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PRINCIPAL EIGENVALUES FOR PERIODIC PARABOLIC
STEKLOV PROBLEMS WITH L*>* WEIGHT FUNCTION

T. GODOY, E. LAMI DOZO, AND S. PACZKA

ABSTRACT. In this paper we give sufficient conditions for the existence of a
positive principal eigenvalue for a periodic parabolic Steklov problem with
a measurable and essentially bounded weight function. For this principal
eigenvalue its uniqueness, simplicity and monotone dependence on the weight
are stated. A related maximum principle with weight is also given

1. INTRODUCTION

Let © be a C?7? and bounded domain in RY with N > 2 and 6 € (0,1), let
T > 0 and let {ai;},o; ;o ns {bj}i< j<n be two families of real functions defined
on 2 x R and © x R respectively, satisfying for 1 < 4,j < N that a;; = a;; (z,t)
and b; = b;(z,t) are T periodic in ¢, aj; = aj, %\[0 1 € C’(ﬁ X ]R) and
bj € L* (2 xR). Let ap : & x R — R be a nonnegative and T periodic func-
tion belonging to L* (2 x R) for some s > 1 + % Assume in addition that for

some 7y € (%, 1) and for all 7, j
aij € C7 (R,C(Q)), b; € C7 (R, L™ (Q)) (1)
and that
ap € C7 (R, L* (Q2)) (2)
where a;; () (x) := ai; (x,t), bj (t) (x) := bj (z,t) and ag (t) (z) := ao (z,t). Let
b= (b1,...,bx) and let A be the N x N matrix whose %, j entry is a;;. Assume also

that A is uniformly elliptic on Q x [0, T7, i.e., that there exists a positive constant
« such that

> aij (2,068 > algl’ (3)
i!j
for all (z,t) € A xR, & = (&,...,&n) € RY. Let L be the periodic parabolic
operator defined by
Lu := uy — div (AVu) + (b, Vu) + apu (4)

where (,) denotes the standard inner product on R™. Finally, let by be a nonnega-
tive and T periodic function in L* (02 x R) and let v be the unit exterior normal
to 0. Under the above hypothesis and notations (that we assume from now on)
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74 T. GODOY, E. LAMI DOZO AND S. PACZKA

we consider, for a T periodic function (that may changes sign) m € L™ (092 x R),
the periodic parabolic Steklov principal eigenvalue problem with weight function
m

Lu=0in QxR (5)
(AVu,v) + bou = Amu on 02 x R,
u(x,t) T periodic in ¢
u>0in  x R,

the solutions understood in the sense of the definition 2.1 below. In order to
describe our results let us introduce, for m € L*> (092 x R), the quantities

T T
P (m) :z/ ess sup m (z,t)dt, N (m) :z/ ess inf m(z,t)dt  (6)
0 €0 0 €I
In this paper we prove (cf. Theorem 6.1) that if either ag > 0 and by > 0 or
ap = 0 and by > 0 and if P (m) > 0 (respectively N (m) < 0) then there exists a
positive (resp. negative) principal eigenvalue for (5), that is, a A whose associated
eigenfunction u satisfies (5). Under an additional assumption on m a similar
existence result is also given for the case ag =0, by =0 .

Our approach, adapted from [4] and [8], reads as follows: If we change Amu
in (5) by Amu + pu, we have the following one parameter eigenvalue problem:
given A € R find p € R such that this modified (5) has a solution. We prove in
section 4 that this problem has a unique solution y = py, (A) € R which satisfies
that A\ — g, (A) is real analytic and concave. We also obtain an expression
for p7, (0) which allows us to decide the sign of ul, (0). In section 5 we prove
that P (m) > 0 (respectively N (m) < 0) implie limy_,o0 fim (A) = —o0 (resp.
limy— — oo fom (A) = —00). From these facts, and since the zeroes of the function
lm are exactly the principal eigenvalues for (5), our results will follow.

Sections 2 and 3 have a preliminar character. In section 2 we collect some
general facts about initial value parabolic problems and in section 3 we study ex-
istence and uniqueness of periodic solutions for parabolic problems and we prove
some compactness and positivity properties of the corresponding solutions opera-
tors related.

2. PRELIMINARIES

Let us start introducing the notations to be used along the paper. For a topo-
logical vector space E we put E* for its topological dual and (,)EE for the
corresponding evaluation bilinear map (A, e) pop =A (e). If By, Ey are normed
spaces and if S : By — E» is a bounded linear map we denote by [|S| g, g, (or
simply by [|.S]| if no confusion arises) its corresponding operator norm. If E is a
real Banach, —oo <ty < t; <ooand 1 < p < oo we put L? (to, t1; E) for the space

of the measurable functions (in the Bochner sense) f : (tg,t1) — E such that
1

1Al Lo (to,t0:m) = ( tzl If @)% dt); < o0o. We define also L™ (tg,t1; F) and, for

1 < p < oo, the space L} (to,t1; E), similarly (with the obvious changes) to the

corresponding usual Lebesgue’s spaces. For 1 < p < co we put L. (R, E) for the
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space of the 7" periodic functions f : R —F satisfying that fi,r) € LP (0,T;E).
We write also Cr (€ x R) (respectively Cp (992 x R)) for the space of the T pe-
riodic functions belonging to C (2 x R) (resp. to Cr (92 x R)). The spaces
L? (to,t1; E), LY. (R, E), Cr (2 x R) and Cr (9Q x R), equipped with their re-
spective norms HHLP(tO,tl;E)7 HHLP(O,T;E)? HHC(ﬁ)x[QT] and ||HC(BQ)><[O,T] are Ba-
nach spaces. For ¢y < t; we will identify (writing f (x,t) = f (¢) (z)) the spaces

L? (Q % (to,t1)) = L? (to, t1; L* () ,
L3 (@ x R) = L? (0,T; L* ()

and also the corresponding spaces of functions defined on 9 x (to, 1)

Let X,V be the real Hilbert spaces X = L?(Q), V = H! () equipped with
their usual norms. Forty < t1 let D = C2° (to,t1; V') be the space of the indefinitely
differentiable Frechet functions from (¢, t1) into V', D equipped with the topology
of the uniform convergence on each compact subset of (¢g, 1) of the function and all
its derivatives. Let D’ be its dual space. For u € L (to,t1; V), let v’ be its distri-
butional derivative defined by (u', ) p = — :01 (u(t), ¢ (t)) dt for all ¢ € D
where (,)y denotes the inner product in X. We will say that ' € L? (tg,t1;V*)
if there exists a function (denoted by ¢ — v’ (t)) belonging to L? (to,t1;V*) such
that (v, ) p p = :01 (W (), (t)y.dtforall pe D.

For t € R, let arp, (¢,.,.) : V XV — R be the bilinear form defined by

QarL,by (ta 9, h) = (7)

/[<A<.,t>Vg,Vh>+<b<.,t),w>h+ao <.,t>gh1+/ bo (..1) gh
Q o0

(the values on 0N of g and h understood in the trace sense) and let Ay, (£) :
V' — V* be the bounded linear operator defined by

AL, (1) g =aLp, (t,g,.) (8)

For tog < t1, f € L*(Qx (to,t1)), ® € L?(9Q x (to,t1)) and t € (to,t1), let
Ao (t) € V* be defined by

A1 O Byey = [ FOR+ [ @lon  hev. )
Q a0
So Af’q> e L? (to,tl; V*) and
||Af,<1>||L2(t07t1;v*) sc (HfHL2(Qx(to,t1)) + H‘I)HL2(,BQ><(tO,t1))) (10)
for some positive constant depending only on tg, %1, 2 and N. We set also
Wigt, == {u € L? (to,t1; V) 1 u' € L? (to, t1; V*)} (11)
and HuHWtN1 = [[ull p2 g 00y + 19 12219600y - SO Wegty» equipped with the

norm H.||Wm . » is a Banach space. With these notations we can formulate the
0,01
following definition
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Definition 2.1. For —ty < t1, f € L?(Q x (to,t1)) and ® € L? (9Q x (to, 1))
we say that u : Q x (tg,t1) — R is a solution of the problem
Lu = f in Q x (to,tl) (12)
(AVu, v) + bpu = ® on 9 X (to,t1)
ifue Wy, and v/ (8) + App, () u(t) = Apa (1) ae. t € (to,t1).
(From now on, a solution of a boundary problem like (12) (except if otherwise
is explicitely stated) will mean a solution in the above sense.

Remark 2.2. For k, [, ¢ € R with £ > 0, standard computations on the
quadratic form g — aryr, (¢, g,9) give, for all g € V,

1161117 (01
ALk, (tag;g) Z <k — % Hg||§( +l/ g2
@ o0

and also )
IBIIZ o (@
anii (t9.9) 2 (@ = @B ) ugost [ g2
bl1|3 0o
where « is the ellipticity constant of A. So, for k > ko := ”H”Lélw and [ > 0,
there exists a positive constant # depending only on a and |[[b[| ;. (o« ) such that

2
arsri (t,g,9) > Bllglls (13)

for all t € R and g € V. Moreover, for such k and [, the assumptions on the
coefficients of L imply that there exists a positive constant ¢ such that

ar+k (t, 9. h) < cllglly |7l (14)
and that
lartk, (L g, h) —artr (s,9,h)] < clt —s|" [lglly 1R[]y (15)
for all s,t € R and g,h € V.1
For kg as in Remark 2.2, k > kg, —00o < 7 < t < oo and ug € X consider the
problem

u e W7—7t7 (16)
u (8)+ Atk (s)u(s) =0 ae. s € (,t)
u (T) = up.

Note that W, C C ([7,t],X) (cf. ([12], Lemma 5.5.1) and so the initial condition
u(T) = up makes sense. Taking into account the facts in Remark 2.2, ( [12],
Theorem 5.5.1) applies to see that (16) has a unique solution u. Let Up 45 (£,7) :
X — X be the linear operator defined by Up 4k, (¢, 7) uo = u (t) .

Let us recall the following properties (cf. [12], Theorem 5.4.1) of the evolution
operators Uy x (t,T)

Remark 2.3. i) Given tg,t; € R with ¢y < ¢; there exists a positive constant
¢ such that, for tg <7 <t <tq,

NULqrg & 7)lxy <c(t—7)72. (17)
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ii) Since V.C X ~ X* C V* (the isomorphism X ~ X* given by duality) we
can consider X C V*. In this setting, it holds that for ¢y, ¢; as above there exists
a positive constant ¢’ such that

NUL gt (£, 7) uoll y < ¢ (t—=7)72 [Juolly - (18)

for tg <7 <t <t and up € X. Since V (and then also X) is dense in V*, it
follows that Up4x, (¢,7) : X — V has a unique bounded extension to an operator
(still denoted Up 4, (¢, 7)) from V* into X which satisfies, for ¢’ as in (18),

WUbsra (6T xe <€ (E=7) 72 (19)
Finally, we recall also that for 7 < s < ¢ it holds that
ULtk (67) = ULyk (8,8) ULk (5,7) - (20)
For —oo < tg <t; < oo, A€ L?(ty,t1;V*) and ug € X consider the problem
v € Wigth, (21)
V), (t) + Arsig (0) vg (£) = A (t) ae. t € (to,t1)
v (to) = up.

Taking into account (13), (14) and (15), ([12], Theorem 5.5.1) applies to see that
(21) has a unique solution vy, given by

ok (£) = Up s (1 o) o + /t s (1) A (1) drm (22)
Remark 2.4. Observe that u € Wy, +, ios a solution of the problem
u(t)+Ap (B u(t) =A(t) ae. t € (to,t1) (23)
u (to) = ug
if and only if vy, (t) := e F(t=t0)y (¢) solves
vy, (8) + Apgr () vk (£) = Ag ace. t € (to,t1) (24)
vk (to) = uo

with Ay defined by Ay (t) := e *(¢=%)A (). Thus (23) has a unique solution u
given by

t
u(t) = U, (t,to) uo + / Up,(t,7)A(T)dr (25)
to
with U (¢, 7) defined by
UL, (t, T) = ek(tiT)UL_i_k’l (t, T) . (26)
Moreover, for t € [tg,t1] we have (cf. [12], Lemma 5.5.2)
1 t
S+ [ onstrun)um)ar (27)
to

1 t
=5 lwolf + [ A u@)y. v dr
to
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(From (27), standard computations show that there exists a positive constant ¢
independent of A and ug such that

el .y < € (Il vy + I0ll 2y ) - (28)

Remark 2.5. The estimates (17), (18), (19) and (20) still hold (with another
constants) for the operators Uy (¢,7) given by (26) and w(t) := Up, (¢, 7)uo

satisfies
Lu= in Q x (to,tl), (29)
(AVu,v) +lu =0 on 08 x (to,t1)
u (to) = Up

for up € L (Q) .1
Remark 2.6. For [ > 0, —0co < tg < t; < oo, f € L?(Q x (to,t1)), ® €
L? (09 x (tg,t1)) and ug € L? () the problem

Lu = f in Q x (to,tl), (30)
(AVu,v) +lu = ® on 00 X (to,t1),
U(.,to) = Uo

has a unique solution which satisfies in addition that

el < € (1 2@ty + 19 2@a oy + Mollzaey) - (31)

for some positive constant ¢ independent of f, ® and ug. Indeed, the solutions of
(30) are those of (23) taking there A = Ay ¢, and Remark 2.4 applies.ll
Remark 2.7. It is easy to check that the constant ¢ in (28) and so also in
Remark 2.5 and Remark 2.6 can be chosen depending only on €2, N, v, @ and on an
upper bound of X j [|ai; | e (x (10.61)) T i 1051 oo (¢ (20,02)) T 1901 L2 (¢ (20,21)) -
Lemma 2.8. Let to,t1, f, ® and ug be as in Lemma 2.4 and let {L(")} be a
sequence of operators of the form

LMWy == u; — div (A(")Vu> + <b(")7 Vu> +alu

with A™ = (agl)), b = (bgn),...,bg\r,l)) and a(()n) satisfying for each m the
conditions stated for L at the introduction with the same v, a and s given there
for L. Assume also that for each i and j, { (n)} and {b;n)} converge uniformly

on Q x (to,t1) to a;; and b; respectively and that {a(()n)} converges to ag in

L (Q % (to,t1)). Let {f™} and {@™} be sequences in L? (Q x (to,t1)) and in
L? (09 x (tg,t1)) respectively and assume that they converge to f and ® in their

respective spaces. Let {uén)} be a sequence in L2 () that converges to ug in
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L%(Q) and let 1 > 0. Thus the solution u(™ € Wy, 4, of the problem
Ly = 1) in Q x (to, 1),
<Avu<”>, u> +1u™ = 0™ on 9Q x (to, t1),
u™ (., to) = ul™.

converges in the Wy, ¢, norm to the solution u of (30).

Proof. For kg as in Remark 2.2, k > ko, [ > 0 and n € N, let v,(cn) € Wy, be
the solution of

!
(’Ul(c")> (f,) + .AL(n)JrkJ (f,) Ul(cn) (t) = Affin)7¢§cn) (t) a.e.t € (t(), tl) s
v (to) = uf”
and let vy, be the solution of (24). We have
!/ ~
(o = v ) () + Apoa (8) (o7 =0 ) (1) = A (1) aet € (to, 1), (32)
() e
where
A™ (1) (33)

= Ay g () = Ag (0 (Arpia (6) = Apow g (0) 217 ().

= 0 and

Our assumptions imply that lim,,_. HA oy — A
ptions fanply that limn—c |[Ayo g = o]y o

that lim,— oo HAL+/€J (t) = AL 1y (t>||V.V* = 0 uniformly on ¢ € [to,t1]. From

Remarks 2.6 and 2.7 we have that {Hv,gn)

is a bounded sequence.
LQ(to,tl;V)

Then from (33) lim,— HK(")

Lo v = 0. Thus from Remark 2.6 applied to
to,t1; V™

= 0. Since u(™ (t) = ek(t_tO)v,(cn) and

(32) we obtain lim,, Hv,(cn) — v
Wig .ty

u (t) = eFt=10)y, the lemma follows.H
Lemma 2.9. Assume that f € L?(Q x (to,t1)), ® € L?(09Q x (to,t1)) and
ug € L2 (Q) are nonnegative. Then the solution u of (30) is nonnegative.

Proof. We pick sequences {L,}, {f(”)}, {@(”)} and {ué")} as in Lemma

2.8 satisfying in addition that f(") >0, o) > 0, u(()n) > (0 and such that aE?),

bg-"), a(()") and () belong to C> (ﬁ X [to,tl]) , ®(™) belongs to C> (9 x [to, t1])
and uén) € Cr (). Let {v,i")} be as in the proof of Lemma 2.8. Thus v,gn) €

C*o 45 (Q x (tg,t1)) (cf. e.g., Theorem 5.3 in [9], p. 320)). The classical max-

imum principle gives v,(cn) > 0 and since by Lemma 2.8 lim,_ v](cn) = v In
L2 (Q x (to,t1)) we get vy > 0. Since the solution u of (30) is given by u (t) =

eFtuy () the lemma follows.H
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Remark 2.10. Let us recall some well known facts concerning Sobolev spaces
(see e.g. [9], Lemma 3.3, p 80 Lemma 3.4, p. 82)
i): For —oo <ty < t1 < oo and u € W2 (Q x (to,t1)) with 1 < ¢ < oo we

2114 - .
have upax (1) € Wg *7 ** (9 x (to,t1)) and the restriction map (in the trace

Sense) U — U|gax (to,4,) 1 continuous from W2 (Q x (to,t1)) into VVqQ_EJ_E (092x
(to,t1))-

i) For u € W2 (Q x (to, 1)) with 1 < ¢ < oo it holds that u (., ) € W23 (Q)
for t € [to,t1] and for such t there exists a positive constant ¢ independent of u
such that [u (., ?)]| Wi i) ||U||W21(Qx(t0,tl))

iii) For ¢ > N + 2 the followmg facts hold:

W2 (Q x (to, t1)) C Co T “ (Q x [to, t1]) for some o € (0,1), with continu-
ous inclusion.

W2T T T (90 x (to, 1)) © C1F
with continuous inclusion.

iv) For 1 <r < oo let r* be defined by () ' =r 1 = (N4+1) " ifr < N +1
and r* = oo if r > N + 1. Thus W' (Q x (to,t1)) € L (Q x (to,t1)) if r* < oo
and W21 (Q x (to,t1)) C L1(Q x (tg,t1)) for all ¢ € [1,00) if 7* = oo, in both
cases with continuous inclusion.ll

Remark 2.11. For ¢ > N + 2 it holds that W2~ () c C'7 () contin-

Z2
uously for some o € (0,1). In this case, for 7 € R, let W;(:)?q (©) be the space

of the functions h € W2~ 7+ (Q) that satisfy (in the pointwise sense) B; (1) h =0
where

1+0

(02 x [to,t1]) for some o € (0,1) and

Bi(t)h:=(A(.,,7)Vh,v) + lh. (34)
Let us recall that for such ¢ and for —oo < to < t1 < oo, f € LL(Q x (to,t1)),
(OIS qu—%@—% (02 x (to,t1)) and uy € W;]_(t%o)q () there exists a unique u €
qu,1 (Q x (to,t1)) satisfying almost everywhere

Lu= fin Q x (to,t1),
(AVu,v) + lu= P on 90 x (to,t1),
u (to) = up.

(for a proof, see [9], Theorem 9.1, p. 341, concerning the Dirichlet problem and
its extension, to our boundary conditions, indicated there (at the end of chapter
4, paragraph 9, p. 351). Moreover, there exists a positive constant ¢ independent
of f,® and wug such that

lellwz @x b))

<c q + [P ooz, + || _2, .
(e L R CI

Lemma 2.12. i) For 7 < t, U, (t,7) : L*(Q) — L?(Q) is a compact and
positive operator.
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ii) Let to, t1 € R with tg < t1. For 1 < g < o0, tg <7 <t1 and ug € L? (Q) the
restriction of Up(.,to)uo to Q x (7,t1) belongs to W2 (Q x (7,t1)) and there
exists a positive constant ¢ such that |Ur (., to) u0||Wq2,1(QX(T7t1)) < clluoll 2 (q)
for all ug € L?(Q).

iti) U, (t,7) (L (Q)) C W2 09(Q) for 7 <t and 1 < q< oo and Up, (t to)
is a bounded operator from L*(Q) into W2 i Q). B

w) For 7 < t it hold that Upy(t,7) (L*(Q)) € C* () and U, (t,7) is a
bounded operator from L*(Q) into C* (ﬁ) Moreover, if ug € L?(Q), ug > 0,
and ug # 0 then ming Up; (t,7) ug > 0.

_2
v) For N+2 < g <ooand 7 < t, Up;(t,7) .2, W; (j)’q Q) —
o

2_27 . .
WBl(j)q (Q) is a compact and strongly positive operator .

Proof. By Lemma 2.9 Uy, ; (t,7) : L* (2) — L?(Q) is a positive operator. It is
also compact because Uy (t,7) : L? () — H' (Q2) is continuous (cf. Remark 2.5)
and H' () has compact inclusion in L? (). Thus (i) holds.

To see (ii) we pick a strictly increasing sequence of positive numbers {7; }j N
such that ¢ty < tg +n; < 7 for all 7 € N and we pick also a sequence of functions
{@i}jen in O (R) satisfying ¢; (s) = 0 for s < to+n;, ¢; (s) =1 for s > to+n;41.
Let w(t) := Urqnu(t,to)uo and let {v;}, v and {w;};  be the sequences of
functions on  x (g, t1) inductively defined by v1 := w1, vj4+1 = @;11v; and by
w1 = PiU, Wit =: 05 + pj1w; respectively. Then, for all j,

Lv; = wj in Q x (to +nj,t1), (35)
<AV’Uj,l/> + lUj =0 on 9N x (to + nj;tl) ,
vj (to +n;) =0
Let {g; }jeN be defined by ¢1 = 2 and by gj4+1 = ¢ (with ¢ as in (iv) of Remark
2.10) and let jo = min {j q; = oo}. For the rest of the proof ¢ will denote a

positive constant independent of ug non necessarily the same at each occurrence
(even in a same chain of inequalities). We claim that for j < jo

v; € Wqu’l (Q % (to +njt1,t1)) and w; € Wqu’l (Q x (to +njs1,t1)) (36)
with their respective norms bounded by ¢ |[uo|| 12(o)-
If (36) holds, for 1 < ¢ < oo Remark 2.10 (iv) gives ”wioHLq(Qx(to+mo+1 t)) <

c[luol| 2, - Taking into account that u = vj, on 2 x (7,11), Remark 2.11 gives

lullwz@xre) = Mo lwz@x(renyy = 1050 lwzr (0x (tonjg1.00))
< ellwioll Lagax (to4ms 11.1)) = € llu0llL2q)
and so (ii) holds.
To prove the claim we proceed inductively. Since u satisfies 29, Remark 2.6 gives

ull L2 x (totm )y < Nl n2@xto )y < €lluollpzioy and so [[willpzqx o)) <
clluollp2(qy - Then, by Remark 2.11, HUl”le(Qx(toer,tl)) < clluoll 2y and so

Hv1||W22’1(Q><(to+n2,t1)) < c|luoll 2y - Since u = vy on Q X (to +1m2,t1) and wy =
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upy we get also that ||w1||W§'1(Qx(to+n2,t1)) < clluollp2(qy - Thus (36) holds for
7 = 1. Suppose that it holds for some j < jo. Then

ij||W‘12.73j-1(9><(t0+m+1¢1)) < cllwjsall (2x(to+nj41,t1))
=cC ||90;’+1vj + (,0]‘+1ijqu (Qx (to+m41,11)) <c HUOHL?(Q)
and so (since u = v;j4q1 on Q X (to + nj+3,t1))

HUHWL?;L (X (to+nj+2,t1)) — Vg1 HWL?;L (Qx(to+n;j+2,t1)) (37)

< Mvirtllwzr @xtotnsiainy < €lluollzei)

Since wjy1 = u Z ¢r Il  ritfollows that ||wj+1||wq2;1 (@x(
1<k<j+1  1<r<j+1 It
r#j+1
¢[luoll g2y and so, from (35), a similar estimate holds for v;41. This complete the
proof of the claim.

The imbedding theorems for Sobolev spaces and (ii) imply (iii). The first part
of (iv) is again obtained applying (ii) with ¢ > N 4 2. To see the second part
of (iv), we observe that if ug > 0 and w := Up;(¢,7)up then u # 0 and, by
Lemma 2.9, u > 0. Let ¢1 and vy be as in the proof of (ii), Since v1 = piu €
W2 (Q x (to,t1)) C 772" (Q % [to, t1]) , the boundary condition for v holds
in the pointwise sense. Now, the Hopf parabolic maximum principle applied to

<
to+mj+2,t1)) —

Lvy = ¢'uin Q x (to +m,t1),
(AVv1,v) +lvy = 0 on 09 X (to + m,t1)

jointly with the fact that v1 = u on Q x (7,t1) gives (iv).

To see (v), let s € (0,7), ¢ > N +2 and let ¢ > ¢. Since Wér(i/)q’q () c L?(Q)
(with By (1) given by (34)), from (ii) we can consider the bounded operator S :
W;l_(%q’q Q) — Wq~2’1 (€2 x (7,1)) defined by Sug = (UL, (.,8) t0) |y (7 - Since
the operator u — u (t) is continuous from VV;’1 (Q x (1,t)) into W2~2/@49 () and
the inclusion map 4 : W?2~2/44 (Q) — W?2~2/94(Q) is compact, we obtain the
compactness assertion of (v). Finally, the strong positivity in (v) follows from
iv).H
| I)Lemma 2.13. i) If Ae H' (Q)" and A >0 then Ur,; (t,7) A >0 for T < t.

i) If f € L?(Q x (to,t1)) and ® € L* (9 x (to,t1)) are nonnegative functions
and if either f #0 or ® # 0 then

t1
/ Uy (t1, 7)Ao (1) dr >0

to
Proof. Let Praq), Pui(q), Priq)+ be the positive cones in L?(Q), H' (Q)
and H' (Q)" respectively and let Pyi(q) be the closure of Pyi(g) in H (Q)".
Observe that if A € Py gy« U {0} then A € ?HI(Q). Indeed, if not, the Hann
Banach Theorem gives n € H' ()™ such that MNPy = 0 and 7 (A) = 1. For
g € H' () let Ay € H' ()" be defined by A\, (f) = [, fg- Thus Ay € Py1(q)-
for all g € Ppu(q). Since H' (Q) is reflexive there exists ¢ € H' () such that
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n(A) = A(p) for all X € H* ()" . In particular we have 0 =1 (\g) = [, fg for all
g € Pgi(qy. This implies that ¢ = 0 and so n = 0 which contradicts 7 (A) = 1.
Thus A € PHl(Q).

Let A € Pyiq),s0 A € ?HI(Q) and then there exists a sequence {u ; }jEN of
nonnegative functions in H! (Q) that converges to A in H! (Q)*. Since Uy, ; (t,7) :
H' ()" — L?(Q) is continuous and, by Lemma 2.12 (i), it is a positive operator
on L?(Q), we have Ur; (t,7) A = limj_oc UL (t,7) up,; > 0 and so (i) holds.

To see (ii), observe that At > 0 and so (i) gives

ULJ (t,’T)Af’q;. (’7’) >0ae TE€E (to,tl). (38)
Moreover,
t
w(t) = / Upi(t,7) Ay (7) dr (39)
to

is the solution of the problem
Lu= fin Q x (to,t1),
(AVu,v) +lu = ® on 09 x (to,t1),
u(0) = 0.

Then, by (i), u > 0 in Q x (tg,¢1) and since u # 0 (because either f # 0 or ® # 0)
we conclude that for some ¢ € (o, 1) the set

J;= {7— c (O,f) 2 Ury (f,T) Af,<I> (7—) € PL2(Q)}

has positive measure. Then, since U, ; (T,7) = Up, (T7 f) UL, (Z, T), Lemma 2.12
(iv) gives Ur; (T, 7)Ayo (1) > 0 for all 7 € Jp. Now (ii) follows from (38) and
(39).1

Remark 2.14. Let us recall the following version of the Krein Rutman Theo-
rem for Banach lattices and one of its corollaries (for a proof, see e.g., [5], Theorem
12.3 and Corollary 12.4)

i) Let E be a Banach lattice with cone positive P and let S : E — E be a
bounded, compact, positive and irreducible linear operator. Then S has a positive
spectral radius p (S) which is an algebraically simple eigenvalue of S and S*. The
associated eigenspaces are spanned by a quasi interior eigenvector and a strictly
positive eigenfunctional respectively. Moreover, p (S) is the only eigenvalue of T
having a positive eigenvector.

ii) For E and S as above and for a positive v € E the equation ru — Su = v
has a unique positive solution if r > p (), no positive solution if r < p () and no
solution at all if r = p (). In particular this implies that if Sv > p(S) v for some
positive v then Sv = p (Sv).

We recall also that a point a € F is a quasi interior point if and only if ¢ € P
and the order interval [0, a] is total (i.e. the linear span of [0,a] is dense in E)
and that for a measure space Z equipped with a positive measure do on Z and
1 < p < oo the quasi interior points in LP (Z, do) are the functions that are strictly
positive almost everywhere. Moreover, for such p, a bounded and positive linear
operator S : LP (Z,do) — LP (Z,do) satisfying that S (f) () > 0 a.e. z € Z for
all f > 0 is an irreducible operator (cf [13], Proposition 3, p. 409).H
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Lemma 2.15. For 1 >0 and 7 <t, Up;(t,7): L*(Q) — L*() is a positive
irreducible operator and its spectral radius p satisfies 0 < p < 1.

Proof. By (i) and (iv) of Lemma 2.12, Ur; (¢,7) is a positive, irreducible and
compact operator. Thus, by the Krein Rutman Theorem, p is positive and that
is the unique eigenvalue with positive eigenfunctions associated. Moreover, by
Lemma 2.10 (iii), these eigenfunctions belong to Wi (Q) for 1 < g < o0.

2

2-2, 2-2, :
Take ¢ > N + 2. By Lemma 2.12 (v), U, (¢,7) : WBl(j)q (Q) — WBl(j)q (Q) is
a compact and strongly positive operator which, by the Krein Rutman Theorem,

has a positive spectral radius p,. Since the eigenfunctions of Uy, ; (¢, 7) belong to

2-2, .
WBl(j)q (Q) we have p = p,. Thus, to prove the lemma, it is enough to see that

pq < L.

We proceed by contradiction. Suppose p; > 1, let ¢ be a positive eigenfunction
with eigenvalue p, and let w = Up (., 7) (¢). Since Ur,; (t,7)(p) = pp > ¢, .
By Lemma 2.12 (ii), w € W' (€ x (7,t)) and since w (t) > w (7) the maximum
principle gives that either w is a constant or maxg, 5 7 w (x,t) is achieved at some
point (z*,t*) € 9Q x (7,t). If w is a constant, since [ > 0 the boundary condition
(which is satisfied in the pointwise sense because ¢ > N +2) implies w = 0 which is
impossible and if the maximum is achieved at some point (*,t*) € 9Q x (7,t) we
would have (AVw,v) (z*,t*) > 0 in contradiction with the boundary condition.l

3. PERIODIC SOLUTIONS

Let W be the Banach space

W:={uel? (R,H" (Q):u €LF (R,H (Q)7)} (40)
with norm [|ully, = [Jull 2 @ g ) + 14l L2 @510 -
Lemma 3.1. For [ >0, f € L2 (2 x R) and ® € L% (992 x R) the problem
Lu=fin QxR (41)

(AVu,v) +lu =P on 00 x R,
u(x,t) T periodic in ¢

has a unique solution u € W.
Proof. Let 6 > 0. For ug € L? () the solution of

Lu= fin Qx (0,7 +9) (42)
(AVu,v) +lu=® on 00 x (0,7 +9),
u (0) = ug
is given by
t
w(t) = Upy (t to) up + / Uy (t.7) Mg (7) dr. (43)
to

By Lemma 2.15, I — U, (T,0) : L?(Q) — L?(2) has a bounded inverse. From
(25), u (0) = u (T) if and only if

T
wo = (I = Up (T, o))—l/o Upi (T,7) Ago (7) dr (44)
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then there exists a unique solution v of Lu = fin 2% (0,7 +¢), (AVu,v)+lu = ®
on 092 x (0,74 6) and u(0) = «(T). For such a u and for ¢t € [0,T + ], let
v(t)=u({t+T). Thus Lv = f in @ x (0,9), (AVv,v) +1lv = ® on 9Q x (0, ) and
v(0) =u(0). Then v (t) = u(t) (le., u(t+7T)=u(t)) for [0,7 + ¢]. Thus u can
be extended to a solution of (41) which is unique by (44).H

Let tr : H' (Q) — L% (99) be the trace operator on H! (Q2) and for v € W let
Tr (v) € L2 (09 x R) be the trace operator defined by T'r (v) (t) = tr (v (t)).

For [ > 0 we define the linear operators

SLiL2 (QxR) x LE (8Q X R) — W,
SL:LZ (2 x R) x L2 (00 x R) — L2 (9 x R) ,
SL: L2 (09 x R) — L2 (8Q x R)

by

St (f,®) = u where u is the solution of (41) given by Lemma 3.1,

Sy (f, @) =Tr (51 (f. @),

S'(®@) = 85 (0, @)
respectively.

Remark 3.2. Let B, By and B; be Banach spaces, By and B; reflexive. let
i : Bp — B be a compact and linear map and j : B — B an injective bounded
linear operator. For T finite and 1 < p; < 00,7 =0, 1

d
W= {UELPO (0,7 By) : E(joz'ov) e L™ (O,T;Bl)}

is a Banach space under the norm |[v[| 40 7,5, + |4 (joi Ov)HLm(o,T;Bl)' A
variant of an Aubin-Lions “s theorem (for a proof see [10], p. 57 or Lemma 3 in
[6]) asserts that if V' C W is bounded then the set {iov :v € V} is precompact
in LP0 (0,T; B).

We will apply this result to B = L?(09Q), By = H' (Q) and B; = H' (Q)".
The map i is the trace map, j : L? (92) — H' (2)" is defined by

(7(9), 1) gy (o) = /aQ tr(h) g, g € L? (0Q)

and pg = p; = 2. Hence W above is a special case of W in (11) for (¢o,¢1) = (0,T)
which is naturally isometric to the space W of (40).H

Lemma 3.3. i) For | > 0, S! and S} are bounded linear operators and S} is
also compact

ii) If f € L%(Q xR) and ® € L% (092 x R) are nonnegative and if either f # 0
or ® # 0 then essinfqyr S! (f, ®) > 0 and essinfaqxr Sb (f, ®) > 0. Moreover,
if ® >0 then essinfapgxr S' (®) > 0.

iii) St is a bounded, positive, irreducible and compact operator on L2 (0 x R).

Proof. For f € L2 (2 xR) and ® € L% (09 x R) the T periodic solution of
(42) is given by (43) with uo given by (44). Remark 2.6 gives

el < € (1022 iy + 12012 o) + 0l 20y ) -

Rev. Un. Mat. Argentina, Vol 46-2



86 T. GODOY, E. LAMI DOZO AND S. PACZKA

So, to see that S! is a bounded operator, it is enough to obtain see that

l[uoll2(q) < ¢ (Hf”L%(Qx]R) + ||‘I’|\L2T(anR)) (45)

(for the rest of the proof ¢ will denote a positive constant independent of f and @,
non necessarily the same at each occurrence, even in a same chain of inequalities).

Let v (t) = fg Ur4r, (t,7) Aro (7). Thus v solves (L+k)v = fin Q x (0,T),
(AVo,v) +1lv =P on 002 x (0,T) and v (0) = 0. Since

1A z,all 207,17 ()7) < € (||f||L’f‘F(QxR) + H(I)HL%(BQ><R)>
(27) (applied to this problem and used with ¢ty = 0 and ¢t = T') gives

1 5 T
310l < [ (A ()06 e oy 8

<c <||f||L2T(Q><R) + H‘I’HL;(anR)) HUHL?(O,T,HI(Q))

2
< ¢ (Il zaxmy + 190 3 o))

the last inequality by Remark 2.6. So

lo (D)l 2@y < € (113 g + 190 23 0m ) -

Now,

T
/ Uri(T,7)Apa (7)dr
0

L2(Q)

T
/o T UL ey (T,7) Ao (1) d <y (D)2

L2()

and so

T
/ Upi(T,7) ANy (T)dr
0

<c <||f||L2T(Q><R) + H(I)||L2T(8Q><]R)) . (46)
L2(Q)
By Lemma 2.5, I — U, (t,7) : L?*(Q) — L*(2) has a bounded inverse, and so
(44) and (46) give (45). Then S! is bounded and this implies the boundedness,
first of S%, and then of S'.

To see that S} and S! are compact, we consider a bounded sequence {(f,, ®,)} C
L% (R; L? (Q)) x L% (R; L? (0€2)) . Then, from Remark 3.2 { S} (f,, ®,,) } is bounded
in W, so {Tr (S{ (fn,fbn))} has a convergent subsequence in L2, (IR;L2 (89))
From S'(®) = S} (0, ®) we have that S! is also compact.

Suppose now that either f > 0 or ® > 0 and let ug be given by (44). For
d > 0. Lemma 2.13 (iv) gives essinf U ; (¢,0)ug > 0 for § <t < T + ¢ and, by
Lemma 2.12 (i), we have Up; (.,0)ug € C (2 x (6,7 4 6)) . Then U (.,0) ug has
a positive minimum M on Q x [5, T + §]. Now,

t
SU(F,®) (t) = Upi (£,0) ug +/ Upi (b7) Ay (7) dr > Upy (£,0)ug > M
0
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for t € [0, T + 6] and so, by periodicity, St (f,®) > M. Since S} (f,®) = Tr(SL(f,
®)) and S* (®) = Tr (Sl (0,®)) we get that Sl (®) > M and also that S! (®) > M.
Then (ii) holds and S! is irreducible.®

Lemma 3.4. lim;_, HSlH =0.

Proof. For | > 0 consider ® € L2 (02 x R) and let u = S} (0,®). Let u; =
SL0,2T), ug = S1(0,7) with @7 = max(®,0), &~ = max(—®,0). Thus
up >0, up >0 and u = uy — us.

Along the proof ¢ will denote a positive constant independent of f and ® (non
necessarily the same even in a same chain of inequalities). Since Lu; = 0 in
Q xR, (AVuq,v) +lup = ®T < |®| and uy is T periodic, Remark 2.6 gives
0<u; <SL(0,|@). So

||u1HL§,(Q><]R) < HulnL%(]R,Hl(Q)) =c HSi (07 |(I)|)||L%(]R,H1(Q))

< cl|®ll Lz v, L200)) -

and a similar estimate hold for us, and then also for uw. Now, u solves Lu = 0 in
Q xR, (AVu,v) +lu = ® on 092 x R and w is T periodic. Then, from (27) used
with tg =0 and t =T we get

1|s (@) (47)

_ lu?
HLz(an(QT)) /{)QX(QT)

= / ud — / [(AVu, Vu) + (b, Vu) u + agu?]
o0 x(0,T) Qx(0,T)

- / [(AVu, V) + (b, Vu) u + aou’] (48)
Qx(0,T)

= f/ <A <Vu+ —A” 15) ,Vu+ lA*lb> +/ {<1A’1b,b> - ao} u?
ax( 2 ax(or) L\4
<[[(34750)

the last inequality by Remark 2.6. Lemma 3.3 (iii) and Remark 2.6 give also

Now

2 2
/ u” < e[z mxon) -
Loo (2% (0,T)) /2% (0,T)

2
/ 0 <l 2 o 00 190 2o 020y < € N0 000 0.1
o0 x(0,T)

Thus ! HSl ||L2(dQ><(O ) S¢ ||(I)|‘L2(8§2x(0 7),) and the lemma holds.®
We will use the multiplication operator M¢ given by
M (®) =(®, C€LF(OUxR), ®c L2 (00 xR). (49)
For ¢ € L (092 x R) and ® € L2 (952 x R) let us observe that u € W satisfies
Lu=01in Q x R, (50)

(AVu,v) +lu=(Tr (u) + P on 9Q x R

(in the sense of the definition 2.1) if and only if for each R € R it satisfies Lu = 0
in xR, (AVu,v)+ (I + R)u=((+ R)Tr (u)+ P on 902 x R, i.e., we can "add”
Ru to both sides in the boundary condition of (50).
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Lemma 3.5. i) For each R > 0 there exists lyg = lo (R) such that for 1 >l
and ¢ € LF (0 x R) such that ||§||L%O(BQX]R) < R the problem (50) has a unique

solution w € W for all ® € L% (092 x R). Moreover, it satisfies essinfoxgu > 0
if ®>0.

it) For such R, | and (, the solution operator ® — w is a bounded linear
operator from L% (0Q x R) into W whose norm is uniformly bounded on ¢ for

||<||L°T°(anR) <R
Proof. Let ¢ € Lg (09 x R) such that ||§||L%O(SQX]R) < R. By Lemma 3.4 there

exists lp = lp (R) > 0 such that HS”RH < 4 for I > ly. For | > Iy (R) we have
| S My g|| < 4 and so I — S"™7 M, i has a bounded inverse. If u € W solves
(50), it solves Lu = 0 in Q© x R, (AVu,v) + (I+ R)u = ((+ R)Tr (u) + ® on
092 x R and so
Tr (u) = SHE (Mey g (Tr (u) + ®)) i Tr (u) = (T — ST M g) " S (®).
Then
—1

w= SR (0, Mcpn (1= S RMeir) " SF (@) + ). (51)

Thus the solution of (50), if exists, is unique and given by (51).
To prove existence, consider the function u defined by (51). Tt solves

Lu=0in Q x R, (52)

(AVu,v) + (I+ R)u= (C+R) (I - Sl“’bzwﬁR)‘1 SR (®) + ® on 9Q x R

u (x,t) T periodic in T
and so
Tr(u) = S EMey g (I — S EMey )" SR (®) + S8 (@) (53)
—(I- S”RMGR)A SR (@)
Then (52) can be rewritten as
Lu=0in Q x R,
(AVu,v) + I+ R)u=(C+R)Tr (u)+ ® on 02 x R
u(x,t) T periodic in T
and so u solves (50).

Suppose now ® > 0. By (ii) and (iii) of Lemma 3.3, SiJrR and S'T are positive
operators and also essinfgyr S{*‘R (®) > 0. Thus (51) gives essinfoxru > 0
and so (i) holds. Finally, from (51) and since S+t and S!™# are bounded and
|S" My g|| < 4 and |[Mcy gl < 2R, we obtain (i) .l

We will need to introduce two news operators. For R > 0, I > Iy ((R)),
HC”L%"(BQXR) < R let

ShCL L2 (90 X R) — W, (54)
SLC L2 (9Q x R) — L2 (09 x R)
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be defined by S4¢ (®) = u where u is the solution of (50) given by Lemma 3.5 and
by Sb¢ (@) = Tr (S’i’C (<I>)) respectively.
Corollary 3.6. For R, [ and ¢ as in Lemma 3.5, S“¢ is a bounded, compact,

positive and irreducible operator.
Proof. By (53) we have

S (@) = Tr (1 (®)) = 8! (I = S"*FMyp) " S77E () + 8 (@)
and the corollary follows from Lemma 3.3 (iv)Hl.

4. A ONE PARAMETER EIGENVALUE PROBLEM

Lemma 4.1. i) For m € L¥ (02 xR) and A € R there exists a unique
= pm (N) € R such that the problem

Lu=0in Q xR, (55)
(AVu,v) + bou = Amu + pu on 90Q x R,
u(x,t) T periodic in t

has a positive solution. Moreover, for | positive and large enough let p (Sl”\m’bo

be the spectral radius of S ™Y It holds that pim (X) = (p (Sl’)‘m_bo))_l —1
(where p (S"™M710) is the spectral radius of S"m~b0).

ii) The solution space for this problem is one dimensional and for | positive and
large enough (14 pm, ()\))_1 1 is an algebraically simple eigenvalue of SHAm=bo.

iii) Each positive solution u of (55) satisfies essinfqy g u > 0.

Proof. Let R > [[Am — bol| .« (paxr) » 1et lo = lo (R) be as in Lemma 3.5 and
for I > Iy, let p be the spectral radius of S4*™~t0  From Lemma 3.6 ShAm—bto
is a compact, positive and irreducible operator on L2 (9 x R). Then, by the
Krein Rutman theorem, p is a positive eigenvalue of SH =% with a positive
eigenfunction w associated. Let u = Si”\m_bo (w) . Thus u is a T periodic solution
of Lu = 0in Q@ x R, (AVu,v) +lu = (Am —bp)u + w on 92 x R. It is also
positive because, by Lemma 3.5, Si”\mfbo is a positive operator. Since Tr (u) =
Tr (Si’J”\m*bO (w)) = SbHAm=bo (1) = pw it follows that u solves (55) for u =
—

On the other hand, if v is a positive solution of (55) then Lv = 0 in Q x
R and (AVu,v) + (bg +1)u = Amu + (u+1)u on 02 x R. So, for I > Iy (R)
StAm=bo (Ty (u)) = ﬁTr (u) . From Corollary 3.6 and the Krein Rutman theorem
it follows that ﬁ =pandsopu= % — 1. Thus (55) has a positive solution if and
only if p = % — [. In particular, this gives that p does not depend on the choice
of R and [. If v is another positive solution of (55), for R and as above, and since
Tr (v) > 0 and T (v) is an eigenfunction of SHA™~%0 with eigenvalue p, the Krein
Rutman theorem gives T'r (v) = nT'r (u) for some n € R\ {0}. Thus

v =St (AT (v) + (u+1) Tr (v))
=Sy~ (AmTr (w) + (n+1) Tr (w) = nu,
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then the solution space for (55) is one dimensional. Again by the Krein Rutmnan
theorem, (I 4 i (A)) ™" is an algebraically simple eigenvalue of St+R:Ambo,
Finally, each positive solution u of (55) satisfies

u =Sy~ (AT (u) + (u+1) Tr (u))),

and so Lemma 3.5 (iii) gives essinfoxru > 0.0

The aim of the rest of this section is to given some properties of the function
tm (A), A € R defined, for m € L¥ (02 x R), by Lemma 4.1. Each zero of p,
provides a principal eigenvalue with weight m and the corresponding solutions
in (55) are the respective positive eigenfunctions. We will prove that the map
m — fim (A) is strictly decreasing in m (Lemma 4.6) and continuous for the a.e.
convergence in m (Lemma 4.7) hence continuous in L (99 X R) . py, (A) is con-
cave and analytic in A (cf. Corollary 4.9 and Remark 4.11).

Remark 4.2. For ¢ > N + 2 let W;Tl (€ x R) be the space of the T periodic
functions on € x R whose restriction to (0,T) belongs to W' (Q x (0,T)) and

for v € (0,1) let C;+7% (092 x R) be the space of the T periodic functions on
99 x R belonging to C1+7*5* (9Q x R).

We recall that if

(27 EC’Y’A’/Q (QXR), bj et (EXR) for 1 <i,5 < N; ag ECA/’V/Q (EXR),

m, by € C577E (90 x R)

for such a =, then (cf. Remark 3.1 in [8]) the solutions u of (55) belong to
W;’l (Q x R) and so Amu + pm (N u € C’;Jrn% (09 x R) for some n € (0,1).
Thus Theorem 2.5 in [8] gives u € C*! (A x R) . W

In order to make explicit the dependence on m, L and by, we will write some-
times fim, 1,6y O ft,m,rfor the function jip,.

Lemma 4.3. Let m € LY (2 x R) and suppose that v € W satisfies

Lv=fin Q xR, (56)

(AVv,v) 4+ bov = @ + Amv + po on 02 x R,
v>0o0n xR

for some \,p € R, f € L2 (2 xR) and ® € L2 (00 xR). If f >0 and ® >0
then fim (N) > p. If in addition either f >0 or ® >0 then fim, (A) > p.

Proof. If f = 0 and ® = 0 then, by Lemma 4.1, g = p,,, (\). Assume that
either f > 0 or @ > 0. Since fm 1.0y (A) = tmto,Lbo+or (A) for all \,o € R,
it suffices to prove the lemma in the case m > 0. For R > 0 let Iy (R) be as in
Lemma 3.5 and let [ > o (||bo]| o) +1o ([[Am — bol| o). Let w = Sb=bo(£,0), and let
2= 5070, (Am 4 p+ 1) Tr (v) +®). Thus w > 0, z > 0 and, since v = w + 2,
v > z. So also T'r (v) > Tr(z). Now,

Lz=01in Q x R,
(AVz,v)y + bz =@+ (Im+p+1)Tr(v)
=_ImTr(z)+®+ImTr(v—2z2)+ (u+1)Tr(v) on 92 x R,
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then

2= ST (B AT (v — 2) 4 (u+ 1) Tr (v) > S0 (w4 1) Tr (2)) .
(57)
If & > 0 since m > 0 we have ® + AmTr (v — z) + (u + 1) Tr (v) > 0. If f > 0 then
(by Lemma 4.3) essinfoxrw > 0 and so Tr (w) > 0. Then Tr (v — z) > 0 and
thus, from (57), essinfoxr z > 0. Then T'r (z) > 0. Also, from (57),

Tr(2) > S0 (4 1) Tr (0)) = (s + 1) S0 (Tr (2).
Let p (S"*™~") be the spectral radius of S"*™~t0. Remark 2.14 (ii) gives ﬁ >
p (ShAm=bo) — m and so iy, (A) > p.H
Lemma 4.4. Suppose v € W satisfies
Lv=fin Q xR, (58)
(AVv,v) 4+ bgv = @ + Amv + po on 9 x R,

ess inf v >0
QxR

for some \,p € R, f € L2 (2 xR) and ® € L% (00 xR). If f <0 and ® <0
then i (N) < p. If in addition either f <0 or ® <0 then fim, (A) < p.

Proof. Consider first the case when A > 0 and m > 0. For R > 0 let lo (R) be
as in Lemma 3.5 and let [ > lo (|[Am — bo|| ) . Let w be the T' periodic solution of
Lw=fin QxR, (AVw,v)+ (bg + 1) w = 0 on 9 x R and let z be the T periodic
solution of Lz = 0in QX R, (AVz,v)+(bg + 1) z = O+ Amv+ (p + 1) v on 92 x R.
Thus v = z + w and, by Lemma 3.3 (iv), w < 0. Then 0 < essinfoxrv < v < z
and so also 0 < Tr (v) <Tr(z). Let

= Om+1+pN)(Tr@w)=Tr2)+(u—p\)Tr(v)+ .
Since z is T periodic and
Lz=01in Q x R,
(AVZ, ) + (bo+ 1)z = Amz+ (u(N) +1) 2+ ® on 9Q x R

we have T'r (z) = StAm=bo ((,u N +D)Tr(z)+ ‘5) . Thus

1 1 ~
———Tr(z) = §HAm~bo <Tr z) + 7@) 59
) OIS (59)
If 4(A) > g then @ < 0 and so SLA™=bo (Tr(2)) > p (SHAM=0) Tr (2) where
p (ShA™=bo) is the spectral radius of S % Thus, Remark 2.14 (ii) gives m X
Tr(z) = SHAm=to (Tr(z)) and so ShAm—bo (5) = 0. Then, by Lemma 3.3 (iii),
® = 0. This implies ;2 = () in contradiction with the assumption g (\) > .
Thus () < u.
Assume now that either f < 0 or ® < 0 and that g (A\) < p. If f < 0 then
supw < 0 and so 0 < v < z and 0 < Tr(v) < Tr(z) This implies & < 0

and if ® < 0 the same conclusion is obtained. So, in both cases, (59) gives now
St-Am=bo (Tr (2)) > p (S"*™~%) Tr (2) in contradiction with Remark 2.14, (ii).
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Since for o € R we have pr, m.p, (A) = 1L, m+o.bo+or (A), the case A > 0 and m
arbitrary follows from the previous one and, finally, the case A < 0 follows from
the case A > 0 by considering the identity pim, (A\) = p—m (—A) .1

Let Lo be the operator defined by Lou = %% — div (AVu) + (b, Vu) . We have

Corollary 4.5. 1) Suppose ag > 0. Then pim.1.bo (A) > fhm Lo.bo (A) for all
AeR.

ii) Suppose by > 0. Then pim. 1.b, (A) > tim,n,0 (A) for all A € R.

Proof. let u be the solution of (55). Thus

Lou = —agu in Q x R, (60)
(AVu, v) + bou = Amu + oy m.r (A) won 0Q x (0,T).

If ap > 0, since essinfu > 0 we have —agu < 0, then Lemma 4.4 gives (i). If
bp > 0 then —boT'r (u) < 0. Since

Lu=0in Q x R,
(AVu,v) = —bou + A + fim. 1.b, (A) u on 92 x (0,T),

(ii) follows again from Lemma 4.4.H

Lemma 4.6. For my,my € LF (0 x R), my < mo with my # mo imply
tmy (A) > iy (A) for all X >0 and pim, (A) < fim, (A) for all A <O0.

Proof. Suppose A > 0 and fim, (A) < pm, (A). Let uy be a positive and T
periodic solution of

Luy =0in Q x R,
(AVuq,v) 4+ bour = Amyug + fim, () uq

Since Ay + fim, (A) w1 < Amotg + fim, (A) up on 90 x (0,T) and ess infoyp ug >
0, Lemma 4.4 applies to give fim, (A) < fim, (A) which contradicts our assumption
tmy (A) < fimy (A). The case A < 0 follows from the case A > 0 using that
fn (A) = p—gm (—=A). B

Lemma 4.7. Let {m,} be a bounded sequence in L3 (02 x R) which converges
a.e. to m in O x R. Then limy, o0 fim, (A) = fm (A) for each X € R.

Proof. To prove the lemma it suffices to show that for each {m,,} as in the state-
ment of the lemma there exists a subsequence {my,, } such that limy_o fim, (A) =
fm (A) -

Let M be a positive number such that |m,,| < M for all n and let A € R. Thus,
by Corollary 4.5,

par (A) < iy, (A) < o (A) - (61)
Let u,, be the positive T periodic solution of
Lu, =0in Q x R, (62)

(AV U, V) 4 botir, = AMptin + fim,, (A) un
normalized by ||Tr (un)”LzT(an]R) = 1. We observe that { A\, uy + fim,, (A) up} is

a bounded sequence in L2 (9Q x R) and so, by Lemma 3.3 (i), {u,} is bounded
in W. Thus {u,} is bounded in L2. (R, H* (%)) and {(joiou,)'} is bounded in
L3 (R, H* (Q)") where i : H' (Q) — L? (9Q) x L (Q) and j : L* (8Q) x L*(Q) —
H' (Q)" are the linear maps defined in Remark 3.2 Then there exists a subsequence
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{un, } that converges in L2 (99 x R) to some u. From (61), after pass to a further-
more subsequence, we can assume also that limy_.cc fim,  (A) = p for some p € R.

Thus {)\mnkunk + fm,,, (A) unk} converges in L2 (992 x R) to Amu + pu. Since

Uy = S5 (Amip iy + fim, (A) u,) and S5 is continuous we obtain that {u,,, }
converges in W to S5 (Amu + pa) . Tt follows that u = S5~ (Amu + pu) i.e.,
that u is a T periodic solution of Lu = 0 in  x R, (AVu,v) + bou = Amu + p in
00 x R. Since u,, > 0 and {Tr (un,)} converges in L2 (9Q x R) to u and since
(|7 (u”k)||L2T(8Q><R) =1 we get w > 0. Then p = i, () .H

Corollary 4.8. For each A € R the map m — i, (A) is continuous from
L (09 x R) — R.

Corollary 4.9. pu,, is a concave function.

Proof. Choose a sequence {my,} in C (00 x R) that converges a.e. to m in
0Q x R and such that [|m;[|_ < 1+ [m]|, for all n. By ([8], lemma 3.3), each
lm,, is concave and the corollary follows from Lemma 3.8.H

Let B (L% (09 x R)) denote the space of the bounded linear operators on
LZ (00 x R) and for p > 0, ¢ € L¥ (0Q x R), let B,(¢) be the open ball in
L (09 x R) with center ¢ and radius p.

Lemma 4.10. Let R > 0 and let ly =l (R) be as in Lemma 3.5. For 1 >l
the map ¢ — SH~P%¢ s real analytic from Bpg (C) into B (L% (92 x R)) .

Proof. Let | > ly, (o € Bgr (0) and ® € L% (89 X R) For ¢ € BR—ll(oH (Co),
the solution u¢ = SH¢ (®) of (50) is T periodic and solves Lus = 0 in Q x R,
(AVue, v)+(bo + 1) uc = @+Tr (ue)+(¢ — o) T'r (u¢) on 02 xR, Then T'r (u¢) =
Shéo=bog 4 §hco=bopf. o Tr (u¢), i.e., we have

§h¢—bo — glCo—bo | ShCo*boMC_COSl:C*bO (63)

Also, ||Sl’<°_b0M<_<O|| < |I< = Goll HSl’CO_bOH < 1 and then, from (63), ||Sl’<_b°H <
2 ||Slv<0_b0|| . An iteration of (63) gives, for n € N,

§h¢—bo _ gl.Co—bo zn: (Sl’coibOMC—co)j 1 GlCo—bo (MC—COSLCOibO)nJrl

j=1

Since ||Sl’<°_b°M<_<OH < 1 we have lim,_. HSZ’CO_”O (MC_COSZ’CO_”O)"HH =0.
Thus
§heto = ghoo—bo Y™ (ShCobopg. () = ghcobo (1 — ghtobops. )T

=1

Since ¢ — M¢_¢, is real analytic the lemma follows.H
Remark 4.11. Corollary 4.9 implies that ., is continuous. So, taking into
account Corollary 3.3 and Lemma 4.10, ([3] lemma 1.3) applies to obtain that
tm (A) is real analytic in A. Moreover, a positive solution uy for (55) can be
chosen such that A — uypqxr is a real analytic map from R into L2 (09 x R).
Observe also that if ag = 0 and by = 0 then i, (0) = 0 and that, in this case,
the eigenfunctions associated for (55) are the constant functions. Finally, for the
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case when either ag > 0 or by # 0, applying Lemma 4.3 with v = 1, A = 0 and
=0 we obtain that p,, (0) > 0.1
Remark 4.12. Assume that ag = 0, by = 0 and for [ large enough, consider

the spectral radius p; of the operator StA™m=bo : L2 (9Q x R) — L2 (0Q x R).

Since & = 1 is a positive eigenfunction associated to the eigenvalue %, the Krein

Rutman Theorem asserts that p; = % and that there exists a positive eigenvector
U € L2 (09 x R) for the adjoint operator (Sl“\m’bo)* satisfying (Sl“\m’bo)* U=
W. Moreover, such a ¥ is unique up a multiplicative constant.ll

Lemma 4.13. Suppose that ag = 0, by = 0 and let S“ ™= and U be as in
remark 8.7. Then u, (0) = — <(‘I\;Zl>>.

Proof. For A € R, let uy be a solution of (55) such that A — uy is real analytic
and uy = 1 for A = 0. Since

Luy =0o0on Q2 xR
(AVun,v) + (bo + 1) ux = (Am + pm, (A) + 1) uy on 02 x R
uy (z,t) T periodic in ¢

we get T (uy) = ASEA™=00 (mTr (uy)) + (pm (A) + 1) SHA™=b0 (T (uy)) and so
AU, mTr (un)) + pim (A) (¥, Tr (uy)) = 0.
Taking the derivative with respect to A at A = 0 and using that u,, (0) = 0 and
that uy = 1 for A = 0, the lemma follows.l
5. THE BEHAVIOR OF [i, AT £00

We fix m € L (0Q x R), 9Q seen as compact Riemannian C? manifold of
dimension N — 1. For p > 0 fixed in R, we will find a closed curve I € Cp (R; 9Q)
of class C? and § = § (p) such that the tube

Brs = {(2,1) € 92 x [0,T] : 2 € expriy) Darc | (64)
satisfies
1 b
_— mdadtz/ sup m (z,t)dt — 2p. 65
wN,16N4 Brs a :cE@I?Q ( ) P ( )

To do let us introduce some additional notations to explain expp; (D(;,p(t)). For
x € 9N let T, (02) denote the tangent space to 92 at x as a subspace of RY with
the usual inner product of RV, This Riemannian structure gives an exponential
map exp, : Ty (092) — 09 and an area element do (). For each X € T, (09),
exp, X = n (1) where 7 (¢) is the geodesic satistying n (0) = z, ' (0) = X. We have
also the geodesic distance dyo on 9Q and geodesic balls B, (x), x € 99, r > 0.
We denote d the distance on 9 x (0,T") given by

d((z,1),(y,5)) = max (dq (z,y) , [t — s[) (66)

and, for (z,t) € 902 x (0,T) and r > 0 we put B, (z,t) for the corresponding open
ball with center (z,t) and radius r. So we have that B, (z,t) = B, (x)x(t —r,t + 1)
is a cylinder. Concerning the measures do on 99 and dodt on 9Q2x (0,T') we denote
indistinctly |E| the measure of a Borel subset of 9 or of 92 x (0,T).
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For x € 9Q let {X1,...., Xny_1.} be an orthonormal basis of T, (0€2) and
let ¢, : {z€ RN |z| <r} — O0Q be the map defined by ¢, (21,...2n-1) =

exp,, (Z;V:_ll z; X ]x) . From well known properties of the exponential map there

exists € > 0 such that ¢, : {z€ RN"!:|2| <r} — B, (z) is a diffcomorphism
for 0 < r < e, x € 90 For such r and z € 9N let y — (21 (y), ..., 2v-1 (¥))

9 Dzn—1

be the coordinate system defined by ¢, on B, (z), let {8%1, L} be the

0z |y’ 0z; ly

y € B, (z) and let (g;; (y)) be the (N —1) x (N — 1) matrix whose i, j entry is
gij. (y) . Finally, we put wy_1 for the area of the unit sphere S¥—1 c RV,

Lemma 5.1. i) For x € 092 it holds that lim,_.¢ wlfrli(ﬁv)‘*l
x € 0.

it) do is doubling, that is |Ba, (z)| < ¢|By (x)| for some ¢ > 0 independent of
x € and r > 0.

i1) Let E C 0Q x R be a Borel set. Then lim|g|_o, (z,1)cB % =1 a.e.
(x,t) € E (the limit taken on balls B in 9 x R)

Proof. To obtain (i) we consider an orthonormal basis {X7 ;,..Xn_1.} of
T, (0Q) and z € RN~1. For ¢ small enough and 0 < r < & we have

corresponding coordinate frame, let g;; (y) := < - >, 1<4,j<N-1,

= 1 uniformly in

M_1:;/< (f(z,2) = 1)dz...dzy—1

wy—1rN 1 wy—1rN 1

where f (z,z) == det? (gij (expx (Z;V:_ll Zij,x))) . Since (z,2) — f(z,2)—1is

uniformly continuous on 99 x Dy and f (x,0) = 1, x € 992 we obtain (i) by taking
limits.

As O has finite diameter for dgo we have (ii).

Finally, dodt is also doubling in 02 x R and so (iii) holds (cf. e.g. [11]).H

Lemma 5.2. For each p > 0 there exists § > 0, a partition {tg,....t,} of [0,T]
and points x1,...., Ty in 0Q with x, = x1 such that {Bs (x1) X (ti—1,ti)}1<i<p
a family of disjoint sets and o

1

T
_ m(x,t)da(x)dtZ/ ess sup m (z,t)dt — p
wal(SNil /U”_lBg(x,‘,)X(ti_l,ti) 0

zEIN

Proof. Without lost of generality we can assume that ||m||,, < 1. For t € [0,T] let
m (t) = esssup,cpq m (z,t) and for n > 0 let

Em) ={(z,t) € 92 xR:m(z,t) >m(t) —n}. (67)

and let E (n)? be the set of the density points (in the sense of Lemma 5.1, (iii))
in E(n). We fix @ € (0,3). For k € N, let E(n)(k) be the set of the points
(x,t) € E (n)d such that

1By (y,8) N E ()]

>1—«
|BP (y75)|
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for all open ball B, (y,s) C 092 x R containing (z,t) and with radius p <
Observe that E (n)® c E () for k < s and that (from Lemma 3.16 (iii) E (n)
Uken E (n)(k) . Thus limg_, o0 ‘71’ (E (n)(k))‘ = |7 (E(n))| =T where 7 (z,t) :=t.

Given ¢ > 0 we fix £ € N such that ‘71’ (E (n)(k))‘ >T—c. ForneNletl=L
and let {to,....t,} be the partition of [0,T] given by t; = 2il.
Let I = {z € {1,2, o} (09 X (tiq, ) N E ()™ £ @} and let I¢ = {1,2, .n}\[.
Denote 6 = -—. For ¢ € I\ {n} let (z;,t}) € (0Q X (t;—1,t:))NE (n )(k) and let Q; =
Bys (z;) % (tz 1,ti) and, for j € I°\ {n} let x; € 0Qandlet Q; = Bs (xj) x (tj—1,t;) .
We also set ,, = 1 and Q,, = Bs (v5,) X (tn—1,tn). Since ‘7‘( (E( )(k)>‘ >T—¢

we have >, e (8 —ti-1) <e.
Consider the case: € I. We have fQ m (z,t) do (z)dt = meE(n) m (z,t) do (x) dt+
fQiﬂE(n)“ m (QC, t) do ((E) dt. AlSO,

|| =

/ m(x,t)da(x)dtz/ 7 (1) do (2) dt — 1|Qi N E ()]
QiNE(n)

QiNE(n)

> [T oA E@)I 1@+ [ @ 01(@) ) d-nle

i—1

> Qi N E ()] — |Qu| + B m/ (t) dt — 21 |Bs (x:)]

Since (z;,t7) € E(n )( ) and (x,tF) € Bs (x;) X (tﬁ;"’l — ], bt —l—l) we get
|Q:NE(n)] > (1 —a)|Q;]). So, the above inequalities give

/ m (1) do () dt > <—2l(a+n)+/i m(t)dt> By (2)].
QiNE(n) ti—1

Moreover, [, pom (o,8) do (¢) dt < [(Q: N E )] = |Qil — Qi NE ()] <
2la|Bs (x;)| . Thus

m (z,t) do (z) dt > <—21 (2a+n) + /tt ﬁl) | Bs ()] - (68)

Qi

Also, for j € I€,

/ m (1) do (x) dt > — |Q;] = —21|Bs ()] (69)

J
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Fori e Iletg; (0) = Bsw)l 1. From (68) and (69) we have

WN—léN_l

/ m (x,t) do (x) dt
Uit Qi

= Z m (z,t) do (z) dt + Z m(x,t)d0(x)dt+/ m (z,t)do (z) dt

ier\{n} " Qi icio\{n}” Qi
t; T
> Z (/ m (t)dt — 21 2 + 77)) |Bs (zi)| — Z 2ad |Bs (z3)] — — | Bs (zn)]
ie\{n} \7ti-1 icre n

T
=wy_16" ! (/ () dt —
0

/ ) di— 204 (1) (20 + ) — 204 (I9) a)

ieIe\{n} ti-1

,wal(;Nle

n

tg

Fon 6N Z i (9) (—2[ 2a+n) + / m (t) dt) — Z 2ale; (0)
iel\{n} ti—1 iere\{n}
cwn oV L (6).
n

Hence
T
/ m (z,t) do (z) dt > wN,léN_l/ m (dt)
UL, Qs 0
N-1 T
—wN_10 <€+604+T(2a+77)—g>

T
—wn_16V 7! max |g; (6)] <2a+ n+71 + ae + —) .
1<i<n n

where # (I) and # (I¢) denote the cardinals of I and I¢ respectively. Since 6 = %
and Lemma 3.11 gives that lim,, .. maxi<;<y, |€i (%H = 0, taking n large enough

and «a, 7 and ¢ small enough the lemma follows.H

For a T periodic curve I' € C? (R,92) and § > 0, let Br s defined by (64). We
have

Lemma 5.3. Assume that 02 is connected. Then for each p > 0 there exist
I'e C2(R,09) and § > 0 such that

1 T
_ m(x,t)d(x)odt > ess sup m(x,t)dt — 2
le(WI/BM (@t d(e)odt > [ ess sup ma.t)dt =2

Proof. Let p > 0 and let zq,...,z,, to,...,t, and § be as in Lemma 5.2. For
0 < andi=1,...,n—1lety:[t; —0,t+6 — 0 be a C* map satisfying

~i(ti —0) = zj—1, vi(t; +0) = z; and %(j) (t) =0for j = 1,2 and t = t; + 0.
Let T' € CZ (R, 09) be defined by I' (t) = z for t € [to,t; — 0], ['(t) = =, for
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t € [t, +0,t,) and by
I'(t)=a;-1 fort € (ti—1+06,t; —0),
L (t) = (t) forte (t; —06,t;+86),
I'(t)=a; forte (t; +0,t;41 —0).
fori=1,...,n — 1. For 6 small enough I" satisfies the conditions of the lemma.l
Corollary 5.4. Assume that 0 is connected and let P (m) be defined by (6).

If P(m) > 0 then for § positive and small enough there exists T € C% (R, 09)
such that [p m > 0.

Remark 5.5. Let I' € C% (R,RY) as in Lemma 5.3. Since the map ¢ —
v (T (t)) belongs to C*+? (R, RY) there exists a C'™ and T periodic map ¢ —
A(t) from R into SO (N) such that A(t)v(I'(0)) = v(T'(¢)) for t € R. Let
{X1,0, .-, Xn_1,0} be an orthonormal basis of Tr(g) (9€2) and let X () = A (t) X0,
for j=1,2,...N—1,t € R. Thus each X; is a T periodic map, X; € C1T7 (]R, RN)
and for each ¢, {X; (t),..., Xy_1 ()} is an orthonormal basis of Tr( (952). For
z € RN and t € R we set

x(z,t) (70)

=oxproy | D HXi ()| —aviw [eor | DS mX @],
1<j<N-1 1<j<SN-1

and

A(z,t) := (z(2,t),1). (71)
For § > 0 let Dy = {z€RV"':|z] <d} and Qs := Ds x (0,8) x R. Thus,
for § positive and small enough A is a diffeomorphism from s onto an open
neighborhood W5 € RY x R of the set {(T'(¢),t) : t € R} satisfying

A(Qg) ZWaﬂ(QXR),

A(Qs) =WsN (02 xR),

A (Ds x {0} x {t}) = By (T (9) x {t}

A 0.8) = (T (t).,1),

A (.,t) is T periodic in t.

Moreover, A : Qs — W;s and its inverse © : W5 — Qs are of class C*! on their
respective domains. For d, A, ©, W as above, with © (z,t) = (01 (,t), ..., On41(z,
t)) we have O x4 (x,t) =t and also (cf. (3.13) and (3.14) in [8])

VOpy = —gv on Ws N (09 x R)
for some g € C1 (W5 N (99 x R)) satisfying g (z,t) # 0 for (z,t) € W5 N (99 x R)
and g(T'(t),t) = 1 for t € R. Moreover, if A’(T'(t),t) denotes the Jacobian
matrix of A at (I'(¢),t), from the definition of A and taking into account that
the differential of exp, at the origin is the identity on T (092), we have that
det A’ (T (t) ,t) =1 for t € R.

Lemma 5.6. Assume that 02 is connected and that P (m) > 0. Then limy_, o
tm, (A) = —o0.

Proof. Let {my} be a sequence in C$° (02 x R) that converges to m a.e in
9Q x R and satisfying |[m,||,, <1+ ||m||,, for n € N, let {L(™} be a sequence
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of operators as in Lemma 2.8 and let A(™ be the N x N matrix whose i, j entry

91 1L
az(-;l), let {bo(")} be a sequence in Wq’T“’ % for some ¢ > N + 2 and such

lim,, o0 bo™ = by a.e. in ON x R.

For § positive and small enough let T" be as in Corollary 5.4 and let Qs, W5, A
and © be as in Remark 5.5.

For (s,t) € Qs let

~(n 00;
a7 (st = 30 aw (A1) 5ot (A, 0) 52 (A, ),
1<l.r<N r
let B (s,t) = (EW (5,8) ooy B (s,t)) with
~(n 00; 00;
bV (s,1) = L (A (s, )+ D be (A(s1) 52 (A (5.1))
1<r<N r
Aty 90, 90;
- X e (s 0) G (A1)
1<, r<N
0?0,
- ij (8,8) 55— (A (s,1))
IS%:SN 8xi8xr

and let A(™) (s,) be the N x N symmetric and positive matrix whose (i, j) entry
is Zigy) (s,t), let Zig") be defined on Qs by ag = ag o A, let m,,, by be defined on
Ds x {0} x [0, T] by m,, =m0 A and 50 =DbpoA. For A > 0 let u,, » be a positive

and T periodic solution of
L(")um)\ =01in Q x R,
(ATt 5, )+ 0 3 = Mt 3 + i, 0 (V) 3 01 O x R

normalized by [Jun |y, = 1. Let w, 5 € C*! (Qs) be defined by @, = up ) 0 A.
Then, a computation shows that
LM, 5 =0in Qs x (0,6) x R,
<Z(”>Vﬂnw 6N> +5§)")ﬂ,m = /\’I’?Lnﬁn,,\ + Hom,, L) ()\) ﬁn,,\ on Q5 X {0} x R
Let G € (0,6) (to be chosen latter), let h € C>° (R) such that 0 <h <1, h(¢) =1
for( <d—0,h(()=0for ( >dandlet G € C*> (RN+!) be defined by G (z, s,t) =

h(|(z,s)|) for (z,s,t) € RN~1 xR x R. Finally, we set § = go A and, for a definite
positive matrix P € My (R) and w € RY we put ||w|p := (Pw,w). With these
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notations we have, as in the proof of Lemma 3.11 in [8],

sy O [ (6%5) (€ 0.1)det (72)
D;sx(0,T)
<ox [ (@) ot das
Dsx(0,T)

G 2

+ / H(VG+—A<”>b<">) +a (s,) G| (s,t) dsdt.
{sERN:|s|<8:}x(0,T) 2 A (s,8)
Also

N—-1

/ m(z,0,t) |det | gij | expr Z 2; X (t) dzdt = m > 0.
D5><(0,T) j:1 prg

Thus, since /det (g;; (T' (¢))) = 1and z — 4/det (gij (expr(t) (Z;v:_ll 2 X (t))))
is continuous, we get st % (0,T) m (z,0,t) dzdt > 0 for § positive and small enough.
Then (for a smaller § if necessary) and some positive constant ¢ we have

/ My (2,0,t) dzdt > c,
Ds % (0,1

for n large enough. Since g is continuous on Ds x {0} x R and ¢ (0,¢) = 1 we can
assume also (diminishing ¢ and c if necessary) that, for n large enough,

/ (Mmng) (2,0,t)dzdt > ¢ and 9(2,0,t)dzdt > ¢
Dsx(0,T) Dsx(0,T)

;From these inequalities it is clear that we can pick § small enough in the definition
of G such that for n large enough

/ (G*mig") (0,0,t) dodt > ¢/2, (73)
Dsx(0,T)
/ (G*g*) (0,0,t) dodt > ¢/2. (74)
Dsx(0,T)

We have also

2
lim <VG + §A<">b<">> (s,1) dsdt
=% JBr,, 2 Am)*(s,t)
G 2
_ / <VG + —Ab*) (5,1) dsdt
Br,, 2 A*(s,t)

Rev. Un. Mat. Argentina, Vol 46-2



PERIODIC PARABOLIC STEKLOV PROBLEMS 101

so, from (73), we get positive constants ¢; and co independent of n and A such

that i1y (A) < —c1 — e for all n large enough. Also, since
ny »99

L™M1>0in Q xR,
<A<">V1, u> 0591 > Ampl — (1+ mll ) A — (1 + [[boll.) on 89 x R,

Lemma 4.3 gives 1, ) (A\) > — (1+ [Imfl ) A= (1 + llboll.) - Thus {s,, o (N}
is bounded, and so, after pass to a subsequence we can assume that {,umm L(n) ()\)}
converges to some p < —c1 — caA. Since {)\mnTr (Un,\) + Hop,, Loy (N) T'r (un)\)}
is bounded in L2 (99 x R), by Lemma 3.3 and after pass to a furthermore sub-
sequence, we can assume that {u, x} converges in W to some uy > 0. By Lemma
2.8 u satisfies Lu = 0 in Q x R, (AVu,v) + bou = Amu + pu on 09 x R. Thus
Hm,Lbo (A) = pand S0 i 1.by (A) < —c1 — co A1

6. PRINCIPAL EIGENVALUES FOR PERIODIC PARABOLIC STEKLOV PROBLEMS

Let P (m) and N (m) be defined by (6). We have

Theorem 6.1. Suppose one of the following assertions i), ii), iii), holds.

i) P(m) > 0 (respectively N (m) < 0) and either ag > 0 or by >0

ii) ap = 0, bp = 0,P(m) > 0 (respectively N (m) < 0), (¥,m) < 0 (resp.
(¥, m) > 0) with ¥ defined as in remark 3.7.

Then there exists a unique positive (resp. negative) principal eigenvalue for (55)
and the associated eigenspace is one dimensional.

proof. Suppose ag = 0, by = 0, P (m) > 0 and (¥, m) < 0. Since py, (0) =0
and, by Lemma 3.14, p/, (0) > 0 the existence of a positive principal eigenvalue
A = A1 (m) for (55) follows from Lemma 5.6. Since i, does not vanish identically,
the concavity of p,, gives the uniqueness of the positive principal eigenvalue.

Moreover, if u,v are solutions in W for (55), then, from Lemma 4.1, u = cv
on 002 x R for some constant c. Since, for [ € R, L(u—cv) = 0 on Q X R,
Bpo+1 (u—cv) = dm (u— cv) + ptim (A) (u— cv) and u — cv =0 on 9Q x R. Thus,
taking [ large enough, Lemma 2.9 gives u = cv on 2 X R.

If either ap > 0 or byp > 0 then (by Remark 3.12) gy, (0) > 0 and so the
existence follows from Lemma 5.6. The other assertions of the theorem follow
as in the case ap = 0. Since iy, (=) = p—m () and N (m) = —P(—m), the
assertions concerning negative principal eigenvalues reduce to the above.ll

Theorem 6.2. Let A € R such that fi,, (A\) > 0. Then for all ® € L2 (0Q x R)
the problem

Lu=0in Q xR, (75)
By,u = Amu+ @ on 90 x R
u(x,t) T periodic in ¢
has a unique solution. Moreover ® > 0 implies that essinfgyr u > 0.
proof. Since i, (A) > 0 for [ large enough we have p (S"*™~%) < 1 and so
, (%I — Sl’)‘m_bo)f1 is a well defined and positive operator. If w is a solution of

(75) then u = Sﬁ\’;f’fl@ so the solution, if exists, is unique. To see that it exists,
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consider

~1
w = %Sl,)\mfbo (%I o Sl,)\mb0> P.
and observe that u = SY ™% (A + 1) w + ®) solves (75). Finally, if ® > 0, then
w > 0 on 092 x R and since

w= S (T (u) + (u+ 1+ R) Tr (w)).

Lemma 2.18 (iii) gives essinfoyxru > 0.0

Let Ay (m) (respectively A_j (m)) be the positive (resp. negative) principal
eigenvalue for the weight m with the convention that A; (m) = 400 (respectively
A_1 (m) = —oo0) if there not exists such a principal eigenvalue. From the properties
of iy, Theorem 6.2 gives the following

Corollary 6.3. Assume that either ag > 0 or by > 0. Then the interval
(A_1(m), A1 (m)) does not contains eigenvalues for problem (55). If ag =0 and
bop = 0, the same is true for the intervals (A_1 (m),0) and (0,1 (m)).
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