-morphisms
and the 2-morphisms and identifying 1-morphisms one obtains the groupoid BrPic.
For a fixed tensor category C, the group BrPic(C) consists of equivalence classes
of invertible exact C-bimodule categories and it is called the Brauer-Picard group
of C.

In this section G will denote a finite Abelian group, V is a finite-dimensional
G-module, and u ∈ G is an element of order 2 such that it acts on V as −1. Also
H = A(V, u,G).

8.1. The Brauer-Picard group of group algebras. Let us recall the results
obtained in [9] on the computation of the Brauer-Picard group of the category of
representations of a finite Abelian group.

Definition 8.1. Let G be a finite Abelian group. The group O(G⊕ Ĝ) consists of

group isomorphisms α : G⊕ Ĝ→ G⊕ Ĝ such that 〈α2(g, χ), α1(g, χ)〉 = 〈χ, g〉 for

all g ∈ G,χ ∈ Ĝ. Here α(g, χ) = (α1(g, χ), α2(g, χ)).

Theorem 8.2. [9, Corollary 1.2] There is an isomorphism of groups

BrPic(Rep(G)) ' O(G⊕ Ĝ). �
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Let us explain how to obtain invertible bimodule categories from elements in

O(G⊕ Ĝ). Let α ∈ O(G⊕ Ĝ) and define Uα ⊆ G×G the subgroup

Uα = {(α1(g, χ), g) : g ∈ G,χ ∈ Ĝ},

and the 2-cocycle ψα : Uα × Uα → k× defined by

ψα((α1(g, χ), g), (α1(h, ξ), h)) = 〈α2(g, χ)−1, α1(h, ξ)〉〈χ, h〉.

It was proved in [9] that the bimodule categories kψαUαM are invertible and any
invertible bimodule category is equivalent to one of this form. Note that Uid =
diag(G), ψid = 1.

Example 8.3. If G = Zp for some prime p ∈ N then O(G ⊕ Ĝ) is isomorphic to

the dihedral group D2(p−1). In particular if p = 2 then O(Z2⊕ Ẑ2) ' Z2. The only

non-trivial element in O(Z2 ⊕ Ẑ2) is γ : Z2 ⊕ Ẑ2 → Z2 ⊕ Ẑ2 given by

γ(ui, χj) = (uj , χi), (8.1)

for i, j = 0, 1. Here u is the generator of Z2 and χ is the generator of Ẑ2.

8.2. Families of invertible bimodule categories. In this section we present
families of invertible Rep(H)-bimodule categories.

Definition 8.4. We shall denote by R(V, u,G) the set of collections (W,β, α),
where

(i) W ⊆ V ⊕ V is a subspace such that W ∩ V ⊕ 0 = 0 = W ∩ 0⊕ V ,

(ii) α ∈ O(G⊕ Ĝ) is an isomorphism such that (u, u) ∈ Uα,
(iii) W is invariant under the action of Uα,
(iv) β : W ×W → k is a symmetric bilinear form invariant under the action of

Uα.

If (W,β, α), (W̃ , β̃, α̃) are elements in R(V, u,G) we define

(W,β, α) • (W̃ , β̃, α̃) = (W • W̃ , β • β̃, αα̃), (8.2)

where W • W̃ is the subspace of V ⊕ V consisting of elements (v1, w1) such that

there exists a (necessarily unique) v2 ∈ V such that (v1, v2) ∈ W , (v2, w1) ∈ W̃ .

The bilinear form β • β̃ is defined by

β • β̃((v1, w1), (v′1, w
′
1)) = β((v1, v2), (v′1, v

′
2)) + β̃((v2, w1), (v′2, w

′
1)),

where v2, v
′
2 ∈ V2 are the unique elements such that (v1, v2), (v′1, v

′
2) ∈ W and

(v2, w1), (v′2, w
′
1) ∈ W̃ . The action of Uαα̃ on W • W̃ is given as follows. If

g ∈ G,χ ∈ Ĝ, (v, w) ∈W • W̃ then

(α1(α̃(g, χ)), g) · (v, w) = (α1(α̃(g, χ)) · v, g · w).

Lemma 8.5. If (W,β, α), (W̃ , β̃, α̃) then (W,β, α) • (W̃ , β̃, α̃) ∈ R(V, u,G).
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Proof. We will only prove that the bilinear form β • β̃ is invariant under the action

of Uαα̃. The other properties are straightforward. Let (v1, w1), (v′1, w
′
1) ∈ W • W̃

and (f, g) ∈ Uαα̃, then β • β̃((f, g) · (v1, w1), (f, g) · (v′1, w′1)) is equal to

= β • β̃((f · v1, g · w1), (f · v′1, g · w′1))

= β((f · v1, x · v2), (f · v′1, x · v′2)) + β̃((x · v2, g · w1), (x · v′2, g · w′1))

= β((v1, v2), (v′1, v
′
2)) + β̃((v2, w1), (v′2, w

′
1))

= β • β̃((v1, w1), (v′1, w
′
1)).

In the above equalities the element x ∈ G is the unique such that (f, x) ∈ Uα and
(x, g) ∈ Uα̃, and v2, v

′
2 ∈ V2 are the unique elements such that (v1, v2), (v′1, v

′
2) ∈W

and (v2, w1), (v′2, w
′
1) ∈ W̃ . �

Definition 8.6. We say that (W,β, α) ∼ (W̃ , β̃, α̃) if there exists an element
g ∈ G×G such that

W̃ = g ·W, β̃ = g · β, α = α̃.

If (W,β,Uα, ψα) is a compatible family for some α ∈ O(G⊕ Ĝ) we shall denote

K(W,β, α) = K(W,β,Uα, ψα), L(W,β, α) = L(W,β,Uα, ψα).

Theorem 8.7. Let (W,β, α) ∈ R(V, u,G) such that there exists (W̃ , β̃, α̃) ∈
R(V, u,G) such that

(W,β, α) • (W̃ , β̃, α̃) ∼ (diag(V ), 0, id), (8.3)

(W̃ , β̃, α̃) • (W,β, α) ∼ (diag(V ), 0, id). (8.4)

Then the Rep(H)-bimodule category L(W,β,α)M is invertible.

Proof. The proof is a (more complicated) version of the proof of the fundamental

theorem for Hopf modules [18]. If L = L(W,β, α),K = L(W̃ , β̃, α̃), we shall prove
that the categoriesM(H,H,K,L), L(diag(V ),0,id)M are equivalent as bimodule cat-
egories.

Let us fix some notation. If (v1, w1) ∈W • W̃ then there exists a unique v2 ∈ V2

such that (v1, v2) ∈W , (v2, w1) ∈ W̃ . We shall denote

ι1(v1, w1) = (v1, v2), ι2(v1, w1) = (v2, w1).

Analogously if (v1, w1) ∈ W̃ •W there exists a unique v2 ∈ V1 such that (v1, v2) ∈ W̃
and (v2, w1) ∈W . We shall denote

ι̃1(v1, w1) = (v1, v2), ι̃2(v1, w1) = (v2, w1).

From (8.3), (8.4) it follows that there are elements (a, b), (g, h) ∈ G × G such
that

(i) W • W̃ = (g, h) · diag(V ),

(ii) W̃ •W = (a, b) · diag(V ).
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Denote S = L(diag(V ), 0, id). Let

φ : S → L⊗kK, φ : S → K⊗kL,

be the algebra morphisms determined as follows. If w ∈ V , f ∈ G then

φ(w,w) = ι1(g · w, h · w)⊗1 + e(u,u)⊗ι2(g · w, h · w),

φ(e(f,f)) = e(f,α̃(f,1))⊗e(α̃(f,1),f).

If v ∈ V , x ∈ G then

φ(v, v) = ι̃1(a · v, b · v)⊗1 + e(u,u)⊗ι̃2(a · v, b · v),

φ(e(x,x)) = e(x,α(x,1))⊗e(α(x,1),x).

Claim 8.1. The maps φ, φ are well-defined.

Proof of Claim. One should prove that for all v, w ∈ V , f, g ∈ G×G
φ(w,w)φ(v, v) + φ(v, v)φ(w,w) = 0, (8.5)

φ(ef )φ(eg) = φ(efg), (8.6)

φ(ef )φ(w,w) = φ(f · (w,w))φ(ef ). (8.7)

The verification of these equalities is straightforward. The same equations hold for
φ. �

Let us recall the isomorphism of A(V, V, u, u,G,G)-comodule algebras σ :
diag(H)→ S presented in the proof of Lemma 7.5. We shall use the notation

φ(s) = φ1(s)⊗φ2(s), φ(t) = φ
1
(t)⊗φ2

(t),

omitting the summation symbol, for all s, t ∈ S.

Claim 8.2. If s, t ∈ S then

π2(φ
1
(t)−1)S−1(π2(φ

2
(t)−1))⊗φ1

(t)0⊗φ
2
(t)0 = 1⊗φ(t) (8.8)

π2(φ2(s)−1)S−1(π2(φ1(s)−1))⊗φ1(s)0⊗φ2(s)0 = 1⊗φ(s). (8.9)

The proof follows by verifying that both equalities hold for the generators of the
algebra S and using that both maps φ, φ are algebra morphisms.

If M ∈M(H,H,K,L) define πM : M →M coH the map

πM (m) = φ
1
(σ(S(m(−1)))) ·m(0) · φ

2
(σ(S(m(−1)))).

It follows from (8.8) that the image of πM is indeed inside M coH . The space M coH

has a left S-action given by

s ·m = φ2(s) ·m · φ1(s),

for all s ∈ S1, m ∈ M coH . It follows from (8.9) that this action is well-defined,
that is, if s ∈ S, m ∈M coH then s ·m ∈M coH .

Let G : M(H,H,K,L) → SM and F : SM →M(H,H,K,L) be the functors
defined as follows. If M ∈M(H,H,K,L), N ∈ SM then

F(N) = (L⊗kK)⊗SN, G(M) = M coH .
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The structure of right S-module on L⊗kK is given via φ. Both functors are bimod-
ule functors, see [17, Prop. 3.7]. These functors are in fact the same (up to some mi-
nor modifications) functors described in Section 4.1. For any M ∈M(H,H,K,L)
define

αM : M → (L⊗kK)⊗SM coH , βM : (L⊗kK)⊗SM coH →M,

αM (m) = φ(σ(m(−1)))⊗πM (m(0)), βM (l⊗k⊗m) = k ·m · l,
for all m ∈M coH , l ∈ L, k ∈ K.

Claim 8.3. The maps αM , βM are inverse of each other.

Proof of claim. Let m ∈M then βM ◦ αM (m) is equal to

= φ
1
(σ(m(−1))) · πM (m(0)) · φ

2
(σ(m(−1)))

= φ
1
(σ(m(−1))σ(S(m(0)(−1)))) ·m(0)(0) · φ

2
(σ(m(−1))σ(S(m(0)(−1))))

= ε(m(−1))m(0) = m.

Let m ∈M coH , l ∈ L, k ∈ K. Then αM ◦ βM (l⊗k⊗m) is equal to

= αM (k ·m · l)
= φσπ2(k(−1)S−1(l(−1)))⊗πM (k(0) ·m · l(0))

= φσπ2(k(−1)S−1(l(−1)))

⊗ φ1
σπ2(k(0)(−1)S−1(l(0)(−1)))k(0)(0) ·m · l(0)(0)φ

2
σπ2(k(0)(−1)S−1(l(0)(−1))).

Now, to prove that αM ◦ βM (l⊗k⊗m) = (l⊗k⊗m) it is enough to prove that

φσπ2(k(−1))⊗φ
1
σπ2(k(0)(−1))k(0)(0)⊗φ

2
σπ2(k(0)(−1)) = k⊗1⊗1⊗1, (8.10)

φσπ2(S−1(l(−1)))⊗φ
1
σπ2(l(0)(−1))⊗l(0)(0)φ

2
σπ2(S−1(l(0)(−1))) = 1⊗l⊗1⊗1.

(8.11)

Since φσπ2 is an algebra map, equations (8.10) and (8.11) can be verified on the
generators of the algebras L and K. �

In conclusion we have that FG = Id. Let us prove that GF = Id. For any
N ∈ SM we have an inclusion

N ↪→ G(F(N)), n 7→ 1⊗1⊗n,
for all n ∈ N . Let Ψ : SM→ vectk be the functor defined by Ψ(N) = G(F(N))/N
for all N ∈ SM. The functor Ψ is a Rep(H)-module functor. Indeed, define
cX,N : Ψ(X⊗kN)→ X⊗kΨ(N) by

cX,N (l⊗k⊗x⊗n) = π1(l(−1)) · x⊗l(0)⊗k⊗n,
for all X ∈ Rep(H), N ∈ 1M, l ∈ L, k ∈ K, x ∈ X, n ∈ N . It follows straightfor-
wardly that (Ψ, c) is a module functor, thus it is exact. The full subcategory N of
objects such that Ψ(N) = 0 is a submodule category of SM. Since Ψ(S) = 0 and
the category SM is indecomposable, then N = SM, which implies that GF = Id.

�
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Theorem 8.8. If α, α̃ are elements in O(G ⊕ Ĝ) and K = L(diag(V ), 0, α), L =
L(diag(V ), 0, α̃), then there is an equivalence of bimodule categories

M(H,H,K,L) ' L(diag(V ),0,αα̃)M.

Proof. The proof of Theorem 8.7 applies mutatis mutandis to this case. �

8.3. The Brauer-Picard group of supergroup algebras. The comodule alge-
bras L(W,β, α) will be the relevant ones when computing the Brauer-Picard group
for the representations categories of supergroup algebras. In Theorem 8.7 we have
seen that the bimodule categories L(W,β,α)M are invertible if the compatible data
(W,β, α) is invertible in some sense. We must prove now that these categories are
the only invertible bimodule categories and we have to describe the tensor product
between them. In view of Theorem 4.2 we need first to investigate the cotensor
product of two such comodule algebras.

Let (W,β, α), (W̃ , β̃, α̃) be compatible data with (V, u,G). We shall further

assume that W and W̃ have decompositions

W = 0⊕ 0⊕W 3, W̃ = 0⊕ 0⊕ W̃ 3.

Let L = L(W,β, α), K = L(W̃ , β̃, α̃). If (v1, w1) ∈ W • W̃ then there exists a

unique v2 ∈ V2 such that (v1, v2) ∈W , (v2, w1) ∈ W̃ . We shall denote

ι1(v1, w1) = (v1, v2), ι2(v1, w1) = (v2, w1).

Analogously if (v1, w1) ∈ W̃ •W there exists a unique v2 ∈ V such that (v1, v2) ∈ W̃
and (v2, w1) ∈W . We shall denote

ι̃1(v1, w1) = (v1, v2), ι̃2(v1, w1) = (v2, w1).

Let p1, p2 : V ⊕V → V the canonical projections, so p1(v, w) = v and p2(v, w) =
w for all (v, w) ∈ V ⊕ V . Abusing the notation we shall also denote by p1, p2 :
G×G→ G the canonical projections.

Lemma 8.9. Let {(w1
i , w

2
i )}ti=1 be a basis of W •W̃ ⊆ V ⊕V . There exists a basis

{vi}ni=1 of W and a basis {wi}mi=1 of W̃ such that t ≤ n, t ≤ m and p1(vi) = w1
i ,

p2(wi) = w2
i for any i = 1, . . . , t.

Proof. For any i = 1, . . . , t there exists ti ∈ V such that (w1
i , ti) ∈W , (ti, w

2
i ) ∈ W̃ .

The sets {(w1
i , ti)}ti=1, {(ti, w2

i )}ti=1 are linearly independent, thus we can extend
both set to a basis in their corresponding spaces. �

The right H-comodule structure described in (4.2) will be denoted by λr : L→
L⊗kH and if x ∈W then

λr(x) = e(u,u)⊗p2(x) + x⊗1. (8.12)

The left H-comodule structure described in (4.3) will be denoted by λl : K →
H⊗kK and if y ∈ W̃ then

λl(y) = p2(y)⊗1 + u⊗y. (8.13)

The proof of the next Lemma can be done using an inductive argument.

Rev. Un. Mat. Argentina, Vol. 55, No. 1 (2014)
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Lemma 8.10. If x = x1 . . . xnef ∈ L and y = y1 . . . ymeh ∈ K are elements such

that x1, . . . , xn ∈W , y1, . . . , ym ∈ W̃ f ∈ Uα, h ∈ Uα̃ then

λr(x) =
∑

εi,δi∈{0,1}
εi+δi=1

αεδ x
ε1
1 . . . xεnn e

δ1+···+δn
u ef⊗p2(x1)δ1 . . . p2(xn)δnp2(f), (8.14)

λl(y) =
∑

εi,δi∈{0,1}
εi+δi=1

ζεδ p1(y1)ε1 . . . pm(ym)εmuε1+···+εmp2(h)⊗yδ11 . . . yδmm eh, (8.15)

where all coefficients αεδ, ζ
ε
δ ∈ k are not null. �

Proposition 8.11. Assume that α̃ = id. Then there is an isomorphism of left
H⊗kH

cop-comodule algebras

L(W,β, α)�HL(W̃ , β̃, id) ' L(W • W̃ , β • β̃, α). (8.16)

Proof. Note that L(W̃ , β̃, id)0 = diag(G). Let {x1, . . . , xn} be a basis of W and

{y1, . . . , ym} be a basis of W̃ such that they are extensions of a basis of W • W̃ in
the sense of Lemma 8.9. Without loss of generality we can assume that m ≤ n.

For any 0 ≤ s ≤ n, 0 ≤ t ≤ m define L(s) the subspace of L generated by
elements of the form

xε11 . . . xεnn ef , where εi = 0, 1, ε1 + · · ·+ εn = s, f ∈ Uα.

Analogously, define K(t) the subspace of K gernerated by elements of the form

yδ11 . . . yδmm ef , where δj = 0, 1, δ1 + · · ·+ δm = t, f ∈ diag(G).

Then L = ⊕ns=0L(s) and K = ⊕mt=0K(t).
For any i = 1, . . . ,m set wi = (p1(xi), p2(yi)), π : K → k1 the canonical

projection, and define S ⊆ F the subset of elements (f1, f2) such that there exists

(f2, g) ∈ F̃ . We shall denote by p : kF → kF • F̃ the linear map determined by

p(e(f1,f2)) =

{
0 if (f1, f2) /∈ S
e(f1,g) if (f2, g) ∈ diag(G).

By the assumptions on F and F̃ the map p is well-defined. Define the map θ :

L�HK → L(W • W̃ , β • β̃, α) as follows. If d ∈ N and z ∈ L�HK is an element of
the form

z =
∑

a1+···+am+b1+···+bn=d
f∈Uα, h∈diag(G)

βa,fb,h xa11 . . . xann ef⊗yb11 . . . ybmm eh, (8.17)

then

θ(z) =
∑

a1+···+am=d

f∈Uα

βa,f0,1 wa11 . . . wamm e(p1(f),p2(h)).

From now on we shall write a+b = d when we mean that a1+· · ·+am+b1+· · ·+bn =
d.
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Claim 8.4. The map θ is a well-defined injective linear map. In particular we

have that dim(L�HK) ≤ dim(L(W • W̃ , β • β̃, α)).

Proof of claim. We must prove that θ is well-defined in L�HK and that it is
injective. Let us prove the first. Let be 0 ≤ d ≤ n + m and z ∈ L�HK ∩
⊕n+m
s=0 L(s)⊗kK(d − s) a non-zero element, then there are scalars βa,fb,h ∈ k such

that

z =
∑
a+b=d

f∈Uα,h∈diag(G)

βa,fb,h xa11 . . . xann ef⊗yb11 . . . ybmm eh. (8.18)

Using (8.14) and (8.15) one gets that∑
a+b=d
εi+δi=ai

f∈Uα,h∈diag(G)

βa,fb,hα
ε
δ x

ε1
1 . . . xεnn e

ε
uef⊗p2(x1)δ1 . . . p2(xn)δnp2(f)⊗yb11 . . . ybmm eh

(8.19)
equals ∑

a+b=d
εi+δi=bi

f∈Uα,h∈diag(G)

βa,fb,h ζ
ε
δ x

a1
1 . . . xann ef⊗p1(y1)ε1 . . . pm(ym)εmuε2p2(h)⊗yδ11 . . . yδmm eh.

(8.20)

Since z 6= 0 there exists some βa,fb,h 6= 0. Define

I(z) = {1 ≤ i ≤ n : there exists βa
′,f
b′,h 6= 0 and a′i = 1}.

Let us assume that 1 ∈ I(z), thus there exists some βa
′,f
b′,h 6= 0 where a′1 = 1. The

next argument does not depend on this choice but it simplifies the notation.
Comparing elements (8.19) and (8.20) we conclude, perhaps after reordering the

elements of the basis {y1, . . . , ym}, that∑
a+b=d

f∈Uα,h∈diag(G)

βa,fb,hα
(0,a2,...,an)
(1,0,...,0) xa22 . . . xann eauef⊗p2(x1)p2(f)⊗yb11 . . . ybmm eh (8.21)

must be equal to∑
a+b=d

f∈Uα,h∈diag(G)

βa,fb,h ζ
(0,a2,...,an)
(1,0,...,0) xa11 . . . xann ef⊗p1(y1)u2p2(h)⊗yb22 . . . ybmm eh. (8.22)

Since βa
′,f
b′,h 6= 0 then p1(y1) = p2(x1) and p2(f) = up2(h) = p2((u, u)h).

Let λ1 : L⊗kK → H⊗kH
cop⊗kL⊗kK be the coaction given in (4.4), that is if

l⊗k ∈ L⊗kK then

λ(l⊗k) = π1(l(−1))⊗π1(k(−1))⊗l(0)⊗k(0).

With this coaction L⊗kK is a comodule algebra and has L�HK is a subcomodule
algebra. Taking H ′ = H⊗kH

cop, A = L⊗kK and B = L�HK we are under the
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hypothesis of Lemma 5.1. This implies that any element z ∈ L�HK can be written
as

z =

n+m∑
d=0

zd,

where zd ∈ L�HK ∩ ⊕n+m
s=0 L(s)⊗kK(d− s). Let us prove now that θ is injective.

Assume that z is an element as in (8.17) such that θ(z) = 0 and z 6= 0. Hence any

βa,f0,1 = 0 for any a such that a1 + · · · + am = d. Since z 6= 0 there exists at least

one coefficient βa
′,f
b′,h 6= 0. Let us compare the coefficient of the term

x
a′1
1 . . . x

a′n
n ef⊗p1(y1)b

′
1 . . . pm(ym)b

′
mub

′
1+...b′m⊗1 (8.23)

in equations (8.19), (8.20). The coefficient of the term (8.23) in the summand

(8.19) is βã,f0,1 α
a′

b′ , for some ã = (ã1, . . . , ãn) such that ã1 + · · ·+ ãn = d, and in the

summand (8.20) is βa
′,f
b′,1 ζ

b′

0 . Thus βa
′,f
b′,1 ζ

b′

0 = βã,f0,1 α
a′

b′ = 0, whence βa
′,f
b′,h = 0, which

is a contradiction, thus θ is injective. This finishes the proof of the claim. �

Define φ : L(W • W̃ , β • β̃, α)→ L�HK the algebra map determined as follows.

If w ∈W • W̃ then

φ(w) = ι1(w)⊗1 + eu⊗ι2(w),

and if (f, g) ∈ Uα then

φ(e(f,g)) = e(f,g)⊗e(g,g).

The map φ extends to a comodule algebra morphism and the image is contained
in L�HK. To prove that φ is well-defined one should verify that

φ(w)φ(v) + φ(v)φ(w) = β • β̃(v, w)1, (8.24)

φ(ef )φ(eg) = ψα(f, g) φ(efg) (8.25)

φ(ef )φ(w) = φ(f · w)φ(ef ), (8.26)

for all w, v ∈W •W̃ , f, g ∈ Uα. This is done by a straightforward computation. To

prove that the image of φ is contained in L�HK we must prove that if w ∈W • W̃
then

ι1(w)⊗1 + eu⊗ι2(w) ∈ L�H2K.

This calculation is readily proven. Let us prove that φ is a comodule morphism.

For the moment we shall denote by λ
W•W̃ the coaction of L(W • W̃ , β • β̃, α). Let

w = (v1, w1) ∈W • W̃ then

(id⊗φ)λ
W•W̃ (w) = (id⊗φ)(v1⊗1 + w1(u1, u1)⊗e(u1,u1) + (u1, 1)⊗w)

= v1⊗1⊗1 + w1(u1, u1)⊗e(u1,u2)⊗e(u2,u1)

+ (u1, 1)⊗ι1(w)⊗1 + (u1, 1)⊗e(u1,u2)⊗ι2(w).

Let λ denote the coaction of L�HK described in (4.4) and

ι1(w) = (v1, v2), ι2(w) = (v2, w1).
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We have that

λ(ι1(w)⊗1) = (πH1
⊗πH1

⊗id)(v1⊗1⊗1 + v2u⊗eu⊗1 + u1⊗ι1(w)⊗1)

= v1⊗1⊗1 + u1⊗ι1(w)⊗1,

and

λ(eu⊗ι2(w)) = (πH1
⊗πH1

⊗id)
(
uv2⊗eu⊗1 + uw1(u2, u1)⊗eu⊗e(u2,u1)

+ u(u2, 1)⊗eu⊗ι2(w)
)

= (u1, 1)w1(1, u1)⊗eu⊗e(u2,u1) + (u1, 1)⊗eu⊗ι2(w)

= w1(u1, u1)⊗eu⊗e(u2,u1) + (u1, 1)⊗eu⊗ι2(w).

The last equality follows because u1 commutes with w1. Then

(id⊗φ)λ
W•W̃ (w) = λφ(w).

An easy computation shows that the same equality holds for the group elements

in Uα. Clearly the map φ is injective. This implies that dim(L(W • W̃ , β • β̃, F •
F̃ , ψ • ψ̃)) ≤ dim(L�H2

K), but from Claim 8.4 it follows that both spaces have the
same dimension. Therefore φ is an isomorphism. �

Let (W,β, F, ψ), (W̃ , β̃, F̃ , ψ̃) be compatible data with (V, V, u, u,G,G). The

spaces W, W̃ have decompositions W = W 1 ⊕W 2 ⊕W 3, W̃ = W̃ 1 ⊕ W̃ 2 ⊕ W̃ 3.

Let L = K(W,β, F, ψ), K = K(W̃ , β̃, F̃ , ψ̃). The tensor product L⊗kK has a
left H-comodule structure δ : L⊗kK → H2⊗kL⊗kK given by

δ(l⊗k) = π2(k(−1))S−1(π2(l(−1)))⊗l(0)⊗k(0),

for all l⊗k ∈ L⊗kK. This coaction was already used in (4.5).

Proposition 8.12. The following assertions hold.

1. If KM is an invertible bimodule category then W̃ 2 = 0.

2. If KM is an invertible bimodule category then W̃ 1 = 0.
3. If KM is an invertible bimodule category then

F̃ = Uα, ψ̃ = ψα,

for some α ∈ O(G⊕ Ĝ).

4. If W 2 = W 1 = W̃ 2 = W̃ 1 = 0 and F̃ = Uα̃, ψ̃ = ψα̃, F = Uα, ψ̃ = ψα for

some α, α̃ ∈ O(G⊕ Ĝ), there is an isomorphism

L⊗kK ' N⊗k(L�HK)

of right L�HK-modules and left H-comodules, where N is a certain left
H-comodule.

Proof. 1. Since KM is an invertible bimodule category then(
KM

)op
�Rep(H) KM'M(H,H,K,K) ' Rep(H2).

For any vector space X and P ∈M(H,H,K,K) we write X⊗kP the object in the
categoryM(H,H,K,K) with structure concentrated in P . Let N be the full sub-
category ofM(H,H,K,K) consisting of objects P such that X⊗P ' X⊗kP for all
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X ∈ Rep(H⊗Hcop). The category N is a submodule category of M(H,H,K,K).
It could not happen that N equals M(H,H,K,K) since M(H,H,K,K) is equiv-
alent to Rep(H). Thus N must be the null category.

Let us assume that W̃ 2 6= 0. Let 〈W 2〉 be the subalgebra of K generated by
elements in W 2. We have inclusions

S = 〈W 2〉�H〈W 2〉 ↪→ K�H2K ↪→ K⊗kK,

of left H⊗Hcop-comodule algebras. Note that the coaction of S is trivial, that is,
if δ : S → H⊗Hcop⊗kS,

∑
k⊗l ∈ S then δ(

∑
k⊗l) = 1⊗1⊗

∑
k⊗l. This implies

that for any X ∈ Rep(H⊗Hcop) and M ∈ SM X⊗M = X⊗kM , where the S-
action on X⊗kM is concentrated in the second tensorand. From this observation
we deduce that for any M ∈ SM the object K⊗kK⊗SM belongs to N . This is a

contradiction, which means that W̃ 2 = 0.
2. The assertion follows by using the same argument as in item (1).
3. Let us assume that LM is the inverse of the bimodule category KM. From

the previous results we know that W 2 = W 1 = W̃ 2 = W̃ 1 = 0. Let us prove that
(L�HK)0 = L0�H0

K0. The inclusion (L�HK)0 ⊇ L0�H0
K0 is immediate. Let∑

l⊗k ∈ (L�HK)0, then

π1(l(−1))⊗l(0) ∈ H0⊗kL, π1(k(−1))⊗k(0) ∈ H0⊗kK.

The only possibility for this to happen is that l ∈ L0, k ∈ K0. Now the result
follows from [17, Corollary 5.6].

4. It follows from Proposition 7.9 and from (8.16) that L�HK is a twisting
Cσ of some coideal subalgebra C of either A(V, V, u, u,G,G) or H(V, V, u, u,G,G).
This means that there are equivalences of categories

BML�HK '
B[σ]

MC ' QM,

where B is either A(V, V, u, u,G,G) or H(V, V, u, u,G,G), and Q = B/BC+. The
first equivalence is [16, Lemma 2.1] and the second one is standard, see e.g. [20].
Thus any object of BML�HK is equivalent to B[σ]�QN for some N ∈ QM. In
particular, since L⊗kK ∈ BML�HK there exists N ∈ QM such that L⊗kK '
B[σ]�QN . Since B[σ] ' C⊗kQ as right C-modules and left Q-comodules, then
L⊗kK ' Cσ⊗kN . �

Theorem 8.13. If α, α̃ are elements in O(G⊕ Ĝ), then there is an equivalence of
bimodule categories

L(W,β,α)M�Rep(H) L(W̃ ,β̃,α̃)
M' L(W•W̃ ,β•β̃,αα̃)

M.

Proof. From Proposition 8.12 (4) we can apply Theorem 4.2 and we get that

L(W,β,α)M' L(W,β,id)�HL(V,0,α)M' L(W,β,id)M�Rep(H) L(V,0,α)M,

where the first isomorphism is (8.16). Then

L(W,β,α)M�Rep(H) L(W̃ ,β̃,α̃)
M
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is isomorphic to

L(W,β,id)M�Rep(H) L(V,0,α)M�Rep(H) L(V,0,α̃)M�Rep(H) L(W̃ ,β̃,id)
M.

Using Theorem 8.8 we obtain that this tensor product is isomorphic to

L(W,β,id)M�Rep(H) L(V,0,αα̃)M�Rep(H) L(W̃ ,β̃,id)
M,

and using again Theorem 4.2 we get the result. �

Define B(V, u,G) to be the group of invertible elements in R(V, u,G)/∼ with
product • described in (8.2).

Theorem 8.14. Let G be a finite group, u ∈ G be a central element of order 2
and V a finite-dimensional G-module such that u · v = −v for all v ∈ V . There is
an isomorphism of groups

BrPic (Rep(A(V, u,G))) ' B(V, u,G).

Proof. It follows from Theorem 8.7 that the application

R(V, u,G)× → BrPic (Rep(A(V, u,G))), (W,β, α) 7→ L(W,β,α)M

is well-defined. It follows from Theorem 7.12 that (W,β, α) ∼ (W̃ , β̃, α̃) if and only
if the module categories L(W,β,α)M, L(W̃ ,β̃,α̃)

M are equivalent. Hence we have a

well-defined injective map

B(V, u,G)→ BrPic (Rep(A(V, u,G)), (W,β, α) 7→ L(W,β,α)M.

Proposition 8.11 implies that this map is a group homomorphism. Let us prove
that it is surjective. Let M be an exact invertible Rep(A(V, u,G))-bimodule cat-
egory. Then, by Theorem 7.10 there exists a data (W 1 ⊕W 2 ⊕W 3, β, F, ψ) com-
patible with (V, V, u, u,G,G) and an equivalence M ' K(W 1,W 2,W 3,β,F,ψ)M of

bimodule categories. By Proposition 8.12 (1) and (2) W 1 = W 2 = 0. Also by

Proposition 8.12 (3) there exists α ∈ O(G ⊕ Ĝ) such that (F,ψ) = (Uα, ψα), thus
K(W 1,W 2,W 3, β, F, ψ) = L(W,β, α).

Since M is invertible there exists another compatible data (W̃ , β̃, α̃) such that

L(W,β,α)M�Rep(A(V,u,G)) L(W̃ ,β̃,α̃)
M (8.27)

is equivalent to L(diag(V ),0,diag(G),1)M. From Theorem 8.13 we conclude that the
tensor product category (8.27) is equivalent to the category

K(W•W̃ ,β•β̃,αα̃)
M.

It follows from Theorem 7.12 that (W •W̃ , β • β̃, αα̃) ∼ (diag(V ), 0,diag(G), 1) and
therefore (W,β, α) ∈ B(V, u,G). This finishes the proof of the Theorem. �
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8.4. Another description of the Brauer-Picard group. In [9] the authors give
a beautiful description of the group BrPic(Rep(kG)) for a finite Abelian group G.

This group is isomorphic to the group of automorphism of G ⊕ Ĝ, here Ĝ is the

group of characters of G, such that they preserve the quadratic form q : G⊕Ĝ→ k,
q(g, f) = f(g). In this section we use the same ideas to give a more compact
description of the group B(V, u,G).

Let (W,β, α) ∈ R(V, u,G). Set τ(W,β) the subspace of V ⊕V ∗⊕V ⊕V ∗ defined
by

{(w1, f1, w2, f2) : (w1, w2) ∈W, (f1, f2) ∈W ∗, β̂(w1, w2) = f1 − f2}.

Recall the definition of β̂ given in (2.1). If (W ′, β′, α′) is another element in
R(V, u,G) we denote τ(W,β) • τ(W ′, β′) the set of elements (w1, f1, w2, f2) such
that there exists a unique (v, g) ∈ V ⊕ V ∗ such that (w1, f1, v, g) ∈ τ(W,β) and
(v, g, w2, f2) ∈ τ(W ′, β′).

Let Lag (V, u,G) be the set of pairs (τ(W,β), α) where (W,β, α) is an invertible
element in R(V, u,G). If (τ(W,β), α), (τ(W ′, β′), α′) ∈ Lag (V, u,G) define

(τ(W,β), α) • (τ(W ′, β′), α′) = (τ(W,β) • τ(W ′, β′), α ◦ α′). (8.28)

Two elements (τ(W,β), α), (τ(W ′, β′), α′) in Lag (V, u,G) are equivalent if there
exists (x, y) ∈ G×G such that

(τ(W ′, β′), α′) = (τ((x, y) ·W, (x, y) · β), α).

We denote by Lag (V, u,G) the set of equivalence classes in Lag (V, u,G). The next
lemma is a result analogous to [9, Prop. 10.3].

Lemma 8.15. The set Lag (V, u,G) is a group with operation defined by (8.28) in
each equivalence class and identity element the class of ({(v, f, v, f) : v ∈ V, f ∈
V ∗}, id). The map τ : B(V, u,G) → Lag (V, u,G) that sends the class of (W,β, α)
to the class of (τ(W,β), α) is a group isomorphism.

Proof. The proof that Lag (V, u,G) is a group is straightforward. Let us take
(W,β, α), (W ′, β′, α′) ∈ R(V, u,G) and (w1, f1, w2, f2) ∈ τ(W,β)• τ(W ′, β′). Then
there exists (v, g) ∈ V ⊕ V ∗ such that (w1, f1, v, g) ∈ τ(W,β) and (v, g, w2, f2) ∈
τ(W ′, β′). Hence

β̂(w1, v) = f1 − g, β̂′(v, w2) = g − f2,

which implies that

β̂ • β′(w1, w2) = f1 − f2.

Thus, (w1, f1, w2, f2) ∈ τ(W • W ′, β • β′) and we have an inclusion τ(W,β) •
τ(W ′, β′) ⊆ τ(W •W ′, β • β′). The other inclusion is proven similarly. Thus τ is
well-defined and injective. By definition of Lag (V, u,G) the map τ is surjective. �

The group G×G acts on the set of linear maps T : V ⊕V ∗ → V ⊕V ∗ as follows.
If (x, y) ∈ G×G, (v, f) ∈ V ⊕ V ∗ define

((x, y) · T )(v, f) = x−1 · T (y · v, y · f). (8.29)
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The action of G on V ∗ is given by

(x · f)(v) = f(x−1 · v),

for all x ∈ G, f ∈ V ∗, v ∈ V .

Definition 8.16. Let O(V, u,G) be the set of pairs (T, α) where

(i) α ∈ O(G⊕ Ĝ) such that (u, u) ∈ Uα,
(ii) T : V ⊕ V ∗ → V ⊕ V ∗ is a linear isomorphism such that

(x, y) · T = T, for all (x, y) ∈ Uα, (8.30)

T 1(0, f) = 0, T 2(0, f)(T 1(v, 0)) = f(v), for all f ∈ V ∗, v ∈ V. (8.31)

Here T (v, f) = (T 1(v, f), T 2(v, f)) for all f ∈ V ∗, v ∈ V .

Two elements (T, α), (T ′, α′) are equivalent if there exists (x, y) ∈ G × G such
that

T ′ = (x−1, y−1) · T, α = α′.

The class of an element (T, α) ∈ O(V, u,G) will be denoted by (T, α) and the set
of equivalence classes will be denoted O(V, u,G).

Remark 8.17. If (T, id) ∈ O(V, u,G) then T ∈ AutG(V ⊕ V ∗).
Lemma 8.18. The set O(V, u,G) is a group with unit element (Id, id) and com-
position

(T, α) • (T ′, α′) = (T ◦ T ′, α ◦ α′),
for all (T, α), (T ′, α′) ∈ O(V, u,G). �

Theorem 8.19. There is an isomorphism of groups B(V, u,G) ' O(V, u,G).

Proof. Let (T, α) be a representative of a class in O(V, u,G). Define T 1 : V ⊕V ∗ →
V, T 2 : V ⊕V ∗ → V ∗ by T (v, f) = (T 1(v, f), T 2(v, f)) for any (v, f) ∈ V ⊕V ∗. Let
WT the subspace of V ⊕ V defined as

WT = {(T 1(v, f), v) : v ∈ V, f ∈ V ∗},
and the bilinear form βT : WT ×WT → k defined by

βT ((T 1(v1, f1), v1), (T 1(v2, f2), v2)) = T 2(v1, f1)(T 1(v2, f2))− f1(v2),

for all (v1, f1), (v2, f2) ∈ V ⊕ V ∗.
Claim 8.5. (WT , βT , α) ∈ R(V, u,G).

Proof of Claim. Let us prove that βT is Uα-invariant. The other conditions can
be easily verified. Let (g, h) ∈ Uα, (v1, f1), (v2, f2) ∈ V ⊕ V ∗ then βT ((g, h) ·
(T 1(v1, f1), v1), (g, h) · (T 1(v2, f2), v2)) is equal to

= βT ((g · T 1(v1, f1), h · v1), (g · T 1(v2, f2), h · v2))

= βT ((T 1(h · v1, h · f1), h · v1), (T 1(h · v2, h · f2), h · v2))

= T 2(h · v1, h · f1)(T 1(h · v2, h · f2))− h · f1(h · v2)

= T 2(v1, f1)(T 1(v2, f2))− f1(v2)

= βT ((T 1(v1, f1), v1), (T 1(v2, f2), v2)).
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The second and fourth equalities follow because (g, h) · T = T . �

We will establish an isomorphism σ : O(V, u,G)→ Lag (V, u,G) defined by

σ(T, α) = (τ(WT , βT ), α),

for all (T, α) ∈ O(V, u,G). This map does not depend on the representative class

of (T, α). Let us prove that it is injective. Let (T, α) ∈ O(V, u,G) such that

(τ(WT , βT ), α) = ({(v, f, v, f) : v ∈ V, f ∈ V ∗}, id).

Since ({(v, f, v, f) : v ∈ V, f ∈ V ∗} = τ(diag(V ), 0) there exists an element (x, y) ∈
G×G such that

Uα = diag(G), ψα = 1, WT = {(x · v, y · v) : v ∈ V }, βT = 0.

This implies that T 1(v, f) = xy−1 · v for all (v, f) ∈ V ⊕ V ∗ and since βT = 0

then T 2(v, f) = xy−1 · f , thus T = (x, y)−1 · Id. Hence (T, α) = (Id, id) and σ is
injective. Finally, let us prove that σ is surjective. Let (τ(W,β), α) ∈ Lag (V, u,G).
If (w1, f1, w2, f2), (w′1, f

′
1, w2, f2) ∈ τ(W,β) then (w1 − w′1, 0) ∈ W which implies

that w1 = w′1. Also

β̂(w1, w2) = f1 − f2 = f ′1 − f2,

thus f ′1 = f1. In conclusion the pair (w1, f1) depends on (w2, f2), therefore there
is a linear function T : V ⊕ V ∗ → V ⊕ V ∗ such that W = WT . If the element
(0, 0, v, f) ∈ W then v = 0, f = 0, thus T must be injective and consequently
bijective. It is not difficult to see that β = βT . This finishes the proof that σ is
surjective and the proof of the Theorem. �

Example 8.20. Suppose k = C. Let Z2 be the cyclic group of order 2 with
generator u. Let V be a finite-dimensional vector space such that u acts as −1
on V . Set H = ∧(V )#kZ2. Assume dimV = 1, so H is Sweedler’s Hopf algebra.

The group O(Z2 ⊕ Ẑ2) = {id, γ}, see example 8.3. Note that Uγ = Z2 ⊕ Z2.
Define

O = {A ∈ SL2(C) : A12 = 0}.
The Brauer-Picard group of Rep(H) is isomorphic to the group O×Z2. In partic-
ular for any ξ ∈ k the matrices (

i
ξ

0
−i

)
give a one parameter family invertible bimodule categories over Rep(H) of order 4.
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