
REVISTA DE LA
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PRINCIPAL EIGENVALUES FOR PERIODIC PARABOLIC
STEKLOV PROBLEMS WITH L∞ WEIGHT FUNCTION

T. GODOY, E. LAMI DOZO, AND S. PACZKA

Abstract. In this paper we give sufficient conditions for the existence of a
positive principal eigenvalue for a periodic parabolic Steklov problem with
a measurable and essentially bounded weight function. For this principal
eigenvalue its uniqueness, simplicity and monotone dependence on the weight
are stated. A related maximum principle with weight is also given

1. Introduction

Let Ω be a C2+θ and bounded domain in R
N with N ≥ 2 and θ ∈ (0, 1) , let

T > 0 and let {aij}1≤i,j≤N , {bj}1≤,j≤N be two families of real functions defined
on Ω × R and Ω × R respectively, satisfying for 1 ≤ i, j ≤ N that aij = aij (x, t)
and bj = bj (x, t) are T periodic in t, aij = aji,

∂aij

∂xi |[0,T ]
∈ C

(
Ω × R

)
and

bj ∈ L∞ (Ω × R) . Let a0 : Ω × R → R be a nonnegative and T periodic func-
tion belonging to Ls (Ω × R) for some s > 1 + N

2 . Assume in addition that for
some γ ∈ ( 1

2 , 1
)

and for all i, j

aij ∈ Cγ
(
R, C

(
Ω
))

, bj ∈ Cγ (R, L∞ (Ω)) (1)

and that
a0 ∈ Cγ (R, Ls (Ω)) (2)

where aij (t) (x) := aij (x, t) , bj (t) (x) := bj (x, t) and a0 (t) (x) := a0 (x, t) . Let
b = (b1, ..., bN ) and let A be the N ×N matrix whose i, j entry is aij . Assume also
that A is uniformly elliptic on Ω× [0, T ], i.e., that there exists a positive constant
α such that ∑

i,j

aij (x, t) ξiξj ≥ α |ξ|2 (3)

for all (x, t) ∈ Ω × R, ξ = (ξ1, ..., ξN ) ∈ R
N . Let L be the periodic parabolic

operator defined by

Lu := ut − div (A∇u) + 〈b,∇u〉 + a0u (4)

where 〈, 〉 denotes the standard inner product on R
N . Finally, let b0 be a nonnega-

tive and T periodic function in L∞ (∂Ω × R) and let ν be the unit exterior normal
to ∂Ω. Under the above hypothesis and notations (that we assume from now on)
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74 T. GODOY, E. LAMI DOZO AND S. PACZKA

we consider, for a T periodic function (that may changes sign) m ∈ L∞ (∂Ω × R) ,
the periodic parabolic Steklov principal eigenvalue problem with weight function
m

Lu = 0 in Ω × R (5)

〈A∇u, ν〉 + b0u = λmu on ∂Ω × R,

u (x, t) T periodic in t

u > 0 in Ω × R,

the solutions understood in the sense of the definition 2.1 below. In order to
describe our results let us introduce, for m ∈ L∞ (∂Ω × R) , the quantities

P (m) :=
∫ T

0

ess sup
x∈∂Ω

m (x, t) dt, N (m) :=
∫ T

0

ess inf
x∈∂Ω

m (x, t) dt (6)

In this paper we prove (cf. Theorem 6.1) that if either a0 > 0 and b0 ≥ 0 or
a0 = 0 and b0 > 0 and if P (m) > 0 (respectively N (m) < 0) then there exists a
positive (resp. negative) principal eigenvalue for (5), that is, a λ whose associated
eigenfunction u satisfies (5). Under an additional assumption on m a similar
existence result is also given for the case a0 = 0, b0 = 0 .

Our approach, adapted from [4] and [8], reads as follows: If we change λmu
in (5) by λmu + µu, we have the following one parameter eigenvalue problem:
given λ ∈ R find µ ∈ R such that this modified (5) has a solution. We prove in
section 4 that this problem has a unique solution µ = µm (λ) ∈ R which satisfies
that λ → µm (λ) is real analytic and concave. We also obtain an expression
for µ′

m (0) which allows us to decide the sign of µ′
m (0) . In section 5 we prove

that P (m) > 0 (respectively N (m) < 0) implie limλ→∞ µm (λ) = −∞ (resp.
limλ→−∞ µm (λ) = −∞). From these facts, and since the zeroes of the function
µm are exactly the principal eigenvalues for (5), our results will follow.

Sections 2 and 3 have a preliminar character. In section 2 we collect some
general facts about initial value parabolic problems and in section 3 we study ex-
istence and uniqueness of periodic solutions for parabolic problems and we prove
some compactness and positivity properties of the corresponding solutions opera-
tors related.

2. Preliminaries

Let us start introducing the notations to be used along the paper. For a topo-
logical vector space E we put E∗ for its topological dual and 〈, 〉E∗,E for the
corresponding evaluation bilinear map 〈Λ, e〉E∗,E = Λ (e) . If E1, E2 are normed
spaces and if S : E1 → E2 is a bounded linear map we denote by ‖S‖E1,E2

(or
simply by ‖S‖ if no confusion arises) its corresponding operator norm. If E is a
real Banach, −∞ ≤ t0 < t1 ≤ ∞ and 1 ≤ p < ∞ we put Lp (t0, t1; E) for the space
of the measurable functions (in the Bochner sense) f : (t0, t1) → E such that

‖f‖Lp(t0,t1;E) :=
(∫ t1

t0
‖f (t)‖p

E dt
) 1

p

< ∞. We define also L∞ (t0, t1; E) and, for

1 ≤ p ≤ ∞, the space Lp
loc (t0, t1; E), similarly (with the obvious changes) to the

corresponding usual Lebesgue’s spaces. For 1 ≤ p ≤ ∞ we put Lp
T (R, E) for the
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PERIODIC PARABOLIC STEKLOV PROBLEMS 75

space of the T periodic functions f : R →E satisfying that f|(0,T ) ∈ Lp (0, T ; E) .

We write also CT

(
Ω × R

)
(respectively CT (∂Ω × R)) for the space of the T pe-

riodic functions belonging to C
(
Ω × R

)
(resp. to CT (∂Ω × R)). The spaces

Lp (t0, t1; E) , Lp
T (R, E) , CT

(
Ω × R

)
and CT (∂Ω × R) , equipped with their re-

spective norms ‖‖Lp(t0,t1;E) , ‖‖Lp(0,T ;E) , ‖‖C(Ω)×[0,T ] and ‖‖C(∂Ω)×[0,T ] are Ba-
nach spaces. For t0 < t1 we will identify (writing f (x, t) = f (t) (x)) the spaces

L2 (Ω × (t0, t1)) = L2
(
t0, t1; L2 (Ω)

)
,

L2
T (Ω × R) = L2

(
0, T ; L2 (Ω)

)
and also the corresponding spaces of functions defined on ∂Ω × (t0, t1)

Let X, V be the real Hilbert spaces X = L2 (Ω) , V = H1 (Ω) equipped with
their usual norms. For t0 < t1 let D = C∞

c (t0, t1; V ) be the space of the indefinitely
differentiable Frechet functions from (t0, t1) into V , D equipped with the topology
of the uniform convergence on each compact subset of (t0, t1) of the function and all
its derivatives. Let D′ be its dual space. For u ∈ L1

loc (t0, t1; V ) , let u′ be its distri-
butional derivative defined by 〈u′, ϕ〉D′,D = − ∫ t1

t0
〈u (t) , ϕt (t)〉X dt for all ϕ ∈ D

where 〈, 〉X denotes the inner product in X. We will say that u′ ∈ L2 (t0, t1; V ∗)
if there exists a function (denoted by t → u′ (t)) belonging to L2 (t0, t1; V ∗) such
that 〈u′, ϕ〉D′,D =

∫ t1
t0

〈u′ (t) , ϕ (t)〉V ∗,V dt for all ϕ ∈ D.

For t ∈ R, let aL,b0 (t, ., .) : V × V → R be the bilinear form defined by

aL,b0 (t, g, h) = (7)∫
Ω

[〈A (., t)∇g,∇h〉 + 〈b (., t) ,∇g〉h + a0 (., t) gh] +
∫

∂Ω

b0 (., t) gh

(the values on ∂Ω of g and h understood in the trace sense) and let AL,b0 (t) :
V → V ∗ be the bounded linear operator defined by

AL,b0 (t) g = aL,b0 (t, g, .) (8)

For t0 < t1, f ∈ L2 (Ω × (t0, t1)) , Φ ∈ L2 (∂Ω × (t0, t1)) and t ∈ (t0, t1) , let
Λf,Φ (t) ∈ V ∗ be defined by

〈Λf,Φ (t) , h〉V ∗,V =
∫

Ω

f (., t)h +
∫

∂Ω

Φ (., t)h, h ∈ V. (9)

So Λf,Φ ∈ L2 (t0, t1; V ∗) and

‖Λf,Φ‖L2(t0,t1;V ∗) ≤ c
(
‖f‖L2(Ω×(t0,t1))

+ ‖Φ‖L2(,∂Ω×(t0,t1))

)
(10)

for some positive constant depending only on t0, t1, Ω and N. We set also

Wt0,t1 :=
{
u ∈ L2 (t0, t1; V ) : u′ ∈ L2 (t0, t1; V ∗)

}
(11)

and ‖u‖Wt0,t1
:= ‖u‖L2(t0,t1;V ) + ‖u′‖L2(t0,t1;V ∗) . So Wt0,t1 , equipped with the

norm ‖.‖Wt0,t1
, is a Banach space. With these notations we can formulate the

following definition
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76 T. GODOY, E. LAMI DOZO AND S. PACZKA

Definition 2.1. For −t0 < t1, f ∈ L2 (Ω × (t0, t1)) and Φ ∈ L2 (∂Ω × (t0, t1))
we say that u : Ω × (t0, t1) → R is a solution of the problem

Lu = f in Ω × (t0, t1) (12)

〈A∇u, ν〉 + b0u = Φ on ∂Ω × (t0, t1)

if u ∈ Wt0,t1 and u′ (t) + AL,b0 (t)u (t) = Λf,Φ (t) a.e. t ∈ (t0, t1) .
¿From now on, a solution of a boundary problem like (12) (except if otherwise

is explicitely stated) will mean a solution in the above sense.
Remark 2.2. For k, l, t ∈ R with k > 0, standard computations on the

quadratic form g → aL+k,l (t, g, g) give, for all g ∈ V,

aL+k,l (t, g, g) ≥
(

k − ‖|b|‖2
L∞(Ω×R)

4α

)
‖g‖2

X + l

∫
∂Ω

g2

and also

aL+k,l (t, g, g) ≥
(

α − ‖|b|‖2
L∞(Ω×R)

4k

)
‖∇g‖2

X + l

∫
∂Ω

g2

where α is the ellipticity constant of A. So, for k > k0 :=
‖|b|‖2

L∞(Ω×R)

4α and l ≥ 0,
there exists a positive constant β depending only on α and ‖|b|‖L∞(Ω×R) such that

aL+k,l (t, g, g) ≥ β ‖g‖2
V (13)

for all t ∈ R and g ∈ V. Moreover, for such k and l, the assumptions on the
coefficients of L imply that there exists a positive constant c such that

aL+k,l (t, g, h) ≤ c ‖g‖V ‖h‖V (14)

and that
|aL+k,l (t, g, h) − aL+k,l (s, g, h)| ≤ c |t − s|γ ‖g‖V ‖h‖V (15)

for all s, t ∈ R and g, h ∈ V.�
For k0 as in Remark 2.2, k ≥ k0, −∞ < τ < t < ∞ and u0 ∈ X consider the

problem

u ∈ Wτ,t, (16)

u′ (s) + AL+k,l (s)u (s) = 0 a.e. s ∈ (τ, t)

u (τ) = u0.

Note that Wτ,t ⊂ C ([τ, t] , X) (cf. ([12], Lemma 5.5.1) and so the initial condition
u (τ) = u0 makes sense. Taking into account the facts in Remark 2.2, ( [12],
Theorem 5.5.1) applies to see that (16) has a unique solution u. Let UL+k,l (t, τ) :
X → X be the linear operator defined by UL+k,l (t, τ) u0 = u (t) .

Let us recall the following properties (cf. [12], Theorem 5.4.1) of the evolution
operators UL+k,l (t, τ)

Remark 2.3. i) Given t0, t1 ∈ R with t0 < t1 there exists a positive constant
c such that, for t0 < τ < t ≤ t1,

‖UL+k,l (t, τ)‖X,V ≤ c (t − τ)−
1
2 . (17)
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ii) Since V ⊂ X � X∗ ⊂ V ∗ (the isomorphism X � X∗ given by duality) we
can consider X ⊂ V ∗. In this setting, it holds that for t0, t1 as above there exists
a positive constant c′ such that

‖UL+k,l (t, τ) u0‖X ≤ c′ (t − τ)−
1
2 ‖u0‖V ∗ (18)

for t0 < τ < t ≤ t1 and u0 ∈ X. Since V (and then also X) is dense in V ∗, it
follows that UL+k,l (t, τ) : X → V has a unique bounded extension to an operator
(still denoted UL+k,l (t, τ)) from V ∗ into X which satisfies, for c′ as in (18),

‖UL+k,l (t, τ)‖V ∗,X ≤ c′ (t − τ)−
1
2 . (19)

Finally, we recall also that for τ ≤ s ≤ t it holds that

UL+k,l (t, τ) = UL+k,l (t, s)UL+k,l (s, τ) . (20)

For −∞ < t0 < t1 < ∞ , Λ ∈ L2 (t0, t1; V ∗) and u0 ∈ X consider the problem

vk ∈ Wt0.t1 , (21)

v′k (t) + AL+k,l (t) vk (t) = Λ (t) a.e. t ∈ (t0, t1)

vk (t0) = u0.

Taking into account (13), (14) and (15), ([12], Theorem 5.5.1) applies to see that
(21) has a unique solution vk given by

vk (t) = UL+k,l (t, t0)u0 +
∫ t

t0

UL+k,l (t, τ) Λ (τ) dτ.� (22)

Remark 2.4. Observe that u ∈ Wt0,t1 is a solution of the problem

u (t) + AL,l (t)u (t) = Λ (t) a.e. t ∈ (t0, t1) (23)

u (t0) = u0

if and only if vk (t) := e−k(t−t0)u (t) solves

v′k (t) + AL+k,l (t) vk (t) = Λk a.e. t ∈ (t0, t1) (24)

vk (t0) = u0

with Λk defined by Λk (t) := e−k(t−t0)Λ (t). Thus (23) has a unique solution u
given by

u (t) = UL,l (t, t0)u0 +
∫ t

t0

UL,l (t, τ) Λ (τ) dτ (25)

with UL,l (t, τ) defined by

UL,l (t, τ) := ek(t−τ)UL+k,l (t, τ) . (26)

Moreover, for t ∈ [t0, t1] we have (cf. [12], Lemma 5.5.2)

1
2
‖u (t)‖2

X +
∫ t

t0

aL,l (τ, u (τ) , u (τ)) dτ (27)

=
1
2
‖u0‖2

X +
∫ t

t0

〈Λ (τ) , u (τ)〉V ∗,V dτ.
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¿From (27), standard computations show that there exists a positive constant c
independent of Λ and u0 such that

‖u‖Wt0,t1
≤ c
(
‖Λ‖L2(t0,t1,V ∗) + ‖u0‖L2(Ω)

)
.� (28)

Remark 2.5. The estimates (17), (18), (19) and (20) still hold (with another
constants) for the operators UL,l (t, τ) given by (26) and u (t) := UL.l (t, τ) u0

satisfies

Lu = in Ω × (t0, t1) , (29)

〈A∇u, ν〉 + lu = 0 on ∂Ω × (t0, t1)

u (t0) = u0

for u0 ∈ L2 (Ω) .�
Remark 2.6. For l ≥ 0, −∞ < t0 < t1 < ∞, f ∈ L2 (Ω × (t0, t1)) , Φ ∈

L2 (∂Ω × (t0, t1)) and u0 ∈ L2 (Ω) the problem

Lu = f in Ω × (t0, t1) , (30)

〈A∇u, ν〉 + lu = Φ on ∂Ω × (t0, t1) ,

u (., t0) = u0

has a unique solution which satisfies in addition that

‖u‖Wt0,t1
≤ c
(
‖f‖L2(Ω×(t0,t1))

+ ‖Φ‖L2(∂Ω×(t0,t1))
+ ‖u0‖L2(Ω)

)
. (31)

for some positive constant c independent of f, Φ and u0. Indeed, the solutions of
(30) are those of (23) taking there Λ = Λf,Φ, and Remark 2.4 applies.�

Remark 2.7. It is easy to check that the constant c in (28) and so also in
Remark 2.5 and Remark 2.6 can be chosen depending only on Ω, N, γ, α and on an
upper bound of Σi,j ‖aij‖L∞(Ω×(t0,t1))

+ Σj ‖bj‖L∞(Ω×(t0,t1))
+ ‖a0‖Ls(Ω×(t0,t1))

.�
Lemma 2.8. Let t0, t1, f, Φ and u0 be as in Lemma 2.4 and let

{
L(n)

}
be a

sequence of operators of the form

L(n)u == ut − div
(
A(n)∇u

)
+
〈
b(n),∇u

〉
+ a

(n)
0 u

with A(n) =
(
a
(n)
ij

)
, b(n) =

(
b
(n)
1 , ..., b

(n)
N

)
and a

(n)
0 satisfying for each n the

conditions stated for L at the introduction with the same γ, α and s given there
for L. Assume also that for each i and j,

{
a
(n)
ij

}
and

{
b
(n)
j

}
converge uniformly

on Ω × (t0, t1) to aij and bj respectively and that
{
a
(n)
0

}
converges to a0 in

Ls (Ω × (t0, t1)). Let
{
f (n)

}
and

{
Φ(n)

}
be sequences in L2 (Ω × (t0, t1)) and in

L2 (∂Ω × (t0, t1)) respectively and assume that they converge to f and Φ in their
respective spaces. Let

{
u

(n)
0

}
be a sequence in L2 (Ω) that converges to u0 in
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L2 (Ω) and let l ≥ 0. Thus the solution u(n) ∈ Wt0,t1 of the problem

L(n)u(n) = f (n) in Ω × (t0, t1) ,〈
A∇u(n), ν

〉
+ lu(n) = Φ(n) on ∂Ω × (t0, t1) ,

u(n) (., t0) = u
(n)
0 .

converges in the Wt0,t1 norm to the solution u of (30).
Proof. For k0 as in Remark 2.2, k ≥ k0, l ≥ 0 and n ∈ N, let v

(n)
k ∈ Wt0,t1 be

the solution of(
v
(n)
k

)′
(t) + AL(n)+k,l (t) v

(n)
k (t) = Λ

f
(n)
k ,Φ

(n)
k

(t) a.e.t ∈ (t0, t1) ,

v
(n)
k (t0) = u

(n)
0

and let vk be the solution of (24). We have(
v
(n)
k − vk

)′
(t) + AL+k,l (t)

(
v
(n)
k − vk

)
(t) = Λ̃(n) (t) a.e.t ∈ (t0, t1) , (32)(

v
(n)
k − vk

)
(t0) = u

(n)
0 − u0

where

Λ̃(n) (t) (33)

:= Λ
f
(n)
k ,Φ

(n)
k

(t) − Λfk,Φk
(t) +

(AL+k,l (t) −AL(n)+k,l (t)
)
v
(n)
k (t) .

Our assumptions imply that limn→∞
∥∥∥Λf

(n)
k ,Φ

(n)
k

− Λfk,Φk

∥∥∥
L2(t0,t1;V ∗)

= 0 and

that limn→∞
∥∥AL+k,l (t) −AL(n)+k,l (t)

∥∥
V.V ∗ = 0 uniformly on t ∈ [t0, t1] . From

Remarks 2.6 and 2.7 we have that
{∥∥∥v(n)

k

∥∥∥
L2(t0,t1;V )

}
is a bounded sequence.

Then from (33) limn→∞
∥∥∥Λ̃(n)

∥∥∥
L2(t0,t1;V ∗)

= 0. Thus from Remark 2.6 applied to

(32) we obtain limn→∞
∥∥∥v(n)

k − vk

∥∥∥
Wt0,t1

= 0. Since u(n) (t) = ek(t−t0)v
(n)
k and

u (t) = ek(t−t0)vk the lemma follows.�
Lemma 2.9. Assume that f ∈ L2 (Ω × (t0, t1)) , Φ ∈ L2 (∂Ω × (t0, t1)) and

u0 ∈ L2 (Ω) are nonnegative. Then the solution u of (30) is nonnegative.
Proof. We pick sequences {Ln} ,

{
f (n)

}
,
{
Φ(n)

}
and

{
u

(n)
0

}
as in Lemma

2.8 satisfying in addition that f (n) ≥ 0, Φ(n) ≥ 0, u
(n)
0 ≥ 0 and such that a

(n)
ij ,

b
(n)
j , a

(n)
0 and f (n) belong to C∞ (Ω × [t0, t1]

)
, Φ(n) belongs to C∞ (∂Ω × [t0, t1])

and u
(n)
0 ∈ C∞

c (Ω) . Let
{

v
(n)
k

}
be as in the proof of Lemma 2.8. Thus v

(n)
k ∈

C2+σ,1+ σ
2 (Ω × (t0, t1)) (cf. e.g., Theorem 5.3 in [9], p. 320)). The classical max-

imum principle gives v
(n)
k ≥ 0 and since by Lemma 2.8 limn→∞ v

(n)
k = vk in

L2 (Ω × (t0, t1)) we get vk ≥ 0. Since the solution u of (30) is given by u (t) =
ektvk (t) the lemma follows.�
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Remark 2.10. Let us recall some well known facts concerning Sobolev spaces
(see e.g. [9], Lemma 3.3, p 80 Lemma 3.4, p. 82)

i): For −∞ < t0 < t1 < ∞ and u ∈ W 2,1
q (Ω × (t0, t1)) with 1 ≤ q < ∞ we

have u|∂Ω×(t0,t1) ∈ W
2− 1

q ,1− 1
2q

q (∂Ω × (t0, t1)) and the restriction map (in the trace

sense) u → u|∂Ω×(t0,t1) is continuous from W 2,1
q (Ω × (t0, t1)) into W

2− 1
q ,1− 1

2q
q (∂Ω×

(t0, t1)).
ii) For u ∈ W 2,1

q (Ω × (t0, t1)) with 1 ≤ q < ∞ it holds that u (., t) ∈ W 2− 2
q ,q (Ω)

for t ∈ [t0, t1] and for such t there exists a positive constant c independent of u
such that ‖u (., t)‖

W
2− 1

q
,q

(Ω)
≤ c ‖u‖W 2,1

q (Ω×(t0,t1)) .

iii) For q > N + 2 the following facts hold:
W 2,1

q (Ω × (t0, t1)) ⊂ C1+σ, 1+σ
2
(
Ω × [t0, t1]

)
for some σ ∈ (0, 1) , with continu-

ous inclusion.
W

2− 1
q ,1− 1

2q
q (∂Ω × (t0, t1)) ⊂ C1+σ, 1+σ

2 (∂Ω × [t0, t1]) for some σ ∈ (0, 1) and
with continuous inclusion.

iv) For 1 ≤ r ≤ ∞ let r∗ be defined by (r∗)−1 = r−1 − (N + 1)−1 if r < N + 1
and r∗ = ∞ if r ≥ N + 1. Thus W 2,1

r (Ω × (t0, t1)) ⊂ Lr∗
(Ω × (t0, t1)) if r∗ < ∞

and W 2,1
r (Ω × (t0, t1)) ⊂ Lq (Ω × (t0, t1)) for all q ∈ [1,∞) if r∗ = ∞, in both

cases with continuous inclusion.�
Remark 2.11. For q > N + 2 it holds that W 2− 2

q ,q (Ω) ⊂ C1+σ
(
Ω
)

contin-

uously for some σ ∈ (0, 1) . In this case, for τ ∈ R, let W
2− 2

q ,q

Bl(τ) (Ω) be the space

of the functions h ∈ W 2− 2
q ,q (Ω) that satisfy (in the pointwise sense) Bl (τ) h = 0

where

Bl (τ) h := 〈A (., τ)∇h, ν〉 + lh. (34)

Let us recall that for such q and for −∞ < t0 < t1 < ∞, f ∈ Lq (Ω × (t0, t1)) ,

Φ ∈ W
2− 1

q ,1− 1
2q

q (∂Ω × (t0, t1)) and u0 ∈ W
2− 2

q ,q

Bl(t0) (Ω) there exists a unique u ∈
W 2,1

q (Ω × (t0, t1)) satisfying almost everywhere

Lu = f in Ω × (t0, t1) ,

〈A∇u, ν〉 + lu = Φ on ∂Ω × (t0, t1) ,

u (t0) = u0.

(for a proof, see [9], Theorem 9.1, p. 341, concerning the Dirichlet problem and
its extension, to our boundary conditions, indicated there (at the end of chapter
4, paragraph 9, p. 351). Moreover, there exists a positive constant c independent
of f, Φ and u0 such that

‖u‖W 2,1
q (Ω×(t0,t1))

≤ c

(
‖f‖Lq(Ω×(t0,t1))

+ ‖Φ‖
W

2− 1
q

,1− 1
2q

q (∂Ω×(t0,t1))
+ ‖u0‖

W
2− 2

q
,q

(Ω)

)
.�

Lemma 2.12. i) For τ < t, UL,l (t, τ) : L2 (Ω) → L2 (Ω) is a compact and
positive operator.
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ii) Let t0, t1 ∈ R with t0 < t1. For 1 ≤ q < ∞, t0 < τ ≤ t1 and u0 ∈ L2 (Ω) the
restriction of UL,l (., t0)u0 to Ω × (τ, t1) belongs to W 2,1

q (Ω × (τ, t1)) and there
exists a positive constant c such that ‖UL,l (., t0)u0‖W 2,1

q (Ω×(τ,t1))
≤ c ‖u0‖L2(Ω)

for all u0 ∈ L2 (Ω) .

iii) UL,l (t, τ)
(
L2 (Ω)

) ⊂ W 2− 2
q ,q (Ω) for τ < t and 1 ≤ q < ∞ and UL,l (t, t0)

is a bounded operator from L2 (Ω) into W 2− 2
q ,q (Ω) .

iv) For τ < t it hold that UL,l (t, τ)
(
L2 (Ω)

) ⊂ C1
(
Ω
)

and UL,l (t, τ) is a
bounded operator from L2 (Ω) into C1

(
Ω
)
. Moreover, if u0 ∈ L2 (Ω) , u0 ≥ 0,

and u0 �= 0 then minΩ UL,l (t, τ)u0 > 0.

v) For N + 2 < q < ∞ and τ < t, UL,l (t, τ)
|W 2− 2

q
,q

Bl(τ) (Ω)
: W

2− 2
q ,q

Bl(τ) (Ω) →

W
2− 2

q ,q

Bl(τ) (Ω) is a compact and strongly positive operator .

Proof. By Lemma 2.9 UL,l (t, τ) : L2 (Ω) → L2 (Ω) is a positive operator. It is
also compact because UL,l (t, τ) : L2 (Ω) → H1 (Ω) is continuous (cf. Remark 2.5)
and H1 (Ω) has compact inclusion in L2 (Ω) . Thus (i) holds.

To see (ii) we pick a strictly increasing sequence of positive numbers {ηj}j∈N

such that t0 < t0 + ηj < τ for all j ∈ N and we pick also a sequence of functions
{ϕj}j∈N

in C∞ (R) satisfying ϕj (s) = 0 for s ≤ t0+ηj , ϕj (s) = 1 for s ≥ t0+ηj+1.

Let u (t) := UL+k,l (t, t0)u0 and let {vj}j∈N
and {wj}j∈N

be the sequences of
functions on Ω× (t0,, t1) inductively defined by v1 := uϕ1, vj+1 := ϕj+1vj and by
w1 := ϕ′

1u, wj+1 =: ϕ′
j+1vj + ϕj+1wj respectively. Then, for all j,

Lvj = wj in Ω × (t0 + ηj , t1) , (35)

〈A∇vj , ν〉 + lvj = 0 on ∂Ω × (t0 + ηj , t1) ,

vj (t0 + ηj) = 0

Let {qj}j∈N
be defined by q1 = 2 and by qj+1 = q∗j (with q∗j as in (iv) of Remark

2.10) and let j0 = min
{
j : q∗j = ∞} . For the rest of the proof c will denote a

positive constant independent of u0 non necessarily the same at each occurrence
(even in a same chain of inequalities). We claim that for j ≤ j0

vj ∈ W 2,1
qj

(Ω × (t0 + ηj+1, t1)) and wj ∈ W 2,1
qj

(Ω × (t0 + ηj+1, t1)) (36)

with their respective norms bounded by c ‖u0‖L2(Ω).
If (36) holds, for 1 ≤ q < ∞ Remark 2.10 (iv) gives ‖wj0‖Lq(Ω×(t0+ηj0+1,t1)) ≤

c ‖u0‖L2(Ω) . Taking into account that u = vj0 on Ω × (τ, t1) , Remark 2.11 gives

‖u‖W 2,1
q (Ω×(τ,t1))

= ‖vj0‖W 2,1
q (Ω×(τ,t1))

≤ ‖vj0‖W 2,1
q (Ω×(t0+ηj0+1,t1))

≤ c ‖wj0‖Lq(Ω×(t0+ηj0+1,t1)) ≤ c ‖u0‖L2(Ω)

and so (ii) holds.
To prove the claim we proceed inductively. Since u satisfies 29, Remark 2.6 gives

‖u‖L2(Ω×(t0+η1,t1))
≤ ‖u‖L2(Ω×(t0,t1))

≤ c ‖u0‖L2(Ω) and so ‖w1‖L2(Ω×(t0+η1,t1))
≤

c ‖u0‖L2(Ω) . Then, by Remark 2.11, ‖v1‖W 2,1
2 (Ω×(t0+η1,t1))

≤ c ‖u0‖L2(Ω) and so
‖v1‖W 2,1

2 (Ω×(t0+η2,t1))
≤ c ‖u0‖L2(Ω) . Since u = v1 on Ω × (t0 + η2, t1) and w1 =
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uϕ1 we get also that ‖w1‖W 2,1
2 (Ω×(t0+η2,t1))

≤ c ‖u0‖L2(Ω) . Thus (36) holds for
j = 1. Suppose that it holds for some j < j0. Then

‖vj‖W 2,1
qj+1 (Ω×(t0+ηj+1,t1))

≤ c ‖wj+1‖Lqj (Ω×(t0+ηj+1,t1))

= c
∥∥ϕ′

j+1vj + ϕj+1wj

∥∥
Lqj (Ω×(t0+ηj+1,t1))

≤ c ‖u0‖L2(Ω)

and so (since u = vj+1 on Ω × (t0 + ηj+3, t1))

‖u‖W 2,1
qj+1 (Ω×(t0+ηj+2,t1))

= ‖vj+1‖W 2,1
qj+1 (Ω×(t0+ηj+2,t1))

(37)

≤ ‖vj+1‖W 2,1
qj+1 (Ω×(t0+ηj+1,t1))

≤ c ‖u0‖L2(Ω)

Since wj+1 = u
∑

1≤k≤j+1

ϕ′
k

∏
1≤r≤j+1

r �=j+1

ϕr it follows that ‖wj+1‖W 2,1
qj+1 (Ω×(t0+ηj+2,t1))

≤

c ‖u0‖L2(Ω) and so, from (35), a similar estimate holds for vj+1. This complete the
proof of the claim.

The imbedding theorems for Sobolev spaces and (ii) imply (iii). The first part
of (iv) is again obtained applying (ii) with q > N + 2. To see the second part
of (iv), we observe that if u0 > 0 and u := UL,l (t, τ) u0 then u �= 0 and, by
Lemma 2.9, u ≥ 0. Let ϕ1 and v1 be as in the proof of (ii), Since v1 = ϕ1u ∈
W 2,1

q (Ω × (t0, t1)) ⊂ C1+σ, 1+σ
2 (Ω × [t0, t1]) , the boundary condition for v1 holds

in the pointwise sense. Now, the Hopf parabolic maximum principle applied to

Lv1 = ϕ′u in Ω × (t0 + η1, t1) ,

〈A∇v1, ν〉 + lv1 = 0 on ∂Ω × (t0 + η1, t1)

jointly with the fact that v1 = u on Ω × (τ, t1) gives (iv).
To see (v), let s ∈ (0, τ) , q > N + 2 and let q̃ > q. Since W

2−2/q,q
Bl(τ) (Ω) ⊂ L2 (Ω)

(with Bl (τ) given by (34)), from (ii) we can consider the bounded operator S :
W

2−2/q,q
Bl(τ) (Ω) → W 2,1

eq (Ω × (τ, t)) defined by Su0 = (UL,l (., s)u0)|Ω×(τ,T ) . Since

the operator u → u (t) is continuous from W 2,1
eq (Ω × (τ, t)) into W 2−2/eq,eq (Ω) and

the inclusion map i : W 2−2/eq,eq (Ω) → W 2−2/q,q (Ω) is compact, we obtain the
compactness assertion of (v). Finally, the strong positivity in (v) follows from
(iv).�

Lemma 2.13. i) If Λ ∈ H1 (Ω)∗ and Λ ≥ 0 then UL,l (t, τ) Λ ≥ 0 for τ < t.
ii) If f ∈ L2 (Ω × (t0, t1)) and Φ ∈ L2 (∂Ω × (t0, t1)) are nonnegative functions

and if either f �= 0 or Φ �= 0 then∫ t1

t0

UL,l (t1, τ) Λf,Φ (τ) dτ > 0

Proof. Let PL2(Ω), PH1(Ω), PH1(Ω)∗ be the positive cones in L2 (Ω) , H1 (Ω)
and H1 (Ω)∗ respectively and let PH1(Ω) be the closure of PH1(Ω) in H1 (Ω)∗ .

Observe that if Λ ∈ PH1(Ω)∗ ∪ {0} then Λ ∈ PH1(Ω). Indeed, if not, the Hann
Banach Theorem gives η ∈ H1 (Ω)∗∗ such that η|P H1(Ω)

= 0 and η (Λ) = 1. For

g ∈ H1 (Ω) let λg ∈ H1 (Ω)∗ be defined by λg (f) =
∫
Ω fg. Thus λg ∈ PH1(Ω)∗

for all g ∈ PH1(Ω). Since H1 (Ω) is reflexive there exists ϕ ∈ H1 (Ω) such that
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η (λ) = λ (ϕ) for all λ ∈ H1 (Ω)∗ . In particular we have 0 = η (λg) =
∫
Ω

fg for all
g ∈ PH1(Ω). This implies that ϕ = 0 and so η = 0 which contradicts η (Λ) = 1.

Thus Λ ∈ PH1(Ω).

Let Λ ∈ PH1(Ω)∗ , so Λ ∈ PH1(Ω) and then there exists a sequence {u0,j}j∈N of
nonnegative functions in H1 (Ω) that converges to Λ in H1 (Ω)∗ . Since UL,l (t, τ) :
H1 (Ω)∗ → L2 (Ω) is continuous and, by Lemma 2.12 (i), it is a positive operator
on L2 (Ω) , we have UL,l (t, τ) Λ = limj→∞ UL,l (t, τ) u0,j ≥ 0 and so (i) holds.

To see (ii), observe that Λf,Φ ≥ 0 and so (i) gives

UL,l (t, τ) Λf,Φ (τ) ≥ 0 a.e. τ ∈ (t0, t1) . (38)

Moreover,

u (t) :=
∫ t

t0

UL,l (t, τ) Λf,Φ (τ) dτ (39)

is the solution of the problem

Lu = f in Ω × (t0, t1) ,

〈A∇u, ν〉 + lu = Φ on ∂Ω × (t0, t1) ,

u (0) = 0.

Then, by (i), u ≥ 0 in Ω× (t0, t1) and since u �= 0 (because either f �= 0 or Φ �= 0)
we conclude that for some t ∈ (t0, t1) the set

Jt =
{
τ ∈ (0, t

)
: UL,l

(
t, τ
)
Λf,Φ (τ) ∈ PL2(Ω)

}
has positive measure. Then, since UL,l (T, τ) = UL,l

(
T, t
)
UL,l

(
t, τ
)
, Lemma 2.12

(iv) gives UL,l (T, τ) Λf,Φ (τ) > 0 for all τ ∈ Jt. Now (ii) follows from (38) and
(39).�

Remark 2.14. Let us recall the following version of the Krein Rutman Theo-
rem for Banach lattices and one of its corollaries (for a proof, see e.g., [5], Theorem
12.3 and Corollary 12.4)

i) Let E be a Banach lattice with cone positive P and let S : E → E be a
bounded, compact, positive and irreducible linear operator. Then S has a positive
spectral radius ρ (S) which is an algebraically simple eigenvalue of S and S∗. The
associated eigenspaces are spanned by a quasi interior eigenvector and a strictly
positive eigenfunctional respectively. Moreover, ρ (S) is the only eigenvalue of T
having a positive eigenvector.

ii) For E and S as above and for a positive v ∈ E the equation ru − Su = v
has a unique positive solution if r > ρ (S) , no positive solution if r < ρ (S) and no
solution at all if r = ρ (S) . In particular this implies that if Sv ≥ ρ (S) v for some
positive v then Sv = ρ (Sv) .

We recall also that a point a ∈ E is a quasi interior point if and only if a ∈ P
and the order interval [0, a] is total (i.e. the linear span of [0, a] is dense in E)
and that for a measure space Z equipped with a positive measure dσ on Z and
1 ≤ p < ∞ the quasi interior points in Lp (Z, dσ) are the functions that are strictly
positive almost everywhere. Moreover, for such p, a bounded and positive linear
operator S : Lp (Z, dσ) → Lp (Z, dσ) satisfying that S (f) (x) > 0 a.e. x ∈ Z for
all f > 0 is an irreducible operator (cf [13], Proposition 3, p. 409).�
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Lemma 2.15. For l > 0 and τ < t, UL,l (t, τ) : L2 (Ω) → L2 (Ω) is a positive
irreducible operator and its spectral radius ρ satisfies 0 < ρ < 1.

Proof. By (i) and (iv) of Lemma 2.12, UL,l (t, τ) is a positive, irreducible and
compact operator. Thus, by the Krein Rutman Theorem, ρ is positive and that
is the unique eigenvalue with positive eigenfunctions associated. Moreover, by
Lemma 2.10 (iii), these eigenfunctions belong to W 2− 2

q ,q (Ω) for 1 ≤ q < ∞.

Take q > N + 2. By Lemma 2.12 (v), UL,l (t, τ) : W
2− 2

q ,q

Bl(τ) (Ω) → W
2− 2

q ,q

Bl(τ) (Ω) is
a compact and strongly positive operator which, by the Krein Rutman Theorem,
has a positive spectral radius ρq. Since the eigenfunctions of UL,l (t, τ) belong to

W
2− 2

q ,q

Bl(τ) (Ω) we have ρ = ρq. Thus, to prove the lemma, it is enough to see that
ρq < 1.

We proceed by contradiction. Suppose ρq ≥ 1, let ϕ be a positive eigenfunction
with eigenvalue ρq and let w = UL,l (., τ) (ϕ). Since UL,l (t, τ) (ϕ) = ρϕ ≥ ϕ, .
By Lemma 2.12 (ii), w ∈ W 2,1

q (Ω × (τ, t)) and since w (t) ≥ w (τ) the maximum
principle gives that either w is a constant or maxΩ×[δ,T ] w (x, t) is achieved at some
point (x∗, t∗) ∈ ∂Ω× (τ, t) . If w is a constant, since l > 0 the boundary condition
(which is satisfied in the pointwise sense because q > N +2) implies w = 0 which is
impossible and if the maximum is achieved at some point (x∗, t∗) ∈ ∂Ω× (τ, t) we
would have 〈A∇w, ν〉 (x∗, t∗) > 0 in contradiction with the boundary condition.�

3. Periodic solutions

Let W be the Banach space

W :=
{
u ∈ L2

T

(
R, H1 (Ω)

)
: u′ ∈ L2

T

(
R, H1 (Ω)∗

)}
(40)

with norm ‖u‖W = ‖u‖L2
T (R,H1(Ω)) + ‖u′‖L2

T (R,H1(Ω)∗) .

Lemma 3.1. For l > 0, f ∈ L2
T (Ω × R) and Φ ∈ L2

T (∂Ω × R) the problem

Lu = f in Ω × R (41)

〈A∇u, ν〉 + lu = Φ on ∂Ω × R,

u (x, t) T periodic in t

has a unique solution u ∈ W .
Proof. Let δ > 0. For u0 ∈ L2 (Ω) the solution of

Lu = f in Ω × (0, T + δ) (42)

〈A∇u, ν〉 + lu = Φ on ∂Ω × (0, T + δ) ,

u (0) = u0

is given by

u (t) = UL,l (t, t0)u0 +
∫ t

t0

UL,l (t, τ) Λf,Φ (τ) dτ. (43)

By Lemma 2.15, I − UL,l (T, 0) : L2 (Ω) → L2 (Ω) has a bounded inverse. From
(25), u (0) = u (T ) if and only if

u0 = (I − UL,l (T, 0))−1
∫ T

0

UL,l (T, τ) Λf,Φ (τ) dτ (44)
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then there exists a unique solution u of Lu = f in Ω×(0, T + δ) , 〈A∇u, ν〉+lu = Φ
on ∂Ω × (0, T + δ) and u (0) = u (T ). For such a u and for t ∈ [0, T + δ] , let
v (t) = u (t + T ) . Thus Lv = f in Ω× (0, δ) , 〈A∇v, ν〉+ lv = Φ on ∂Ω× (0, δ) and
v (0) = u (0) . Then v (t) = u (t) (i.e., u (t + T ) = u (t)) for [0, T + δ] . Thus u can
be extended to a solution of (41) which is unique by (44).�

Let tr : H1 (Ω) → L2 (∂Ω) be the trace operator on H1 (Ω) and for v ∈ W let
Tr (v) ∈ L2

T (∂Ω × R) be the trace operator defined by Tr (v) (t) = tr (v (t)) .
For l > 0 we define the linear operators

Sl
1 : L2

T (Ω × R) × L2
T (∂Ω × R) → W,

Sl
2 : L2

T (Ω × R) × L2
T (∂Ω × R) → L2

T (∂Ω × R) ,

Sl : L2
T (∂Ω × R) → L2

T (∂Ω × R)

by
Sl

1 (f, Φ) = u where u is the solution of (41) given by Lemma 3.1,
Sl

2 (f, Φ) = Tr
(
Sl

1 (f, Φ)
)
,

Sl (Φ) = Sl
2 (0, Φ)

respectively.
Remark 3.2. Let B, B0 and B1 be Banach spaces, B0 and B1 reflexive. let

i : B0 → B be a compact and linear map and j : B → B1 an injective bounded
linear operator. For T finite and 1 < pi < ∞, i = 0, 1

W :=
{

v ∈ Lp0 (0, T ; B0) :
d

dt
(j ◦ i ◦ v) ∈ Lp1 (0, T ; B1)

}
is a Banach space under the norm ‖v‖Lp0(0,T ;B0)

+
∥∥ d

dt (j ◦ i ◦ v)
∥∥

Lp1(0,T ;B1)
. A

variant of an Aubin-Lions ´s theorem (for a proof see [10], p. 57 or Lemma 3 in
[6]) asserts that if V ⊂ W is bounded then the set {i ◦ v : v ∈ V } is precompact
in Lp0 (0, T ; B) .

We will apply this result to B = L2 (∂Ω) , B0 = H1 (Ω) and B1 = H1 (Ω)∗ .
The map i is the trace map, j : L2 (∂Ω) → H1 (Ω)∗ is defined by

〈j (g) , h〉H1(Ω)∗,H1(Ω) =
∫

∂Ω

tr (h) g, g ∈ L2 (∂Ω)

and p0 = p1 = 2. Hence W above is a special case of W in (11) for (t0, t1) = (0, T )
which is naturally isometric to the space W of (40).�

Lemma 3.3. i) For l > 0, Sl
1 and Sl

2 are bounded linear operators and Sl
2 is

also compact
ii) If f ∈ L2

T (Ω × R) and Φ ∈ L2
T (∂Ω × R) are nonnegative and if either f �= 0

or Φ �= 0 then ess infΩ×R Sl
1 (f, Φ) > 0 and ess inf∂Ω×R Sl

2 (f, Φ) > 0. Moreover,
if Φ > 0 then ess inf∂Ω×R Sl (Φ) > 0.

iii) Sl is a bounded, positive, irreducible and compact operator on L2
T (∂Ω × R) .

Proof. For f ∈ L2
T (Ω × R) and Φ ∈ L2

T (∂Ω × R) the T periodic solution of
(42) is given by (43) with u0 given by (44). Remark 2.6 gives

‖u‖W ≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R) + ‖u0‖L2(Ω)

)
.
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So, to see that Sl
1 is a bounded operator, it is enough to obtain see that

‖u0‖L2(Ω) ≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R)

)
(45)

(for the rest of the proof c will denote a positive constant independent of f and Φ,
non necessarily the same at each occurrence, even in a same chain of inequalities).
Let v (t) :=

∫ t

0 UL+k,l (t, τ) Λf,Φ (τ) . Thus v solves (L + k) v = f in Ω × (0, T ) ,
〈A∇v, ν〉 + lv = Φ on ∂Ω × (0, T ) and v (0) = 0. Since

‖Λf,Φ‖L2(0,T,H1(Ω)∗) ≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R)

)
(27) (applied to this problem and used with t0 = 0 and t = T ) gives

1
2
‖v (T )‖2

L2(Ω) ≤
∫ T

0

〈Λf,Φ (τ) , v (s)〉H1(Ω)∗,H1(Ω) ds

≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R)

)
‖v‖L2(0,T,H1(Ω))

≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R)

)2

,

the last inequality by Remark 2.6. So

‖v (T )‖L2(Ω) ≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R)

)
.

Now, ∥∥∥∥∥
∫ T

0

UL,l (T, τ) Λf,Φ (τ) dτ

∥∥∥∥∥
L2(Ω)

=

∥∥∥∥∥
∫ T

0

ek(T−τ)UL+k,l (T, τ) Λf,Φ (τ) d

∥∥∥∥∥
L2(Ω)

≤ ekT ‖v (T )‖L2(Ω)

and so∥∥∥∥∥
∫ T

0

UL,l (T, τ) Λf,Φ (τ) dτ

∥∥∥∥∥
L2(Ω)

≤ c
(
‖f‖L2

T (Ω×R) + ‖Φ‖L2
T (∂Ω×R)

)
. (46)

By Lemma 2.5, I − UL,l (t, τ) : L2 (Ω) → L2 (Ω) has a bounded inverse, and so
(44) and (46) give (45). Then Sl

1 is bounded and this implies the boundedness,
first of Sl

2, and then of Sl.
To see that Sl

2 and Sl are compact, we consider a bounded sequence {(fn, Φn)} ⊂
L2

T

(
R; L2 (Ω)

)×L2
T

(
R; L2 (∂Ω)

)
. Then, from Remark 3.2

{
Sl

2 (fn, Φn)
}

is bounded
in W, so

{
Tr
(
Sl

1 (fn, Φn)
)}

has a convergent subsequence in L2
T

(
R; L2 (∂Ω)

)
.

From Sl (Φ) = Sl
2 (0, Φ) we have that Sl is also compact.

Suppose now that either f > 0 or Φ > 0 and let u0 be given by (44). For
δ > 0. Lemma 2.13 (iv) gives ess inf UL,l (t, 0)u0 > 0 for δ ≤ t ≤ T + δ and, by
Lemma 2.12 (ii), we have UL,l (., 0)u0 ∈ C

(
Ω × (δ, T + δ)

)
. Then UL,l (., 0)u0 has

a positive minimum M on Ω × [δ, T + δ] . Now,

Sl
1 (f, Φ) (t) = UL,l (t, 0)u0 +

∫ t

0

UL,l (t, τ) Λf,Φ (τ) dτ ≥ UL,l (t, 0)u0 ≥ M
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for t ∈ [δ, T + δ] and so, by periodicity, Sl
1 (f, Φ) ≥ M. Since Sl

2 (f, Φ) = Tr(Sl
1(f,

Φ)) and Sl (Φ) = Tr
(
Sl

1 (0, Φ)
)

we get that Sl
2 (Φ) ≥ M and also that Sl (Φ) ≥ M.

Then (ii) holds and Sl is irreducible.�
Lemma 3.4. liml→∞

∥∥Sl
∥∥ = 0.

Proof. For l > 0 consider Φ ∈ L2
T (∂Ω × R) and let u = Sl

2 (0, Φ) . Let u1 =
Sl

1 (0, Φ+) , u2 = Sl
1 (0, Φ−) with Φ+ = max (Φ, 0) , Φ− = max (−Φ, 0) . Thus

u1 ≥ 0, u2 ≥ 0 and u = u1 − u2.
Along the proof c will denote a positive constant independent of f and Φ (non

necessarily the same even in a same chain of inequalities). Since Lu1 = 0 in
Ω × R, 〈A∇u1, ν〉 + lu1 = Φ+ ≤ |Φ| and u1 is T periodic, Remark 2.6 gives
0 ≤ u1 ≤ Sl

1 (0, |Φ|) . So

‖u1‖L2
T (Ω×R) ≤ ‖u1‖L2

T (R,H1(Ω)) = c
∥∥Sl

1 (0, |Φ|)∥∥
L2

T (R,H1(Ω))

≤ c ‖Φ‖L2
T (R,L2(∂Ω)) .

and a similar estimate hold for u2, and then also for u. Now, u solves Lu = 0 in
Ω × R, 〈A∇u, ν〉 + lu = Φ on ∂Ω × R and u is T periodic. Then, from (27) used
with t0 = 0 and t = T we get

l
∥∥Sl (Φ)

∥∥2
L2(∂Ω×(0,T ))

=
∫

∂Ω×(0,T )

lu2 (47)

=
∫

∂Ω×(0,T )

uΦ −
∫

Ω×(0,T )

[〈A∇u,∇u〉 + 〈b,∇u〉u + a0u
2
]

Now

−
Z

Ω×(0,T )

ˆ〈A∇u,∇u〉 + 〈b,∇u〉u + a0u
2
˜

(48)

= −
Z

Ω×(0,T )

fi
A

„
∇u +

1

2
A−1b

«
,∇u +

1

2
A−1b

fl
+

Z
Ω×(0,T )

»fi
1

4
A−1b, b

fl
− a0

–
u2

≤
‚‚‚‚fi1

4
A−1b, b

fl‚‚‚‚
L∞(Ω×(0,T ))

Z
Ω×(0,T )

u2 ≤ c ‖Φ‖2
L2

T
(R×∂Ω) .

the last inequality by Remark 2.6. Lemma 3.3 (iii) and Remark 2.6 give also∫
∂Ω×(0,T )

uΦ ≤ ‖u‖L2(∂Ω×(0,T ),) ‖Φ‖L2(∂Ω×(0,T ),) ≤ c ‖Φ‖2
L2(∂Ω×(0,T )) .

Thus l
∥∥Sl (Φ)

∥∥2
L2(∂Ω×(0,T ))

≤ c ‖Φ‖2
L2(∂Ω×(0,T ),) and the lemma holds.�

We will use the multiplication operator Mζ given by

Mζ (Φ) = ζΦ, ζ ∈ L∞
T (∂Ω × R) , Φ ∈ L2

T (∂Ω × R) . (49)

For ζ ∈ L∞
T (∂Ω × R) and Φ ∈ L2

T (∂Ω × R) let us observe that u ∈ W satisfies

Lu = 0 in Ω × R, (50)

〈A∇u, ν〉 + lu = ζT r (u) + Φ on ∂Ω × R

(in the sense of the definition 2.1) if and only if for each R ∈ R it satisfies Lu = 0
in Ω×R, 〈A∇u, ν〉+ (l + R)u = (ζ + R)Tr (u)+ Φ on ∂Ω×R, i.e., we can ”add”
Ru to both sides in the boundary condition of (50).
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Lemma 3.5. i) For each R > 0 there exists l0 = l0 (R) such that for l ≥ l0
and ζ ∈ L∞

T (∂Ω × R) such that ‖ζ‖L∞
T (∂Ω×R) ≤ R the problem (50) has a unique

solution u ∈ W for all Φ ∈ L2
T (∂Ω × R) . Moreover, it satisfies ess infΩ×R u > 0

if Φ > 0.
ii) For such R, l and ζ, the solution operator Φ → u is a bounded linear

operator from L2
T (∂Ω × R) into W whose norm is uniformly bounded on ζ for

‖ζ‖L∞
T (∂Ω×R) ≤ R.

Proof. Let ζ ∈ L∞
T (∂Ω × R) such that ‖ζ‖L∞

T (∂Ω×R) ≤ R. By Lemma 3.4 there
exists l0 = l0 (R) > 0 such that

∥∥Sl+R
∥∥ ≤ 1

4R for l ≥ l0. For l ≥ l0 (R) we have∥∥Sl+RMζ+R

∥∥ ≤ 1
2 and so I − Sl+RMζ+R has a bounded inverse. If u ∈ W solves

(50), it solves Lu = 0 in Ω × R, 〈A∇u, ν〉 + (l + R)u = (ζ + R)Tr (u) + Φ on
∂Ω × R and so

Tr (u) = Sl+R (Mζ+R (Tr (u) + Φ)) ,i.e.,T r (u) =
(
I − Sl+RMζ+R

)−1
Sl+R (Φ) .

Then
u = Sl+R

1

(
0, Mζ+R

((
I − Sl+RMζ+R

)−1
Sl+R (Φ)

)
+ Φ
)

. (51)

Thus the solution of (50), if exists, is unique and given by (51).
To prove existence, consider the function u defined by (51). It solves

Lu = 0 in Ω × R, (52)

〈A∇u, ν〉 + (l + R)u = (ζ + R)
(
I − Sl+RMζ+R

)−1
Sl+R (Φ) + Φ on ∂Ω × R

u (x, t) T periodic in T

and so

Tr (u) = Sl+RMζ+R

(
I − Sl+RMζ+R

)−1
Sl+R (Φ) + Sl+R (Φ) (53)

=
(
I − Sl+RMζ+R

)−1
Sl+R (Φ) .

Then (52) can be rewritten as

Lu = 0 in Ω × R,

〈A∇u, ν〉 + (l + R)u = (ζ + R)Tr (u) + Φ on ∂Ω × R

u (x, t) T periodic in T

and so u solves (50).
Suppose now Φ > 0. By (ii) and (iii) of Lemma 3.3, Sl+R

1 and Sl+R are positive
operators and also ess infΩ×R Sl+R

1 (Φ) > 0. Thus (51) gives ess infΩ×R u > 0
and so (i) holds. Finally, from (51) and since Sl+R and Sl+R

1 are bounded and∥∥Sl+RMζ+R

∥∥ ≤ 1
2 and ‖Mζ+R‖ ≤ 2R, we obtain (ii).�

We will need to introduce two news operators. For R > 0, l ≥ l0 ((R)) ,
‖ζ‖L∞

T (∂Ω×R) ≤ R let

Sl,ζ
1 : L2

T (∂Ω × R) → W, (54)

Sl,ζ : L2
T (∂Ω × R) → L2

T (∂Ω × R)
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be defined by Sl,ζ
1 (Φ) = u where u is the solution of (50) given by Lemma 3.5 and

by Sl,ζ (Φ) = Tr
(
Sl,ζ

1 (Φ)
)

respectively.

Corollary 3.6. For R, l and ζ as in Lemma 3.5, Sl,ζ is a bounded, compact,
positive and irreducible operator.

Proof. By (53) we have

Sl,ζ (Φ) = Tr
(
Sl,ζ

1 (Φ)
)

= Sl
(
I − Sl+RMζ+R

)−1
Sl+R (Φ) + Sl (Φ )

and the corollary follows from Lemma 3.3 (iv)�.

4. A one parameter eigenvalue problem

Lemma 4.1. i) For m ∈ L∞
T (∂Ω × R) and λ ∈ R there exists a unique

µ = µm (λ) ∈ R such that the problem

Lu = 0 in Ω × R, (55)

〈A∇u, ν〉 + b0u = λmu + µu on ∂Ω × R,

u (x, t) T periodic in t

has a positive solution. Moreover, for l positive and large enough let ρ
(
Sl,λm−b0

)
be the spectral radius of Sl,λm−b0 . It holds that µm (λ) =

(
ρ
(
Sl,λm−b0

))−1 − l

(where ρ
(
Sl,λm−b0

)
is the spectral radius of Sl,λm−b0).

ii) The solution space for this problem is one dimensional and for l positive and
large enough (l + µm (λ))−1 1 is an algebraically simple eigenvalue of Sl,λm−b0 .

iii) Each positive solution u of (55) satisfies ess infΩ×R u > 0.
Proof. Let R > ‖λm − b0‖L∞(∂Ω×R) , let l0 = l0 (R) be as in Lemma 3.5 and

for l ≥ l0, let ρ be the spectral radius of Sl,λm−b0 . From Lemma 3.6 Sl,λm−b0

is a compact, positive and irreducible operator on L2
T (∂Ω × R) . Then, by the

Krein Rutman theorem, ρ is a positive eigenvalue of Sl,λm−b0 with a positive
eigenfunction w associated. Let u = Sl,λm−b0

1 (w) . Thus u is a T periodic solution
of Lu = 0 in Ω × R, 〈A∇u, ν〉 + lu = (λm − b0)u + w on ∂Ω × R. It is also
positive because, by Lemma 3.5, Sl,λm−b0

1 is a positive operator. Since Tr (u) =
Tr
(
Sl,+λm−b0

1 (w)
)

= Sl,+λm−b0 (w) = ρw it follows that u solves (55) for µ =
1
ρ − l.

On the other hand, if v is a positive solution of (55) then Lv = 0 in Ω ×
R and 〈A∇u, ν〉 + (b0 + l)u = λmu + (µ + l)u on ∂Ω × R. So, for l ≥ l0 (R)
Sl,λm−b0 (Tr (u)) = 1

µ+lTr (u) . From Corollary 3.6 and the Krein Rutman theorem
it follows that 1

µ+l = ρ and so µ = 1
ρ − l. Thus (55) has a positive solution if and

only if µ = 1
ρ − l. In particular, this gives that µ does not depend on the choice

of R and l. If v is another positive solution of (55), for R and as above, and since
Tr (v) > 0 and Tr (v) is an eigenfunction of Sl,λm−b0 with eigenvalue ρ, the Krein
Rutman theorem gives Tr (v) = ηT r (u) for some η ∈ R\ {0}. Thus

v = Sl,−b0
1 (λmTr (v) + (µ + l)Tr (v))

= ηSl,−b0
1 (λmTr (u) + (µ + l)Tr (u)) = ηu,
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then the solution space for (55) is one dimensional. Again by the Krein Rutmnan
theorem, (l + µm (λ))−1 is an algebraically simple eigenvalue of Sl+R,λmb0 .

Finally, each positive solution u of (55) satisfies

u = Sl,−b0
1 ((λmTr (u) + (µ + l)Tr (u))) ,

and so Lemma 3.5 (iii) gives ess infΩ×R u > 0.�
The aim of the rest of this section is to given some properties of the function

µm (λ) , λ ∈ R defined, for m ∈ L∞
T (∂Ω × R), by Lemma 4.1. Each zero of µm

provides a principal eigenvalue with weight m and the corresponding solutions u
in (55) are the respective positive eigenfunctions. We will prove that the map
m → µm (λ) is strictly decreasing in m (Lemma 4.6) and continuous for the a.e.
convergence in m (Lemma 4.7) hence continuous in L∞

T (∂Ω × R) . µm (λ) is con-
cave and analytic in λ (cf. Corollary 4.9 and Remark 4.11).

Remark 4.2. For q > N + 2 let W 2,1
q,T (Ω × R) be the space of the T periodic

functions on Ω × R whose restriction to (0, T ) belongs to W 2,1
q (Ω × (0, T )) and

for γ ∈ (0, 1) let C
1+γ 1+γ

2
T (∂Ω × R) be the space of the T periodic functions on

∂Ω × R belonging to C1+γ 1+γ
2 (∂Ω × R).

We recall that if
aij ∈ Cγ,γ/2

(
Ω × R

)
, bj ∈ C1

(
Ω × R

)
for 1 ≤ i, j ≤ N ; a0 ∈ Cγ,γ/2

(
Ω × R

)
,

m, b0 ∈ C
1+γ 1+γ

2
T (∂Ω × R)

for such a γ, then (cf. Remark 3.1 in [8]) the solutions u of (55) belong to

W 2,1
q,T (Ω × R) and so λmu + µm (λ)u ∈ C

1+η 1+η
2

T (∂Ω × R) for some η ∈ (0, 1) .

Thus Theorem 2.5 in [8] gives u ∈ C2,1
(
Ω × R

)
.�

In order to make explicit the dependence on m, L and b0, we will write some-
times µm,L,b0 or µ,m,Lfor the function µm.

Lemma 4.3. Let m ∈ L∞
T (Ω × R) and suppose that v ∈ W satisfies

Lv = f in Ω × R, (56)

〈A∇v, ν〉 + b0v = Φ + λmv + µv on ∂Ω × R,
v > 0 on Ω × R

for some λ, µ ∈ R, f ∈ L2
T (Ω × R) and Φ ∈ L2

T (∂Ω × R) . If f ≥ 0 and Φ ≥ 0
then µm (λ) ≥ µ. If in addition either f > 0 or Φ > 0 then µm (λ) > µ.

Proof. If f = 0 and Φ = 0 then, by Lemma 4.1, µ = µm (λ) . Assume that
either f > 0 or Φ > 0. Since µm,L,b0 (λ) = µm+σ,L,b0+σλ (λ) for all λ, σ ∈ R,
it suffices to prove the lemma in the case m ≥ 0. For R > 0 let l0 (R) be as in
Lemma 3.5 and let l ≥ l0 (‖b0‖∞)+l0 (‖λm − b0‖∞). Let w = Sl,−b0

1 (f, 0) , and let
z = Sl,−b0

1 (0, (λm + µ + l)Tr (v) + Φ) . Thus w ≥ 0, z ≥ 0 and, since v = w + z,
v ≥ z. So also Tr (v) ≥ Tr (z) . Now,

Lz = 0 in Ω × R,

〈A∇z, ν〉 + b0z = Φ + (λm + µ + l)Tr (v)

= λmTr (z) + Φ + λmTr (v − z) + (µ + l)Tr (v) on ∂Ω × R,
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then

z = Sl,λm−b0
1 (Φ + λmTr (v − z) + (µ + l)Tr (v)) ≥ Sl,λm−b0 ((µ + l)Tr (z)) .

(57)
If Φ > 0 since m ≥ 0 we have Φ+λmTr (v − z)+ (µ + l)Tr (v) > 0. If f > 0 then
(by Lemma 4.3) ess infΩ×R w > 0 and so Tr (w) > 0. Then Tr (v − z) > 0 and
thus, from (57), ess infΩ×R z > 0. Then Tr (z) > 0. Also, from (57),

Tr (z) ≥ Sl,λm−b0
1 ((µ + l)Tr (v)) = (µ + l)Sl,λm−b0 (Tr (z)) .

Let ρ
(
Sl,λm−b0

)
be the spectral radius of Sl,λm−b0 . Remark 2.14 (ii) gives 1

µ+l ≥
ρ
(
Sl,λm−b0

)
= 1

µm(λ)+l and so µm (λ) ≥ µ.�
Lemma 4.4. Suppose v ∈ W satisfies

Lv = f in Ω × R, (58)

〈A∇v, ν〉 + b0v = Φ + λmv + µv on ∂Ω × R,
ess inf

Ω×R

v > 0

for some λ, µ ∈ R, f ∈ L2
T (Ω × R) and Φ ∈ L2

T (∂Ω × R) . If f ≤ 0 and Φ ≤ 0
then µm (λ) ≤ µ. If in addition either f < 0 or Φ < 0 then µm (λ) < µ.

Proof. Consider first the case when λ ≥ 0 and m ≥ 0. For R > 0 let l0 (R) be
as in Lemma 3.5 and let l ≥ l0 (‖λm − b0‖∞) . Let w be the T periodic solution of
Lw = f in Ω×R, 〈A∇w, ν〉+(b0 + l)w = 0 on ∂Ω×R and let z be the T periodic
solution of Lz = 0 in Ω×R, 〈A∇z, ν〉+(b0 + l) z = Φ+λmv+(µ + l) v on ∂Ω×R.
Thus v = z + w and, by Lemma 3.3 (iv), w ≤ 0. Then 0 < ess infΩ×R v ≤ v ≤ z
and so also 0 < Tr (v) ≤ Tr (z) . Let

Φ̃ := (λm + l + µ (λ)) (Tr (v) − Tr (z)) + (µ − µ (λ))Tr (v) + Φ.

Since z is T periodic and

Lz = 0 in Ω × R,

〈A∇z, ν〉 + (b0 + l) z = λmz + (µ (λ) + l) z + Φ̃ on ∂Ω × R

we have Tr (z) = Sl,λm−b0
(
(µ (λ) + l)Tr (z) + Φ̃

)
. Thus

1
µ (λ) + l

T r (z) = Sl,λm−b0

(
Tr (z) +

1
µ (λ) + l

Φ̃
)

(59)

If µ (λ) > µ then Φ̃ ≤ 0 and so Sl,λm−b0 (Tr (z)) ≥ ρ
(
Sl,λm−b0

)
Tr (z) where

ρ
(
Sl,λm−b0

)
is the spectral radius of Sl,λm−b0 . Thus, Remark 2.14 (ii) gives 1

µ(λ)+l×
Tr (z) = Sl,λm−b0 (Tr (z)) and so Sl,λm−b0

(
Φ̃
)

= 0. Then, by Lemma 3.3 (iii),

Φ̃ = 0. This implies µ = µ (λ) in contradiction with the assumption µ (λ) > µ.
Thus µ (λ) ≤ µ.

Assume now that either f < 0 or Φ < 0 and that µ (λ) < µ. If f < 0 then
sup w < 0 and so 0 < v < z and 0 < Tr (v) < Tr (z) This implies Φ̃ < 0
and if Φ < 0 the same conclusion is obtained. So, in both cases, (59) gives now
Sl,λm−b0 (Tr (z)) > ρ

(
Sl,λm−b0

)
Tr (z) in contradiction with Remark 2.14, (ii).
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Since for σ ∈ R we have µL,m,b0 (λ) = µL,m+σ,b0+σλ (λ) , the case λ ≥ 0 and m
arbitrary follows from the previous one and, finally, the case λ < 0 follows from
the case λ > 0 by considering the identity µm (λ) = µ−m (−λ) .�

Let L0 be the operator defined by L0u = ∂u
∂t − div (A∇u) + 〈b,∇u〉 . We have

Corollary 4.5. i) Suppose a0 > 0. Then µm,L,b0 (λ) > µm,L0,b0 (λ) for all
λ ∈ R.

ii) Suppose b0 > 0. Then µm,L,b0 (λ) > µm,L,0 (λ) for all λ ∈ R.
Proof. let u be the solution of (55). Thus

L0u = −a0u in Ω × R, (60)

〈A∇u, ν〉 + b0u = λmu + µb0,m,L (λ) u on ∂Ω × (0, T ) .

If a0 > 0, since ess inf u > 0 we have −a0u < 0, then Lemma 4.4 gives (i). If
b0 > 0 then −b0Tr (u) < 0. Since

Lu = 0 in Ω × R,

〈A∇u, ν〉 = −b0u + λmu + µm,L,b0 (λ)u on ∂Ω × (0, T ) ,

(ii) follows again from Lemma 4.4.�
Lemma 4.6. For m1, m2 ∈ L∞

T (∂Ω × R) , m1 ≤ m2 with m1 �= m2 imply
µm1 (λ) > µm2 (λ) for all λ > 0 and µm1 (λ) < µm2 (λ) for all λ < 0.

Proof. Suppose λ > 0 and µm1 (λ) ≤ µm2 (λ) . Let u1 be a positive and T
periodic solution of

Lu1 = 0 in Ω × R,

〈A∇u1, ν〉 + b0u1 = λm1u1 + µm1 (λ)u1

Since λm1u1+µm1 (λ) u1 < λm2u1+µm2 (λ)u1 on ∂Ω×(0, T ) and ess infΩ×R u1 >
0, Lemma 4.4 applies to give µm2 (λ) < µm2 (λ) which contradicts our assumption
µm1 (λ) ≤ µm2 (λ) . The case λ < 0 follows from the case λ > 0 using that
µm (λ) = µ−m (−λ).�

Lemma 4.7. Let {mn} be a bounded sequence in L∞
T (∂Ω × R) which converges

a.e. to m in ∂Ω × R. Then limn→∞ µmn (λ) = µm (λ) for each λ ∈ R.
Proof. To prove the lemma it suffices to show that for each {mn} as in the state-

ment of the lemma there exists a subsequence {mnk
} such that limk→∞ µmk

(λ) =
µm (λ) .

Let M be a positive number such that |mn| ≤ M for all n and let λ ∈ R. Thus,
by Corollary 4.5,

µM (λ) ≤ µmn (λ) ≤ µ−M (λ) . (61)
Let un be the positive T periodic solution of

Lun = 0 in Ω × R, (62)

〈A∇un, ν〉 + b0un = λmnun + µmn (λ)un

normalized by ‖Tr (un)‖L2
T (∂Ω×R) = 1. We observe that {λmnun + µmn (λ)un} is

a bounded sequence in L2
T (∂Ω × R) and so, by Lemma 3.3 (i), {un} is bounded

in W. Thus {un} is bounded in L2
T

(
R, H1 (Ω)

)
and

{
(j ◦ i ◦ un)′

}
is bounded in

L2
T

(
R, H1 (Ω)∗

)
where i : H1 (Ω) → L2 (∂Ω)×L2 (Ω) and j : L2 (∂Ω)×L2 (Ω) →

H1 (Ω)∗ are the linear maps defined in Remark 3.2 Then there exists a subsequence
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{unk
} that converges in L2

T (∂Ω × R) to some u. From (61), after pass to a further-
more subsequence, we can assume also that limk→∞ µmnk

(λ) = µ for some µ ∈ R.

Thus
{
λmnk

unk
+ µmnk

(λ)unk

}
converges in L2

T (∂Ω × R) to λmu + µu. Since

un = Sl,−b0
2 (λmnun + µmn (λ) un) and Sl,−b0

2 is continuous we obtain that {unk
}

converges in W to Sl,−b0
2 (λmu + µu) . It follows that u = Sl,−b0

2 (λmu + µu) i.e.,
that u is a T periodic solution of Lu = 0 in Ω × R, 〈A∇u, ν〉 + b0u = λmu + µ in
∂Ω × R. Since unk

> 0 and {Tr (unk
)} converges in L2

T (∂Ω × R) to u and since
‖Tr (unk

)‖L2
T (∂Ω×R) = 1 we get u > 0. Then µ = µm (λ) .�

Corollary 4.8. For each λ ∈ R the map m → µm (λ) is continuous from
L∞

T (∂Ω × R) → R.
Corollary 4.9. µm is a concave function.
Proof. Choose a sequence {mn} in C∞

T (∂Ω × R) that converges a.e. to m in
∂Ω × R and such that ‖mj‖∞ ≤ 1 + ‖m‖∞ for all n. By ([8], lemma 3.3), each
µmn is concave and the corollary follows from Lemma 3.8.�

Let B
(
L2

T (∂Ω × R)
)

denote the space of the bounded linear operators on
L2

T (∂Ω × R) and for ρ > 0, ζ ∈ L∞
T (∂Ω × R) , let Bρ (ζ) be the open ball in

L∞
T (∂Ω × R) with center ζ and radius ρ.
Lemma 4.10. Let R > 0 and let l0 = l0 (R) be as in Lemma 3.5. For l ≥ l0

the map ζ → Sl,−b0+ζ is real analytic from BR (ζ) into B
(
L2

T (∂Ω × R)
)
.

Proof. Let l ≥ l0, ζ0 ∈ BR (0) and Φ ∈ L2
T (∂Ω × R) . For ζ ∈ BR−‖ζ0‖ (ζ0) ,

the solution uζ = Sl,ζ (Φ) of (50) is T periodic and solves Luζ = 0 in Ω × R,
〈A∇uζ , ν〉+(b0 + l)uζ = Φ+ζ0Tr (uζ)+(ζ − ζ0)Tr (uζ) on ∂Ω×R, Then Tr (uζ) =
Sl,ζ0−b0Φ + Sl,ζ0−b0Mζ−ζ0Tr (uζ), i.e., we have

Sl,ζ−b0 = Sl,ζ0−b0 + Sl,ζ0−b0Mζ−ζ0S
l,ζ−b0 (63)

Also,
∥∥Sl,ζ0−b0Mζ−ζ0

∥∥ ≤ ‖ζ − ζ0‖
∥∥Sl,ζ0−b0

∥∥ < 1 and then, from (63),
∥∥Sl,ζ−b0

∥∥ ≤
2
∥∥Sl,ζ0−b0

∥∥ . An iteration of (63) gives, for n ∈ N,

Sl,ζ−b0 = Sl,ζ0−b0

n∑
j=1

(
Sl,ζ0−b0Mζ−ζ0

)j
+ Sl,ζ0−b0

(
Mζ−ζ0S

l,ζ0−b0
)n+1

Since
∥∥Sl,ζ0−b0Mζ−ζ0

∥∥ < 1 we have limn→∞
∥∥∥Sl,ζ0−b0

(
Mζ−ζ0S

l,ζ0−b0
)n+1

∥∥∥ = 0.

Thus

Sl,ζ−b0 = Sl,ζ0−b0

∞∑
j=1

(
Sl,ζ0−b0Mζ−ζ0

)j
= Sl,ζ0−b0

(
I − Sl,ζ0−b0Mζ−ζ0

)−1
.

Since ζ → Mζ−ζ0 is real analytic the lemma follows.�
Remark 4.11. Corollary 4.9 implies that µm is continuous. So, taking into

account Corollary 3.3 and Lemma 4.10, ([3] lemma 1.3) applies to obtain that
µm (λ) is real analytic in λ. Moreover, a positive solution uλ for (55) can be
chosen such that λ → uλ|∂Ω×R is a real analytic map from R into L2

T (∂Ω × R) .
Observe also that if a0 = 0 and b0 = 0 then µm (0) = 0 and that, in this case,

the eigenfunctions associated for (55) are the constant functions. Finally, for the
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case when either a0 > 0 or b0 �= 0, applying Lemma 4.3 with v = 1, λ = 0 and
µ = 0 we obtain that µm (0) > 0.�

Remark 4.12. Assume that a0 = 0, b0 = 0 and for l large enough, consider
the spectral radius ρl of the operator Sl,λm−b0 : L2

T (∂Ω × R) → L2
T (∂Ω × R) .

Since Φ = 1 is a positive eigenfunction associated to the eigenvalue 1
l , the Krein

Rutman Theorem asserts that ρl = 1
l and that there exists a positive eigenvector

Ψ ∈ L2
T (∂Ω × R) for the adjoint operator

(
Sl,λm−b0

)∗ satisfying
(
Sl,λm−b0

)∗ Ψ =
Ψ. Moreover, such a Ψ is unique up a multiplicative constant.�

Lemma 4.13. Suppose that a0 = 0, b0 = 0 and let Sl,λm−b0 and Ψ be as in
remark 3.7. Then µ′

m (0) = − 〈Ψ,m〉
〈Ψ,1〉 .

Proof. For λ ∈ R, let uλ be a solution of (55) such that λ → uλ is real analytic
and uλ = 1 for λ = 0. Since

Luλ = 0 on Ω × R

〈A∇uλ, ν〉 + (b0 + l)uλ = (λm + µm (λ) + l)uλ on ∂Ω × R

uλ (x, t) T periodic in t

we get Tr (uλ) = λSl,λm−b0 (mTr (uλ)) + (µm (λ) + l)Sl,λm−b0 (Tr (uλ)) and so

λ 〈Ψ, mTr (uλ)〉 + µm (λ) 〈Ψ, T r (uλ)〉 = 0.

Taking the derivative with respect to λ at λ = 0 and using that µm (0) = 0 and
that uλ = 1 for λ = 0, the lemma follows.�

5. The behavior of µm at ±∞
We fix m ∈ L∞

T (∂Ω × R) , ∂Ω seen as compact Riemannian C2 manifold of
dimension N − 1. For ρ > 0 fixed in R, we will find a closed curve Γ ∈ CT (R; ∂Ω)
of class C2 and δ = δ (ρ) such that the tube

BΓ,δ =
{
(x, t) ∈ ∂Ω × [0, T ] : x ∈ expΓ(t) Dδ,Γ(t)

}
(64)

satisfies
1

ωN−1δN−1

∫
BΓ,δ

mdσdt ≥
∫ b

a

sup
x∈∂Ω

m (x, t) dt − 2ρ. (65)

To do let us introduce some additional notations to explain expΓ(t)

(
Dδ,Γ(t)

)
. For

x ∈ ∂Ω let Tx (∂Ω) denote the tangent space to ∂Ω at x as a subspace of R
N with

the usual inner product of R
N . This Riemannian structure gives an exponential

map expx : Tx (∂Ω) → ∂Ω and an area element dσ (x) . For each X ∈ Tx (∂Ω) ,
expx X = η (1) where η (t) is the geodesic satisfying η (0) = x, η′ (0) = X. We have
also the geodesic distance d∂Ω on ∂Ω and geodesic balls Br (x) , x ∈ ∂Ω, r > 0.
We denote d the distance on ∂Ω × (0, T ) given by

d ((x, t) , (y, s)) = max (d∂Ω (x, y) , |t − s|) (66)

and, for (x, t) ∈ ∂Ω× (0, T ) and r > 0 we put Br (x, t) for the corresponding open
ball with center (x, t) and radius r. So we have that Br (x, t) = Br (x)×(t − r, t + r)
is a cylinder. Concerning the measures dσ on ∂Ω and dσdt on ∂Ω×(0, T ) we denote
indistinctly |E| the measure of a Borel subset of ∂Ω or of ∂Ω × (0, T ) .
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For x ∈ ∂Ω let {X1,x, ..., XN−1,x} be an orthonormal basis of Tx (∂Ω) and
let ϕx :

{
z ∈ R

N−1 : |z| < r
} → ∂Ω be the map defined by ϕx (z1, ...zN−1) =

expx

(∑N−1
j=1 zjXj,x

)
. From well known properties of the exponential map there

exists ε > 0 such that ϕx :
{
z ∈ R

N−1 : |z| < r
} → Br (x) is a diffeomorphism

for 0 < r < ε, x ∈ ∂Ω. For such r and x ∈ ∂Ω let y → (z1 (y) , ..., zN−1 (y))
be the coordinate system defined by ϕx on Br (x) , let

{
∂

∂z1
, ..., ∂

∂zN−1

}
be the

corresponding coordinate frame, let gij (y) :=
〈

∂
∂zi |y, ∂

∂zj |y

〉
, 1 ≤ i, j ≤ N − 1,

y ∈ Br (x) and let (gij (y)) be the (N − 1) × (N − 1) matrix whose i, j entry is
gij. (y) . Finally, we put ωN−1 for the area of the unit sphere SN−1 ⊂ R

N .

Lemma 5.1. i) For x ∈ ∂Ω it holds that limr→0
|Br(x)|

ωN−1rN−1 = 1 uniformly in
x ∈ ∂Ω.

ii) dσ is doubling, that is |B2r (x)| ≤ c |Br (x)| for some c > 0 independent of
x ∈ ∂Ω and r > 0.

iii) Let E ⊂ ∂Ω × R be a Borel set. Then lim|B|→0, (x,t)∈B
|E∩B|
|B| = 1 a.e.

(x, t) ∈ E (the limit taken on balls B in ∂Ω × R)
Proof. To obtain (i) we consider an orthonormal basis {X1.x, ...XN−1.x} of

Tx (∂Ω) and z ∈ R
N−1. For ε small enough and 0 < r < ε we have

|Br (x)|
ωN−1rN−1

− 1 =
1

ωN−1rN−1

∫
|z|<r

(f (x, z) − 1)dz1...dzN−1

where f (x, z) := det
1
2

(
gij

(
expx

(∑N−1
j=1 zjXj,x

)))
. Since (x, z) → f (x, z)− 1 is

uniformly continuous on ∂Ω×D1 and f (x, 0) = 1, x ∈ ∂Ω we obtain (i) by taking
limits.

As ∂Ω has finite diameter for d∂Ω we have (ii).
Finally, dσdt is also doubling in ∂Ω × R and so (iii) holds (cf. e.g. [11]).�
Lemma 5.2. For each ρ > 0 there exists δ > 0, a partition {t0, ....tn} of [0, T ]

and points x1, ...., xn in ∂Ω with xn = x1 such that {Bδ (x1) × (ti−1, ti)}1≤i≤n is
a family of disjoint sets and

1
ωN−1δN−1

∫
∪n

i=1Bδ(xi)×(ti−1,ti)

m (x, t) dσ (x) dt ≥
∫ T

0

ess sup
x∈∂Ω

m (x, t) dt − ρ

Proof. Without lost of generality we can assume that ‖m‖∞ ≤ 1. For t ∈ [0, T ] let
m̃ (t) = ess supx∈∂Ω m (x, t) and for η > 0 let

E (η) = {(x, t) ∈ ∂Ω × R : m (x, t) > m̃ (t) − η} . (67)

and let E (η)d be the set of the density points (in the sense of Lemma 5.1, (iii))
in E (η) . We fix α ∈ (0, 1

2

)
. For k ∈ N, let E (η)(k) be the set of the points

(x, t) ∈ E (η)d such that

|Bρ (y, s) ∩ E (η)|
|Bρ (y, s)| > 1 − α
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for all open ball Bρ (y, s) ⊂ ∂Ω × R containing (x, t) and with radius ρ < 1
k .

Observe that E (η)(k) ⊂ E (η)(s) for k < s and that (from Lemma 3.16 (iii) E (η) =
∪k∈NE (η)(k)

. Thus limk→∞
∣∣∣π (E (η)(k)

)∣∣∣ = |π (E (η))| = T where π (x, t) := t.

Given ε > 0 we fix k ∈ N such that
∣∣∣π (E (η)(k)

)∣∣∣ ≥ T − ε. For n ∈ N let l = T
2n

and let {t0, ....tn} be the partition of [0, T ] given by ti = 2il.

Let I =
{
i ∈ {1, 2, ...n} : (∂Ω × (ti−1, ti)) ∩ E (η)(k) �= ∅

}
and let Ic = {1, 2, ...n} \I.

Denote δ = T
4n . For i ∈ I\ {n} let (xi, t

∗
i ) ∈ (∂Ω × (ti−1, ti))∩E (η)(k) and let Qi =

Bδ (xi)×(ti−1, ti) and, for j ∈ Ic\ {n} let xj ∈ ∂Ω and let Qj = Bδ (xj)×(tj−1, tj) .

We also set xn = x1 and Qn = Bδ (xn) × (tn−1, tn) . Since
∣∣∣π (E (η)(k)

)∣∣∣ ≥ T − ε

we have
∑

i∈Ic (ti − ti−1) ≤ ε.

Consider the case i ∈ I. We have
∫

Qi
m (x, t) dσ (x) dt =

∫
Qi∩E(η) m (x, t) dσ (x) dt+∫

Qi∩E(η)c m (x, t) dσ (x) dt. Also,

∫
Qi∩E(η)

m (x, t) dσ (x) dt ≥
∫

Qi∩E(η)

m̃ (t) dσ (x) dt − η |Qi ∩ E (η)|

≥
∫ ti

ti−1

m̃ (t) (|(Qi ∩ E (η))t| − |(Qi)t|) dt +
∫ ti

ti−1

m̃ (t) |(Qi)t| dt − η |Qi|

≥ |Qi ∩ E (η)| − |Qi| + |Bδ (xi)|
∫ ti

ti−1

m̃ (t) dt − 2lη |Bδ (xi)| .

Since (xi, t
∗
i ) ∈ E (η)(k) and (xi, t

∗
i ) ∈ Bδ (xi) ×

(
ti+ti−1

2 − l, ti+ti−1
2 + l

)
we get

|Qi ∩ E (η)| ≥ (1 − α) |Qi|). So, the above inequalities give

∫
Qi∩E(η)

m (x, t) dσ (x) dt ≥
(
−2l (α + η) +

∫ ti

ti−1

m̃ (t) dt

)
|Bδ (xi)| .

Moreover,
∫

Qi∩E(η)c m (x, t) dσ (x) dt ≤ |(Qi ∩ E (η))c| = |Qi| − |Qi ∩ E (η)| ≤
2lα |Bδ (xi)| . Thus

∫
Qi

m (x, t) dσ (x) dt ≥
(
−2l (2α + η) +

∫ ti

ti−1

m̃

)
|Bδ (xi)| . (68)

Also, for j ∈ Ic,

∫
Qj

m (x, t) dσ (x) dt ≥ − |Qj | = −2l |Bδ (xj)| (69)
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For i ∈ I let εi (δ) = |Bδ(xi)|
ωN−1δN−1 − 1. From (68) and (69) we haveZ

∪n
i=1Qi

m (x, t) dσ (x) dt

=
X

i∈I\{n}

Z
Qi

m (x, t) dσ (x) dt +
X

i∈Ic\{n}

Z
Qi

m (x, t) dσ (x) dt +

Z
Qn

m (x, t) dσ (x) dt

≥
X

i∈I\{n}

 Z ti

ti−1

em (t) dt − 2l (2α + η)

!
|Bδ (xi)| −

X
i∈Ic

2αl |Bδ (xi)| − T

n
|Bδ (xn)|

= ωN−1δ
N−1

0@Z T

0

em (t) dt −
X

i∈Ic\{n}

Z ti

ti−1

em (t) dt − 2l# (I) (2α + η) − 2l# (Ic)α

1A
−ωN−1δ

N−1 T

n

+ωN−1δ
N−1

0@ X
i∈I\{n}

εi (δ)

 
−2l (2α + η) +

Z ti

ti−1

em (t) dt

!
−

X
i∈Ic\{n}

2αlεi (δ)

1A
−ωN−1δ

N−1 T

n
εn (δ) .

Hence∫
∪n

i=1Qi

m (x, t) dσ (x) dt ≥ ωN−1δ
N−1

∫ T

0

m̃ (dt)

− ωN−1δ
N−1

(
ε + εα + T (2α + η) − T

n

)
− ωN−1δ

N−1 max
1≤i≤n

|εi (δ)|
(

2α + η + T + αε +
T

n

)
.

where # (I) and # (Ic) denote the cardinals of I and Ic respectively. Since δ = T
4n

and Lemma 3.11 gives that limn→∞ max1≤i≤n

∣∣εi

(
T
4n

)∣∣ = 0, taking n large enough
and α, η and ε small enough the lemma follows.�

For a T periodic curve Γ ∈ C2 (R, ∂Ω) and δ > 0, let BΓ,δ defined by (64). We
have

Lemma 5.3. Assume that ∂Ω is connected. Then for each ρ > 0 there exist
Γ ∈ C2

T (R, ∂Ω) and δ > 0 such that

1
ωN−1δN−1

∫
BΓ,δ

m (x, t) d (x) σdt ≥
∫ T

0

ess sup
x∈∂Ω

m (x, t) dt − 2ρ

Proof. Let ρ > 0 and let x1, ..., xn, t0, ..., tn and δ be as in Lemma 5.2. For
θ < T

2n and i = 1, ..., n − 1, let γi : [ti − θ, ti + θ] → ∂Ω be a C2 map satisfying
γi (ti − θ) = xi−1, γi (ti + θ) = xi and γ

(j)
i (t) = 0 for j = 1, 2 and t = ti ± θ.

Let Γ ∈ C2
T (R, ∂Ω) be defined by Γ (t) = x1 for t ∈ [t0, t1 − θ] , Γ (t) = xn for
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t ∈ [tn + θ, tn] and by

Γ (t) = xi−1 for t ∈ (ti−1 + θ, ti − θ) ,

Γ (t) = γi (t) for t ∈ (ti − θ, ti + θ) ,

Γ (t) = xi for t ∈ (ti + θ, ti+1 − θ) .

for i = 1, ..., n − 1. For θ small enough Γ satisfies the conditions of the lemma.�
Corollary 5.4. Assume that ∂Ω is connected and let P (m) be defined by (6).

If P (m) > 0 then for δ positive and small enough there exists Γ ∈ C2
T (R, ∂Ω)

such that
∫

BΓ,δ
m > 0.

Remark 5.5. Let Γ ∈ C2
T

(
R, RN

)
as in Lemma 5.3. Since the map t →

ν (Γ (t)) belongs to C1+θ
(
R, RN

)
there exists a C1+θ and T periodic map t →

A (t) from R into SO (N) such that A (t) ν (Γ (0)) = ν (Γ (t)) for t ∈ R. Let
{X1,0, ..., XN−1,0} be an orthonormal basis of TΓ(0) (∂Ω) and let Xj (t) = A (t)Xj,0,

for j = 1, 2, ...N−1, t ∈ R. Thus each Xj is a T periodic map, Xj ∈ C1+γ
(
R, RN

)
and for each t, {X1 (t) , ..., XN−1 (t)} is an orthonormal basis of TΓ(t) (∂Ω) . For
z ∈ R

N and t ∈ R we set

x (z, t) (70)

:= expΓ(t)

 ∑
1≤j≤N−1

zjXj (t)

− zN+1ν

expΓ(t)

 ∑
1≤j≤N−1

zjXj (t)

 ,

and
Λ (z, t) := (x (z, t) , t) . (71)

For δ > 0 let Dδ =
{
z ∈ R

N−1 : |z| < δ
}

and Qδ := Dδ × (0, δ) × R. Thus,
for δ positive and small enough Λ is a diffeomorphism from Qδ onto an open
neighborhood Wδ ⊂ R

N × R of the set {(T (t) , t) : t ∈ R} satisfying
Λ (Qδ) = Wδ ∩ (Ω × R) ,
Λ (Qδ) = Wδ ∩ (∂Ω × R) ,
Λ (Dδ × {0} × {t}) = Bδ (Γ (t)) × {t} ,
Λ (0, t) = (Γ (t) , t) ,
Λ (., t) is T periodic in t.
Moreover, Λ : Qδ → Wδ and its inverse Θ : Wδ → Qδ are of class C2,1 on their

respective domains. For δ, Λ, Θ, Wδ as above, with Θ (x, t) = (Θ1 (x, t) , ..., ΘN+1(x,
t)) we have ΘN+1 (x, t) = t and also (cf. (3.13) and (3.14) in [8])

∇ΘN = −gν on Wδ ∩ (∂Ω × R)

for some g ∈ C1 (Wδ ∩ (∂Ω × R)) satisfying g (x, t) �= 0 for (x, t) ∈ Wδ ∩ (∂Ω × R)
and g (Γ (t) , t) = 1 for t ∈ R. Moreover, if Λ′ (Γ (t) , t) denotes the Jacobian
matrix of Λ at (Γ (t) , t) , from the definition of Λ and taking into account that
the differential of expx at the origin is the identity on Tx (∂Ω) , we have that
detΛ′ (Γ (t) , t) = 1 for t ∈ R.

Lemma 5.6. Assume that ∂Ω is connected and that P (m) > 0. Then limλ→∞
µm (λ) = −∞.

Proof. Let {mn} be a sequence in C∞
T (∂Ω × R) that converges to m a.e in

∂Ω × R and satisfying ‖mn‖∞ ≤ 1 + ‖m‖∞ for n ∈ N, let
{
L(n)

}
be a sequence
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of operators as in Lemma 2.8 and let A(n) be the N × N matrix whose i, j entry

a
(n)
ij , let

{
b0

(n)
}

be a sequence in W
2− 1

q ,1− 1
2q

q,T for some q > N + 2 and such
limn→∞ b0

(n) = b0 a.e. in ∂Ω × R.
For δ positive and small enough let Γ be as in Corollary 5.4 and let Qδ, Wδ, Λ

and Θ be as in Remark 5.5.
For (s, t) ∈ Qδ let

ã
(n)
ij (s, t) =

∑
1≤l.r≤N

alr (Λ (s, t))
∂Θi

∂xl
(Λ (s, t))

∂Θj

∂xr
(Λ (s, t)) ,

let b̃(n) (s, t) =
(
b̃
(n)
1 (s, t) , ..., b̃

(n)
N (s, t)

)
with

b̃
(n)
j (s, t) :=

∂Θj

∂t
(Λ (s, t)) +

∑
1≤r≤N

br (Λ (s, t))
∂Θj

∂xr
(Λ (s, t))

−
∑

1≤i,l,r≤N

∂ãir

∂sl
(s, t)

∂Θi

∂xr
(Λ (s, t))

∂Θj

∂xr
(Λ (s, t))

−
∑

1≤i,r≤N

ãij (s, t)
∂2Θj

∂xi∂xr
(Λ (s, t))

and let Ã(n) (s, t) be the N × N symmetric and positive matrix whose (i, j) entry
is ã

(n)
ij (s, t) , let ã

(n)
0 be defined on Qδ by ã0 = a0 ◦ Λ, let m̃n, b̃0 be defined on

Dδ ×{0}× [0, T ] by m̃n = mn ◦Λ and b̃0 = b0 ◦Λ. For λ > 0 let un,λ be a positive
and T periodic solution of

L(n)un,λ = 0 in Ω × R,〈
A(n)∇un,λ, ν

〉
+ b

(u)
0 un,λ = λmnun,λ + µmn,L(n) (λ)un,λ on ∂Ω × R

normalized by ‖un,λ‖W = 1. Let ũn,λ ∈ C2,1 (Qδ) be defined by ũn,λ = un,λ ◦ Λ.
Then, a computation shows that

L̃(n)ũn,λ = 0 in Qδ × (0, δ) × R,〈
Ã(n)∇ũn,λ, eN

〉
+ b̃

(u)
0 ũn,λ = λm̃nũn,λ + µmn,L(n) (λ) ũn,λ on Qδ × {0} × R

Let β ∈ (0, δ) (to be chosen latter), let h ∈ C∞ (R) such that 0 ≤ h ≤ 1, h (ζ) = 1
for ζ < δ−β, h (ζ) = 0 for ζ ≥ δ and let G ∈ C∞ (

R
N+!
)

be defined by G (z, s, t) =
h (|(z, s)|) for (z, s, t) ∈ R

N−1 ×R × R. Finally, we set g̃ = g ◦Λ and, for a definite
positive matrix P ∈ MN (R) and w ∈ R

N we put ‖w‖P := 〈Pw, w〉 . With these
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notations we have, as in the proof of Lemma 3.11 in [8],

µ
mn,L(n),b

(n)
0

(λ)
∫

Dδ×(0,T )

(
G2g̃
)
(ξ, 0, t)dξdt (72)

≤ −λ

∫
Dδ×(0,T )

(
G2g̃m̃n

)
(ξ, 0, t)dξdt

+
∫
{s∈RN :|s|<δ:}×(0,T )

[∥∥∥∥(∇G +
G

2
Ã(n)b̃(n)

)∥∥∥∥2
eA(n)(s,t)

+ ã
(n)
0 (s, t)G2

]
(s, t) dsdt.

Also

∫
Dδ×(0,T )

m̃ (z, 0, t)

√√√√√det

gij

expΓ(t)

N−1∑
j=1

zjXj (t)

dzdt =
∫

BΓ,δ

m > 0.

Thus, since
√

det (gij (Γ (t))) = 1 and z →
√

det
(
gij

(
expΓ(t)

(∑N−1
j=1 zjXj (t)

)))
is continuous, we get

∫
Dδ×(0,T )

m̃ (z, 0, t)dzdt > 0 for δ positive and small enough.
Then (for a smaller δ if necessary) and some positive constant c we have∫

Dδ×(0,T )

m̃n (z, 0, t)dzdt > c,

for n large enough. Since g̃ is continuous on Dδ × {0} × R and g̃ (0, t) = 1 we can
assume also (diminishing δ and c if necessary) that, for n large enough,∫

Dδ×(0,T )

(m̃ng̃) (z, 0, t)dzdt > c and
∫

Dδ×(0,T )

g̃ (z, 0, t)dzdt > c

¿From these inequalities it is clear that we can pick β small enough in the definition
of G such that for n large enough∫

Dδ×(0,T )

(
G2m∗

ng∗
)
(σ, 0, t) dσdt > c/2, (73)∫

Dδ×(0,T )

(
G2g∗

)
(σ, 0, t) dσdt > c/2. (74)

We have also

lim
n→∞

∫
BΓ,η

∥∥∥∥(∇G +
G

2
Ã(n)b̃(n)

)
(s, t)

∥∥∥∥2
A(n)∗(s,t)

dsdt

=
∫

BΓ,η

∥∥∥∥(∇G +
G

2
Ab∗
)

(s, t)
∥∥∥∥2

A∗(s,t)

dsdt
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so, from (73), we get positive constants c1 and c2 independent of n and λ such
that µ

mn,L(n),b
(n)
0

(λ) ≤ −c1 − c2λ for all n large enough. Also, since

L(n)1 ≥ 0 in Ω × R,〈
A(n)∇1, ν

〉
+ b

(u)
0 1 ≥ λmn1 − (1 + ‖m‖∞)λ − (1 + ‖b0‖∞) on ∂Ω × R,

Lemma 4.3 gives µmn,L(n) (λ) ≥ − `1 + ‖m‖∞
´
λ− `1 + ‖b0‖∞

´
. Thus

˘
µmn,L(n) (λ)

¯
is bounded, and so, after pass to a subsequence we can assume that

{
µmn,L(n) (λ)

}
converges to some µ ≤ −c1 − c2λ. Since

{
λmnTr (un,λ) + µmn,L(n) (λ)Tr (un,λ)

}
is bounded in L2

T (∂Ω × R) , by Lemma 3.3 and after pass to a furthermore sub-
sequence, we can assume that {un,λ} converges in W to some uλ ≥ 0. By Lemma
2.8 u satisfies Lu = 0 in Ω × R, 〈A∇u, ν〉 + b0u = λmu + µu on ∂Ω × R. Thus
µm,L,b0 (λ) = µ and so µm,L,b0 (λ) ≤ −c1 − c2λ.�

6. Principal eigenvalues for periodic parabolic Steklov problems

Let P (m) and N (m) be defined by (6). We have
Theorem 6.1. Suppose one of the following assertions i), ii), iii), holds.
i) P (m) > 0 (respectively N (m) < 0) and either a0 > 0 or b0 > 0
ii) a0 = 0, b0 = 0, P (m) > 0 (respectively N (m) < 0), 〈Ψ, m〉 < 0 (resp.

〈Ψ, m〉 > 0) with Ψ defined as in remark 3.7.
Then there exists a unique positive (resp. negative) principal eigenvalue for (55)

and the associated eigenspace is one dimensional.
proof. Suppose a0 = 0, b0 = 0, P (m) > 0 and 〈Ψ, m〉 < 0. Since µm (0) = 0

and, by Lemma 3.14, µ′
m (0) > 0 the existence of a positive principal eigenvalue

λ = λ1 (m) for (55) follows from Lemma 5.6. Since µm does not vanish identically,
the concavity of µm gives the uniqueness of the positive principal eigenvalue.

Moreover, if u, v are solutions in W for (55), then, from Lemma 4.1, u = cv
on ∂Ω × R for some constant c. Since, for l ∈ R, L (u − cv) = 0 on Ω × R,
Bb0+l (u − cv) = λm (u − cv) + µm (λ) (u − cv) and u − cv = 0 on ∂Ω × R. Thus,
taking l large enough, Lemma 2.9 gives u = cv on Ω × R.

If either a0 > 0 or b0 > 0 then (by Remark 3.12) µm (0) > 0 and so the
existence follows from Lemma 5.6. The other assertions of the theorem follow
as in the case a0 = 0. Since µm (−λ) = µ−m (λ) and N (m) = −P (−m) , the
assertions concerning negative principal eigenvalues reduce to the above.�

Theorem 6.2. Let λ ∈ R such that µm (λ) > 0. Then for all Φ ∈ L2
T (∂Ω × R)

the problem

Lu = 0 in Ω × R, (75)
Bb0u = λmu + Φ on ∂Ω × R

u (x, t) T periodic in t

has a unique solution. Moreover Φ > 0 implies that ess infΩ×R u > 0.
proof. Since µm (λ) > 0 for l large enough we have ρ

(
Sl,λm−b0

)
< 1

l and so
,
(

1
l I − Sl,λm−b0

)−1 is a well defined and positive operator. If u is a solution of
(75) then u = Sl,−b0

λm+lΦ so the solution, if exists, is unique. To see that it exists,
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consider

w :=
1
l
Sl,λm−b0

(
1
l
I − Sl,λm−b0

)−1

Φ.

and observe that u = Sl,−b0
1 ((λm + l)w + Φ) solves (75). Finally, if Φ > 0, then

w > 0 on ∂Ω × R and since

u = Sl+R,−b0
1 ((λmTr (u) + (µ + l + R)Tr (u))) ,

Lemma 2.18 (iii) gives ess infΩ×R u > 0.�
Let λ1 (m) (respectively λ−1 (m)) be the positive (resp. negative) principal

eigenvalue for the weight m with the convention that λ1 (m) = +∞ (respectively
λ−1 (m) = −∞) if there not exists such a principal eigenvalue. From the properties
of µm, Theorem 6.2 gives the following

Corollary 6.3. Assume that either a0 > 0 or b0 > 0. Then the interval
(λ−1 (m) , λ1 (m)) does not contains eigenvalues for problem (55). If a0 = 0 and
b0 = 0, the same is true for the intervals (λ−1 (m) , 0) and (0, λ1 (m)) .
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