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A B S T R A C T

Schedules of supply chains are generated with buffers to absorb the effect of disruptive events that could

occur during their execution. Schedules can be systematically repaired through specific modifications

within buffers by using appropriate decision models that consider the distributed nature of a supply

chain. To this aim, information of disruptive events at occurrence or in advance allows decision models to

make better decisions. To detect and predict disruptive events along a schedule execution, a service-

oriented monitoring subsystem that uses a reference model for defining monitoring models was

proposed. This subsystem offers services for collecting execution data of a schedule and environment

data, and assessing them to detect/anticipate disruptive events. Because of the distributed nature and

the complexity of these services functionalities, this paper presents an agent-based approach for their

implementation. This technology allows dealing with supply chain monitoring by structuring

monitoring subsystem functionalities as a set of autonomous entities. These entities are able to

perform tailored plans created at execution time to concurrently monitor different schedules. A case

study is described to try out the implemented prototype system.

� 2015 Elsevier B.V. All rights reserved.
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1. Introduction

In an integrated supply chain, the overall performance largely
depends on keeping the coordination of the schedules for
producing and distributing the goods. These schedules are
typically represented by production and distribution orders,
where each order represents a particular instance of a generic
supply process.

During the execution of the scheduled orders, significant
changes may occur either in the specification of the orders or in the
availability of the involved resources. These unplanned changes,
called disruptive events, can produce negative effects that are
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propagated throughout the supply chain affecting schedules and
their coordination [1–3].

The robust planning paradigm advises the definition of
schedules with buffers (material, resource capacity, or time) that
are capable to absorb the effect of disruptive events [4]. Some
decision models were proposed to systematise the use of these
buffers [5]. These models consider the distributed nature of a
supply chain for repairing schedules through limited and specific
modifications within the provided buffers [6]. To perform these
modifications, the mentioned decision models require being
notified on the occurrence or alerted about the possible occurrence
of disruptive events by performing a continuous monitoring of the
schedule execution.

Predictive monitoring is able to anticipate a disruptive event
when there is enough evidence of its occurrence [7]. By collecting
environment data (such as weather conditions or port congestion)
and changes in the expected availability of resources (such as
equipment breakdowns or breakage of materials), the predictive
monitoring should be able to anticipate a possible change in an
order specification. Reactive monitoring is able to detect a
disruptive event when it has occurred. To this aim, it collects
observed information on changes in resource availability and order
specifications, assessing those changes to detect disruptive events.
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Several approaches for reactive monitoring [8–13], for predic-
tive monitoring [14,15] and for both reactive and predictive
monitoring [5,16–19] were proposed. From the point of view of
data collecting capability, they can be classified into approaches for
order monitoring [5,11,16], approaches for resource monitoring
[9,14,15,18] and approaches for both order and resource monitor-
ing [8,9,12,13,19].

Monitoring systems are conceived as an extension of traditional
tracking and tracing systems [20,21] with capability to collect data
and to process these data in order to detect and/or anticipate
disruptive events. Monitoring system capabilities rely on the
monitoring process that defines the set of task to be performed for
anticipating/detecting disruptive events [22].

Given the diverse nature of supply chain operations, monitoring
processes are usually domain-specific and quite dependent on the
type of resources and supply processes being monitored. To
address this diversity in a systematic way, Fernández et al. [22]
proposes a domain-independent metamodel as a reference model
to generate monitoring processes for any kind of resources or
supply processes. This reference model defines an abstract
language that, unlike [13], allows the specification of models for
reactive and predictive monitoring based on orders, resources, and
environment data. By a set of transformation rules, monitoring
models can be automatically transformed into monitoring
processes to be performed by a monitoring system.

By using the proposed abstract language, users can represent
the monitoring process of a supply process without being aware of
the implementation technology. Each monitoring model, repre-
sented in terms of the reference model, could be also automatically
transformed into different technological languages. However, the
development of a monitoring system that implements this
approach is still an unresolved issue which involves a complex
challenge.

Based on the reference model proposed by [22], this paper
presents an approach for implementing a monitoring subsystem as
a part of an integral service-oriented architecture [23,24] for a
Collaborative Management of Disruptive Events in Supply Chains
system [25]. The monitoring subsystem can be hired by any
enterprise involved in the supply chain. To this aim this subsystem
provides a monitoring service with two main functionalities:
collection of data could affect supply process executions; and
collected data processing to detect and/or anticipate disruptive
events.

This proposal introduces three novel aspects not addressed in
previous works. First, the monitoring system is conceived as a
multiagent system composed of autonomous agents with the
ability to concurrently monitor a set of orders and resources
involved in a schedule. Since agent-oriented paradigm provides
suitable support for distributed systems and web service
implementation [26,27], the proposed agents are able to work
remotely collecting execution and environment data. Second, the
proposed monitoring system allows the definition of new
processes by just designing high-level models based on the
reference model abstract language and dynamically generate,
using a model-driven development approach, the executable
instance of the monitoring process. That is, agents, plans, and
Table 1
Approach comparative.

Monitoring features [8] [9] [10] [11] [12] 

Reactive monitoring U U U U U 

Predictive monitoring 

Monitoring orders U U U U 

Monitoring resources U U U U 

Generality of the approach 
assessment functions are created by transformations of a high-
level conceptual model. Third, by further using transformation
rules, the system is able to translate the predictive models declared
at the high level language, into implementations with a specific
tool (for instance, Bayesian network).

The remainder of this paper is structured as follows: Section 2
discusses related works. The multi-agent based architecture
proposed for monitoring subsystem is presented in
Section 3. Section 4 describes the implementation of monitoring
subsystem. Section 5 describes a case study used for trying out the
prototype system, and, finally, conclusions and future work are
presented in Section 6.

2. Approaches for monitoring systems

The research related to supply chain monitoring still has not a
body of disciplinary knowledge. It is supported by contributions
from various disciplines and applied to different domains, which
hinders to arrange an historical development of community
awareness. In addition, recent works do not imply a necessary
evolution of monitoring features, but rather they frequently refer
to particular applications with different decision tools to detect/
anticipate disruptive events in a domain.

With the purpose of reviewing related research work in a
systematic way, we classify monitoring approaches taking into
account their prediction ability (reactive/predictive) and the scope
of event sources they are observing (orders/resources). Another
aspect that this classification takes into account is the generality of
approaches considering their capability for using different
monitoring models that belong to different application domains.
Based on this classification, relevant literature related to monitor-
ing systems is reviewed. A summary of approach features is
presented in Table 1.

Winkelmann et al. [8], Basal et al. [9], Liu et al. [10], Oztemel and
Tekez [11], and Mahdavi et al. [12] present approaches focused on
reactive monitoring. Winkelmann et al. [8] present a conceptual
language for modelling monitoring processes by a set of rules
based on arithmetic ratios of order specifications and material
resource parameters. Basal et al. [9] present an approach based on
key performance indicators assessed at regular intervals to detect
material resource changes by monitoring the crude oil inventory.
Liu et al. [10] present an approach that distinguishes task status-
related events, events produced by a task, and external events, and
define a set of rules relating them. Each rule is associated to a
coloured Petri Net pattern in order to generate the monitoring
process to detect disruptive events. Oztemel and Tekez [11] define
several software agents responsible for performing different
activities for monitoring manufacturing orders. For each activity,
these agents can have different monitoring models that use
information collected through a predefined network of sensors.
Mahdavi et al. [12] develop an agent-based system for quality
control of cement production processes. The system implements a
model that receives the result of quality tests at each state of the
supply process and uses a rule-based control mechanism for
detecting disruptive events and correcting the process.
[14] [15] [16] [17] [5] [18] [19] [13]

U U U U U U U U

U U U U U U U

U U U U U

U U U U U

U



Fig. 1. Monitoring model and monitoring process: MDD transformation.

E. Fernández et al. / Computers in Industry 70 (2015) 89–101 91
Approaches such as Kurbel and Schreber [14] and Kwang-
myeong and Injun [15] considered the predictive monitoring of
orders and/or resources. Kurbel and Schreber [14] develop an
approach for anticipating disruptive events that could affect
resource availability. Resource attributes are monitored in differ-
ent supply process steps (milestones) and compared with target
values to anticipate disruptive events. Similarly, Kwangmyeong
and Injun [15] present an active data acquisition language for
predictive monitoring of resources. It is applied to predict tools
breakage by monitoring their attributes (axis displacement, tool
bending load, and tool compression load).

Although described approaches have had good performance in
domain they were implemented, decision models for system-
atising the use of buffers require information of disruptive events
either at occurrence or in advance. For providing this information,
support to reactive and predictive monitoring of schedules is
required [28,29].

Among approaches that considers reactive and proactive
monitoring, work of Zimmermann et al. [16], Xu [17] Zimmermann
[5], Ribeiro et al. [18], and Heinecke et al. [19] can be highlighted.
Zimmermann et al. [16] present an ontology-based process for
monitoring orders with high probability of undergoing disrup-
tions. The ontology includes milestones (control points), which are
defined on orders to be monitored. Based on milestones, reactive
monitoring of orders and predictive monitoring to anticipate
changes of order specifications that could produce a disruptive
event can be performed. A milestones approach also is proposed by
Xu [17], which monitors order delivery by tracking work orders
and controlling inventory levels. A disruptive event is detected
when significant deviations occur in inventory levels during
production process. Milestones are defined according to the local
production process for a specific product. Zimmermann [5]
develop an agent-based system for monitoring of orders during
schedule execution. The monitoring process implemented by the
system integrates data collected from supply chain members to
detect a disruptive event and propagate its impact. Ribeiro et al.
[18] also present a agent based approach by developing a service-
oriented architecture for monitoring internal and external
resources related to shop floor manufacturing. Each service is
implemented by a software agent instantiated at design time,
which represents a device with its specific data and its working and
fault diagnosis models. Heinecke et al. [19] present a dynamic
model to identify different states associated with a supply process
through ratios of order specifications and material resource
parameters. The model is used to simulate the knock-on effects
of a disruptive event.

The above mentioned monitoring approaches are able to
monitoring order and/or resources in a reactive and predictive
way and provide information to domain-specific decision models
that use buffers for repairing schedules, but their monitoring
processes are usually domain-specific and quite dependent on the
type of resources and supply processes being monitored. To address
this diversity in a systematic way, Darmoul et al. [13] present a
conceptual framework to support the reactive monitoring of orders
and resources, the identification of disruption effects, and the
determination of control actions. This framework defines a meta-
model to represent reactive monitoring models for different type of
supply processes. Fernández et al. [22] also propose a domain-
independent approach by developing a metamodel as a reference
model to generate monitoring processes for any type of resource or
supply process. This reference model defines an abstract language
that, unlike of the previous framework, allows specifying monitor-
ing models for reactive and/or predictive monitoring of orders,
resources, even considering environment data.

This paper uses this reference model to implement an agent-
based monitoring system that provides information to decision
models in a reactive and predictive way. In order to use domain-
independent monitoring models, this system implements a set of
transformation rules, which automatically transform monitoring
models into decision support tools and monitoring processes to be
performed by the monitoring system.

3. An agent-based monitoring subsystem

3.1. Monitoring Process

Def. 1. A schedule is a sorted set of orders and resources that
specifies the time period during which each resource is required by
each order, and its required capacity and states. It is defined by the
tuple Sch = (R, O, S, E, C) where: R is a set of resources r. O is a set of
orders o. S is a set of order specification so =< o, quantity, startTime,
endTime > that states the quantity to produce/supply and times in
which the order starts and ends. E is a set of states eo,r,t =< o, r, e, t >

that specify the required state e of resource r for order o at time t. C

is a set of capacities co,r,t =< o, r, c, t > that specify the required
capacity c of resource r for order o at time t.

Def. 2. A milestone is a control point that defines a state or time in
which a set of variables will be observed. It is defined by the tuple
m ¼ ðmt; v; OVmÞ where: mt is the milestone type (state or time); v
is the state or time value; and OVm is the set of observed variables.
Observed variables can be an order specification so; the capacity cr

or a state er of a resource; or an environment variable z 2 Z that
may affect an order or a resource.

Def. 3. A specific-platform monitoring process for each order o or
resource r involved in a schedule Sch is defined by the tuple
MoPr = (MWf, EvFu) where: MWf is the monitoring workflow;
and EvFu is a set of evaluation functions composed by reactive
evaluation functions (reacEvFv) and/or predictive evaluation func-
tions (predEvFu), which allows assessing in a reactive and/or
predictive way the possible occurrence of a disruptive event
(Fig. 1).

Def. 4. The monitoring workflow is defined by the tuple MWf = (CF,
M, A, D) where: CF is an executable language conditions for
activating each milestone m 2 M, A is a set of actions to be per-
formed in each milestone, and D a set of decisions to be made based
on result of functions EvFu.

Def. 5. A reactive evaluation function reacEvFv is a function able to
detect a disruptive event during the execution of a schedule Sch,

comparing the value of each observed variable Qso, Qcr or Qer of

the current milestone with its planned values for calculating its

variation Dso = Qso � so, Dcr = Qcr � co,r,t or Der = Qer � eo,r,t, and
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then comparing these variations with a threshold value dso , dcr or

der . This function is defined as: if (Dso� dso _ Dcr � dcr _ Der � der Þ
then {disruptiveEvent = Yes} 8o, r.

Def. 6. A predictive evaluation function predEvFu is a cause-effect

relationship function able to infer changes Dso, Dcr or Der in the

planned values of observed variables in upcoming milestones from
values of observed variables in the current milestone. This function

is defined as: Dso = f(Dcr, Der, Dcr(z 8 z), Der(z8 z) 8 r) 8 o ;

Dcr = f(Dso, z 8 o, z) 8 r ; Der = f(Dso, z 8 o, z) 8 r.

Def. 7. An independent-platform monitoring model of a supply
process order o 2 O or a resource r 2 R is defined by the tupla
MoMo = (StaticView, DynamicView) where: StaticView is an instance
of the reference model RfMo. It is generated by users using the
abstract language provided by RfMo. DynamicView is an instance of
a UML Activity Diagram (UML) [30] (Fig. 1). It includes a set of
predefined actions A, a reduced set of control nodes CN (start/end
and split/merge), a set of subprocesses SP, and a control flow
CF � (A [ CN [ SP)n. Predefined actions A are: Milestone[_]:,
CollectData(_,_), EvaluateDisruptiveEvent(_), Dis-

ruptiveEvent, and EndMonitoring; which allows defining a
milestone, collecting the value of the observed variables, assessing
in a reactive and/or predictive way the possible occurrence of a
disruptive event, notifying a disruptive event, and finishing the
monitoring process.

Def. 8. A reference model for Monitoring Orders and Resources is
defined by the tuple RfMo = (Et, Rt) where: Et is a set of entity types
that are instances of Eclass of Ecore meta-metamodel; and Rt is a
set of relationships allowed between instances of entity types,
these relationships are also instances of the Ereference class of
Ecore meta-metamodel [22].

A model-driven development approach (MDD) based on the
reference model RfMo is used to automate the process of
generating a specific-platform monitoring process MoPr from
the independent-platform monitoring model MoMo. To this aim,
the following transformations are defined.

Def. 9. Transformation T1 is defined as a set of transformation rules
tr1 that allow generating predictive evaluation function from

the static view of monitoring model, T1ðStaticViewÞ !
tr1

predEvFu.
Transformation T2 is defined as a set of transformation rules tr2 that
allow generating reactive evaluation functions from the static view

of monitoring model, T2ðStaticViewÞ !
tr2

reacEvFu. Transformation T3
is defined as a set of transformation rules tr3 that allow generating
the monitoring workflow from the static and dynamic views of the

monitoring model, T3ðMoMoÞ !
tr3

MWf (Fig. 1).

The relationship between the value of order specifications
so, capacity cr or state er of a resource r and environment variable
z is generally subjected to uncertainty. Because of this, a
probabilistic model is required to capture and propagate changes
based on the structure of the supply process. To this aim, a
specific model based on a Bayesian Network is transformated
by T1.

Def. 10. A Bayesian Network allows representing uncertain
knowledge and reasoning based on probability theory [31]. It is
defined by the tuple BNet = (X, ED, P) where: X is a set of random
variables called nodes, each x 2 X can take exclusive and exhaus-
tive values in a continuous or discrete range; ED is a set of relations
between x called edges; and P is a set of a joint probability
distribution associated to each random variable x. BNet satisfies
Markov condition if each variable x is conditionally independent of
the set of all its descendents given the set of all its parents. If BNet

satisfies Markov condition, then the joint probability distribution
associated to a random variable x is equal to the product of its
conditional distributions of all nodes given the values of their
parents. That is PðxÞ ¼

Q
8 x 2 X Pðx=ParentsðxÞÞ.

3.2. System goals

The two main functional requirements identified for the
monitoring subsystem are:

Requirement 1. Data collection, which implies system ability to
collect the value of the set of observed variables OVm associated to a
milestone m.

Requirement 2. Identification of a disruptive event that may affect
a schedule Sch, which implies system capability for processing
collected values of the set of observed variables OVm to detect and/
or anticipate a disruptive event.

In order to accomplish these requirements, a Multi-Agent
Monitoring Subsystem (MAMS) was developed [32]. It provides
services for monitoring a schedule Sch, registering a new hiring
enterprise, searching for previously defined monitoring models
MoMo, and retrieving the reference model RfMo for defining a new
monitoring model MoMo.

Def. 11. An agent is defined by a tuple AgX = (BS, PL, GO, AC) where:
BS is a set of beliefs bs; PL is a set of plans pl; GO is a set of goals go;
and AC is a set of actions ac to be performed.

Based on functional requirements 1 and 2, a set of goals/sub-
goals were defined to implement the monitoring service. Main
actions ac 2 AC and data needed for achieving these goals were
identified (Table 2).

From goals, a set of BDI (Belief-Desire-Intention) agents were
modelled (Fig. 2). In order to achieve the global goal for detecting
and/or anticipating a disruptive event that could affect a schedule
Sch, a cooperative architecture was defined where each agent is
responsible for achieving a set of sub-goals [33].

3.3. Agent specification

Agents were identified by a goal analysis taking into account:
1 – activities to be performed; 2 – natural distribution of the
architecture; 3 – agent participation of a cohesive set of sub-goals
limiting their involvement to a different stage of the monitoring
service; 4 – distribution of workload, avoiding complex coordina-
tion mechanisms.

As the internal logic of agents is dynamically created by a MDD
transformation from MoMo tailored for each o 2 O or r 2 R of Sch,
state machine diagrams are used to specify main states undergone
by an agent during its life cycle. Following, each agent is described.

Agent Order predictive monitoring (AgOpm) monitors o 2 O of Sch

to predict a disruptive event (Fig. 3). Given a monitoring model
MoMo, AgM creates an instance of AgOpm at execution time for
each order o to be monitored. AgM transforms MoMo into agent
plans PL by using rules tr3 which are performed by T3tool, i.e.

T3ðMoMoÞ !
tr3

PL. Once created, AgOpm receives the
StaticView of MoMo. Once started, AgOpm creates Decision Support
Tool (DStool) and Transformation T1 Tool (T1tool). Then, AgOpm
uses T1tool for creating the predictive evaluation functions from

StaticView of MoMo, i.e. T1ðStaticViewÞ !
tr1

predEvFu, which are used
to initialise DStool.
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Table 2
Agent goals.

Goal 1: Anticipate a disruptive event in an order o 2 O of a schedule Sch

Sub-goal Actions Involved Data
Get information of a schedule Sch Receive message Service contract identification

Get model to be monitored Receive message MoMo

Make an agent responsible for monitoring Create agent

Get agent’s plans pl 2 PL defined by the monitoring workflow MWf MDD Transformation MoMo, Transformation T3

Get evaluation functions predEvFu MDD Transformation StaticView, Transformation T1

Get values of observed variables OVm for the current milestone m Send message / Read raw data; Receive

data from the Control subsystem

Sensors to collect current values of OVm.

Anticipate a disruptive event Inference process predEvFu

Notify a disruptive event Send agent/SOA message Disruptive event

Identify the next milestone m and its set of observed variables OVm MWf

Goal 2: Anticipate a disruptive event in a resource r 2 R of a schedule Sch. (Sub-Goal, actions and involved data, are the same as that for Goal 1)

Goal 3: Detect a disruptive event in an order o 2 O of a schedule Sch

Sub-goal Actions Involved Data
Get information of a schedule Sch Receive message Service contract identification

Get model to be monitored Receive message MoMo

Make an agent responsible for monitoring Create agent

Get agent’s plans pl 2 PL defined by the monitoring workflow MWf MDD Transformation MoMo, Transformation T3

Get evaluation functions reacEvFv MDD Transformation StaticView, Transformation T2

Get values of observed variables OVm for the current milestone m Send message / Read raw data; Receive

data from the Control subsystem

Sensors to collect current values of OVm.

Detect a disruptive event Compare current and planned values reacEvFu

Notify a disruptive event Send agent/SOA message Disruptive event

Identify the next milestone m and its set of observed variables OVm MWf

Goal 4: Detect a disruptive event in a resource r 2 R of a schedule Sch. (Sub-Goal, actions and involved data, are the same as that for Goal 3)

Goal 5: Provide a monitoring model. sub-Goal: Retrieve a monitoring model MoMo; Actions: Semantic search; Involved Data: Keywords

Goal 6: Provide the reference model. Actions Send the reference model RfMo

Goal 7: Hiring monitoring service. sub-Goal: Negotiate contract and Assign contract to monitoring agent; Involved Data: Enterprise information
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When the execution of o 2 O starts, AgOpm selects an initial
milestone m. When m is reached, AgOpm requests the collection of
current values of OVm 2 m to AgM. The DStool uses these values to
perform an inference process. If a disruptive event is predicted, it is
notified to AgM which in turn notifies the hiring enterprise and the
monitoring ends. Otherwise, AgOpm selects the next milestone
m. If it is an end milestone AgOpm returns to state DStool_-

initialised until receiving a new order to be monitored. This
life cycle is repeated until the contract ends.

Agent Resource predictive monitoring (AgRpm) monitors state er

or capacity cr of resource r 2 R to predict a disruptive event. At
milestone m, AgRpm uses predEvFu to infer how current values
resource state Qer or capacity Qcr can affect the value of state or
capacity of r at future milestones. The state machine diagram for
AgRpm is the same as that for AgOpm (Fig. 3).

Agent Order reactive monitoring (AgOrm) monitors changes in
order specification so of o 2 O to detect a disruptive event (Fig. 4).
Given a monitoring model MoMo, AgM creates an instance of
AgOrm at execution time for monitoring o. AgM transforms
the MoMo into agent plans PL by using rules tr3 which are

performed by T3tool, i.e. T3ðMoMoÞ !
tr3

PL. Once created, AgOpm
receives StaticView of MoMo. Once started, AgOpm creates
Transformation T2 Tool (T2tool). Then, AgOrm uses T2tool for
creating reactive evaluation functions from StaticView, i.e.

T2ðStaticViewÞ !
tr2

reacEvFu, which are used to initialise DStool.
When the execution of o 2 O starts, AgOrm selects an initial

milestone m. When m is reached, AgOrm requests the collection of
current values of so 2 OVm to AgM. AgOrm uses reacEvFu for
analysing these values. If a disruptive event is detected, it is
notified to AgM which in turn notifies the hiring enterprise and the
monitoring ends. Otherwise, AgOrm selects the next milestone. If it
is an end milestone, AgOrm returns to state Created until
receiving a new o 2 O. This life cycle is repeated until the contract
ends.
Created

create_agent
(monitoringIn f , MoM o)

Environment
created

/create workspac e , 
T3tool, and 

communication 
interface

Monitoring request
(monitoringInformation)

Notify disruptive 
event to  Control 

subsystem and  AgN

AgM
[valid monitor 

/create work
specialize

disruptive event
notification

incoming  e
and exec

monitoring ends

contract
ends

Fig. 5. Monitoring: ev
Agent Resource reactive monitoring (AgRrm) monitors a resource
r 2 R of Sch to detect a disruptive event. Once the execution of Sch

starts, each time a milestone m is reached, AgRrm uses reacEvFu for
detecting if a disruptive event has occurred. The state machine
diagram for AgRrm is the same as that for AgOrm (Fig. 4).

Agent Sensor (AgS) collects the current value of OVm that Control
Subsystem cannot provide. AgS supplies current values when they
are required (preplanned milestones) or when it detects sensed
values have significantly changed (milestones dynamically created).

Agent Notifier (AgN) enables additional interactions with the
hiring enterprise. AgN reports, in a simple and human-readable
format, on the monitoring task progress and a disruptive event. In
order to renew monitoring contracts, AgN also facilitates
Monitoring Subsystem to communicate with the hiring interface
in order to access its services.

Agent Monitoring (AgM) fulfils a monitoring contract. Once AgC
and the hiring enterprise agreed a monitoring contract, an instance
of AgM responsible for this contract is created. Monitoring
information and MoMo are supplied to AgM (Fig. 5). AgM creates:
its workspace, T3tool, and the interface for communicating with
Control Subsystem of the hiring enterprise. When a monitoring
request from the hiring enterprise is received, depending on the
monitoring requirement (order/resource and reactive/predictive),
AgM creates specialised agents AgOpm, AgRpm, AgOrm, and/or
AgRrm by using T3tool. Once created, AgM sends StaticView,
reaching state Specialised_agent_ready. From this state, AgM
can fulfil monitoring requests that belong to the contract.

During the monitoring, AgM handles the data exchange among
AgOpm, AgRpm, AgOrm or AgRrm and Control Subsystem, AgN and
each AgS. AgM receives requests from AgOpm, AgRpm, AgOrm or
AgRrm for collecting current values of OVm and forwards them to
Control Subsystem and/or each AgS. When Control Subsystem and/
or AgSs reply with requested values, AgM receives and forwards
them to AgOpm, AgRpm, AgOrm, or AgRrm that requested them. If
AgM receives a disruptive event notification, it is sent to Control
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Subsystem and to AgN at the same time. Once monitoring ends,
AgM waits for a new monitoring request, until it arrives or the
contract ends.

Agent Model Searcher (AgMS) stores and retrieves a MoMo using
a keyword searching strategy. Monitoring service requires defining
a MoMo for each o 2 O or r 2 R of Sch. To this aim, the hiring
enterprise can either generate each MoMo based on an already
stored model in the model base, or define it from scratch by
modelling StaticView and DynamicView. For StaticView, the hiring
enterprise must request RfMo and generate an instance of it with
the particular characteristics of its o 2 O or r 2 R. For DynamicView,
the hiring enterprise must model DynamicView in a UML activity
diagram. Except for exclusive contracts, each new MoMo is
automatically stored in the model base for future uses.

Agent Coordinator (AgC) responds to incoming service requests.
It is created at system startup (Fig. 6). AgC creates: the
workspaces, the hiring interface, a model base to store RfMo, a
model base to store each MoMo, and a sensor base to store pre-
programmed AgSs. After creating AgMS, AgC reaches state
AgMS_created. From this state, AgC can receive requests for
enterprise registration, provision of RfMo, MoMo searches, and
monitoring service hires.

For an enterprise registration, AgC generates a new account
and responds with an identification to be used by the hiring
enterprise for future service access. To respond to a request from
the hiring enterprise that requires RfMo, AgC looks for RfMo in the
model base and sends it. For MoMo searches, AgC asks AgMS for a
MoMo, who searches for it in the model base using a keyword-
based strategy.

For hiring the monitoring service, AgC negotiates contract
terms such as monitoring type (order/resource and reactive/
predictive), MoMo exclusivity (MoMo is not stored for future uses),
hiring time (time lapse of the contract), values of OVm that will be
provided by Control Subsystem of the hiring enterprise, and values
that will be collected by AgSs. Once it is agreed, state
Service_contracted is reached. AgC creates an instance of
AgN and a set of AgSs from the sensor base, and afterwards it
creates an instance of AgM, which will perform the monitoring task
defined in the contract. Based on the contract and data that will be
collected by AgSs, AgC specifies two interfaces: the observed
variables interface to be implemented by Control Subsystem, and
the monitoring interface that is implemented by AgM. Following,
contract terms, interface specifications, AgSs, and AgN are sent to
the hiring enterprise. Once any of these service requests are
finished, AgC returns to state Incoming_request to wait for new
service requests.
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4. Multi-agent design and implementation

4.1. Architectural design and implementation

The architecture was implemented using JaCaMo agent
programming platform [34,35]. JaCaMo encompasses the three
main abstraction levels of a multi-agent system: agent, organisa-
tion, and environment. It allows programming BDI agents
governed by Moise organisational model, and supporting Agent
& Artefact metamodel [36]. Moise describes organisational
collaborations and addresses collective behaviour by individual
behaviour constraints [37]. Agent & Artefact metamodel allows
implementing environment-based coordination mechanisms, and
non-autonomous services and tools [38].

JaCaMo was selected since it is an operational programming
platform that includes integrated support for programming
artefacts, which facilitated the integration of non-goal oriented
functionalities such as: model-to-model and model-to-code
transformation engines to implement T1tool, T2tool, T3tool, and
DStool. Besides this facility, JaCaMo provided support for
implementing web services from WSDL (Web Services Description
Language) specification [39,40]. Although JaCaMo’s features
facilitated MASM architecture implementation, it could be
implemented by using any platform that allows implementing
BDI-agents such as Jadex [41], Jack [42], among others.

Agents were implemented by means of beliefs, rules, goals, and
plans, which represent their informational, motivational, and
deliberative states [43]. The organisation was modelled by agent
roles, missions, and normative rules [37]. The environment was
specified by artefacts and workspaces. An artefact defines a non-
autonomous first-class entity that represents a tool that agents can
instantiate, share, use, and perceive at runtime. A workspace
defines the environment topology acting as a logical container
grouping agents and artefacts [44]. CArtAgO-WS artefacts were
used for defining web services through environment artefacts
using WSDL specifications of provided services [45]. CArtAgO-WS
includes two specialised artefacts: WSInterface and WSPanel.
WSInterface provides necessary functionalities for interacting with
web services, and WSPanel allows creating, configuring, and
controlling new web services [46].

The MAMS is composed of five workspaces named Hiring,
Monitoring, Order & Resource Monitoring -performed in Monitor-
ing Subsystem-, Sensor -performed in places where data are
collected-, and Notifier -performed in the hiring enterprise (Fig. 7).
These workspaces were defined for grouping agents related to
similar monitoring tasks and agents that share environment
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Fig. 7. JaCaMo implementation.
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artefacts, and for allowing agents’ execution in the hiring
enterprise.

Hiring workspace groups AgC, AgMS, and artefacts: Hiring Web
Service that implements the hiring interface using CArtAgO-WS;
reference model that stores RfMo codified in Ecore [47];
Monitoring Model Base, a software interface to the model base
that stores each MoMo; Sensor Base, a software interface to a
sensor base that stores a set of pre-programmed AgS, each AgS
includes a tailored interface that allows communicating with
physical sensors, software systems, or a human interface; and
Agent Creator, responsible for modifying the code of AgS to add
communication parameters that allow them to communicate with
the proper AgM.

Monitoring workspace groups AgM and artefacts: Monitoring
Web Service that implements the monitoring interface using
CArtAgO-WS; Monitoring Data Interface, implemented using
WSInterface-like, allows AgM to communicate with the web
services implemented by Control Subsystem; and T3tool, respon-
sible for generating agent’s plans. Using T3tool, a MoMo is
transformed into the metamodel of AgentSpeak plans using
ATL,5 i.e. T3ðMoMoÞ !

tr3
AgentSpeakPlans and following it is trans-

formed into AgentSpeak plans by using Xpand6 to be interpreted
by JaCaMo agents [48].

Order & Resource Monitoring workspace (O&RMWs) groups
AgOpm, AgOrm, AgRpm, AgRrm, and artefacts DStool, T1tool
and T2tool. Currently, T1tool allows generating predictive
evaluation functions predEvFu as Bayesian Networks, i.e.

T1ðStaticViewÞ !
tr1

BNet. DStool was implemented by means of
Hugin API.7 DStool could be implemented for processing any
decision algorithm to anticipate a disruptive event (for example,
5 ATL Transformation Language, Eclipse project – http://www.eclipse.org/atl/.
6 Xpand Transformation Language, Eclipse project – http://www.eclipse.org/

modeling/m2t/?project=xpand.
7 Hugin Expert, Hugin Decision Engine Tool – http://www.hugin.com/.
based on Petri nets, decision trees, etc.). To this aim, appropriate
transformation rules for T1tool must be developed. T1tool
implements a transformation engine using ATL API.

Through MAMS life cycle, workspaces and agents are created
and destroyed (Fig. 8). The hiring workspace and its artefacts are
initially created. Then, AgC and AgMS are created. When a
monitoring service is contracted, a new AgM is created together
with its monitoring workspace and artefacts. Then, workspaces for
AgS and AgN and their artefacts are created. AgS and AgN are
created from WSDL specification and MoMo. These workspaces will
exist in the system until the contract ends. When an order
execution starts, artefacts DStool and T1tool are created if a
predictive monitoring is to be performed.

MAMS organisation was defined by functional, structural, and
deontic specifications of Moise model. Each modelled agent adopts
a role in the organisation (structural specification). Goals,
decomposed in sub-goals (Table 2), were distributed to agents
in the form of missions (functional specification). Since MAMS was
designed as a cooperative system, all agents must collaborate to
achieve the global goal, and therefore each agent committed to a
mission is obligated to accomplish it. It is specified by an obligation
norm (deontic specification).

In order to exemplify the operation of MAMS architecture, the
following subsection presents details of monitoring processes.

4.2. Agent interaction design and implementation: monitoring

process

Once the monitoring service has been hired, the Sch to be
monitored is accepted by Monitoring Subsystem. As an example,
the order predictive monitoring process and the interaction
between Control and Monitoring Subsystems are depicted in
Fig. 9. Table 3 details message sequence. For simplifying
interactions description, exceptions and failure control operations
are not represented.

http://www.eclipse.org/atl/
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.eclipse.org/modeling/m2t/?project=xpand
http://www.hugin.com/
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5. A case study: cheese production

In order to depict the use of MAMS, this section presents a
cheese production process as a case study to exemplify the MoMo

specification and its transformation in a specific DStool used by
AgOpm to predict a disruptive event.

Process data were collected from a regional dairy industry. Sch

and execution data were obtained from the database of planning
and execution systems. In the cheese production process, milk
acidity can affect cheese quality. High acidity can produce sandy
cheese, bitter cheese, or increase the curdling rate causing surface
cracks. Low acidity can produce insipid cheese.

To illustrate this case study, the scenario in which the monitoring
service is hired for monitoring an o 2 O that requires producing 1 Tn
of soft cheese (quantity = 1) is described. Fig. 10 shows StaticView of
MoMo for the cheese production process. It presents the set of
milestones m1=(state, process_starts, OV1), m2=(state, curdle_-
finishes, OV2), m3=(time, 48hs_after_process_has_started, OV3),
m4=(time, 72hs_after_process_has_started, OV4); m5=(time,
120hs_after_process_has_started, OV5) and m6=(state, process_ends,
OV6) where: OV1=(acidity), OV2=(time_of_curdle), OV3=(texture),
OV4=(surface_cracks), OV5=(taste) and OV6=(quality). Acidity and
time_of_curdle are parameters of resource milk 2 R; whereas
texture, surface_cracks, taste, and quality are parameters of resource
cheese 2 R. The target variable is estimated_quantity. It has a planned
value of parameter quantity for o 2 O (quantity = 1). A disruptive
event can be predicted by comparing planned and estimated values,
based on a disruption condition.

Each vari 2 OVm is defined by vari =< name, type, sensor >

where: type specifies if the variable takes discrete or continuous
values; and sensor describes the sensor type required to collect
data. Based on this parameter, AgM selects a suitable AgS from
artefact Sensor Base.

T1tool of MAMS, which implements the set of ATL rules
described in [22], allows generating predEvFu as a Bayesian
Network (Fig. 11) from StaticView of MoMo (Fig. 10).
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Fig. 10. StaticView of MoMo for cheese production.

Table 3
Monitoring process: messages details.

Message Source Recipient Message type Details

monitoring (monitoringInf) Control Subsystem Monitoring WS SOAP monitoringInf:<contract id,MoMo,type>

monitoringRequest (monitoringInf) Monitoring WS Monitoring Artefact perception monitoringInf:<contract id,MoMo>

makeArtefact(MoMo,artInf) Monitoring T3tool Artefact operation artInf:<name,class,parameters,id>

createWorkspace (Name) Monitoring O&RMWs Workspace primitive

create_agent(agentInf, plans) Monitoring AgOpm/vAgRpm Agent primitive agentInf:<name,pathfile,Jason class>plans:

<agent plans codified in AgentSpeak>

start(StaticView) Monitoring AgOpm/AgRpm Agent plan StaticView of MoMo

start(PlannedValues) Monitoring

AgOrm/AgRrm

Agent plan Set of planned values for observable variables

makeArtefact (StaticView,artInf) AgOpm/AgRpm T1tool/T2tool Artefact operation artInf:<name,class,parameters,id>

makeArtefact (BNet,artInf) AgOpm/AgRpm DStool Artefact operation artInf:<name,class,parameters,id>

monitoring() Monitoring AgOpm/AgRpm AgOrm/AgRrm KQML message

selectMilestone(m) AgOpm/AgRpm Agent plan

collectData (sensor, msg) AgOpm/AgRpm Monitoring KQML message sensor that must collect data, msg: message

to show for manual entry

data(sensor,data) AgOpm/AgRpm KQML message sensor that collected data and data value

setData(sensor,data) AgOpm/AgRpm Agent plan self addition

propagateNet(BNet) DStool Artefact operation

notifyDisruptiveEvent(eventBrief) AgOpm/AgRpm Agent plan self addition eventBrief: (time, reason, sensor data, etc.)

notifyDisruptiveEvent(eventBrief) AgOpm/AgRpm Monitoring KQML message eventBrief: (time, reason, sensor data, etc.)

notifyDisruptiveEvent(eventBrief) Monitoring Monitoring WS Artefact operation event brief (time, reason, sensor data, etc.)

notifyDisruptiveEvent(eventBrief) Monitoring WS Control subsystem Webservice request eventBrief: (time, reason, sensor data, etc.)

endMonitoring(Time) AgOpm/AgRpm AgM KQML message Time when the disruptive event ocurred

endMonitoring(Time) AgM Monitoring WS Artefact operation Time when the disruptive event ocurred

endMonitoring(Time) Monitoring WS Control subsystem WS Webservice request Time when the disruptive event ocurred
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BNet consists of discrete nodes X, each one representing a
variable to be observed OVm in a milestone m (Table 4). Domain
values of OVm are represented in the fifth column. The target
variable of StaticView is transformed into node estimated_quantity,
which is a function node with a disruption condition. This function
is defined in the fifth column. Value 0 indicates that no cheese with
the specified quality could be produced; and value 1 indicates that
1 Tn of cheese with the specified quality could be produced.
surface_cracks

time_of_curdle acidity

taste

texture

quality estim ate d_quantity

Fig. 11. Cheese production: Bayesian network.
MWf of the cheese production process was generated using
T3tool. Based on MWf, AgOpm decides on the actions to be taken,
milestones to be activated, and data to be collected (Fig. 12).

5.1. Result analysis

Table 5 summarises results reported by Monitoring Subsystem
for six scenarios. For each scenario, the second column shows
successive milestones defined by AgOpm until reaching a
conclusion. The third and fourth columns show OVm in each
milestone m and their collected values. These values were
evidences taken into account by AgOpm for calculating the joint
probability P(quality==bad) or P(quality==good). Results are
represented in the fifth column. While these evidences were
insufficient to predict an outcome, AgOpm proposed a new
milestone to collect evidence to enable it to predict that an event



Table 4
Relationship between milestones of the cheese monitoring model and nodes in the Bayesian network.

StaticView predEvFu: BNet

m OVm Node X Type Value domain

process_starts acidity acidity Discrete normal, low, high

curdle_finishes time_of_curdle time_of_curdle Discrete normal, low, high

48hs_after_process_has_started texture texture Discrete no_granulated, granulated

72hs_after_process_has_started surface_cracks surface_cracks Discrete no, yes

120hs_after_process_has_started taste taste Discrete good, insipid, bitter

process_ends quality quality Discrete good, bad

if (P (quality==bad) >value)

Target variable estimated_quantity Function estimated_quantity = 0

else estimated_quantity = 1
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Fig. 12. Cheese production: workflow of the monitoring process.

Table 5
Cheese production: monitoring cases.

Scenario m OVm Collected value X:(Q==bad)

Y:(Q==good)

Threshold Result predicted Actual

result [Tn]

Time [H]

1 process_start acidity high P(X)==0.95 0.97 insufficient evidence

curdle_finishes time_of_curdle low P(X)==100 0.97 estimated_quantity ==0 0 238

2 process_start acidity high P(X)==0.95 0.97 insufficient evidence

curdle_finishes time_of_curdle normal P(X)==0.84 0.97 insufficient evidence

48hs_after_process_start texture granulated P(X)==100 0.97 estimated_quantity ==0 0 192

3 process_start acidity high P(X)==0.95 0.97 insufficient evidence

curdle_finishes time_of_curdle normal P(X)==0.84 0.97 insufficient evidence

48hs_after_process_start texture no_granulated P(X)==0.60 0.97 insufficient evidence

120hs_after_process_start taste bitter P(X)==100 0.97 estimated_quantity ==0 0 120

4 process_start acidity high P(X)==0.95 0.97 insufficient evidence

curdle_finishes time_of_curdle normal P(X)==0.84 0.97 insufficient evidence

48hs_after_process_start texture no_granulated P(X)==0.60 0.97 insufficient evidence

120hs_after_process_start taste good P(Y)==100 0.97 estimated_quantity ==1 1 120

5 process_start acidity low P(X)==0.60 0.55 estimated_quantity ==0 1 240

6 process_start acidity low P(X)==0.60 0.97 insufficient evidence

120hs_after_process_start taste good P(Y)==100 0.97 estimated_quantity ==1 1 120
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could occur (P(x) > threshold). The seventh and eighth columns
show predicted and current results, and the ninth column presents
the number of hours left for the end of the cheese production
process when the result was predicted by AOpm.

An analysis of scenarios summarised in Table 5 allows
concluding:
� From values of observable variables collected in milestone
process_start, in Scenario 6, the next milestone evaluated by
AgOpm was 120hs_after_process_start, which was different
from milestone curdle_finishes evaluated by AgOpm in Scenarios
1–4. This shows that AgOpm can select different plans depending
on the collected value of observable variables in milestones.
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� When threshold value was high enough, AgOpm predicted right
results, but when the threshold value was not high enough,
AgOpm predicted wrong results (Scenario 5).
� High value of threshold prevented AgOpm from predicting

wrong results, but reduced the ability to early anticipate
disruptive events. In Scenario 1, for example, AgOpm was able
to predict the result 238 hours before the end of the cheese
production process, but in Scenario 3, AgOpm was able to predict
the result only 120 hours before the end of the cheese production
process.

6. Conclusion and future work

Agent technology made it possible to profit from the concurrent
programming for designing a subsystem able to manage the
distributed nature of disruptive events, generate goal-oriented
plans from monitoring models, and address the complexity of
monitoring services by structuring their functionalities as a set of
autonomous entities. Using the conceptual and engineering
background provided by agent technology, operations for provid-
ing monitoring services and protocols carried out when an
enterprise hires the monitoring service were implemented.

A novel aspect of this approach is the tailored monitoring
process that defines the planning strategy of agents responsible for
monitoring orders and resources is dynamically generated at
execution time. For performing this task, the monitoring subsys-
tem uses a model-driven development approach to generate the
tailored monitoring process from a monitoring model defined by
using the abstract language provided by a reference model.

Another novelty in this approach is the fact that Monitoring
Subsystem can decide on the most appropriate tool to perform the
monitoring task, keeping implementation details hidden to the
hiring enterprise. For carrying out this task, the monitoring
subsystem can be provided with appropriate sets of transforma-
tion rules that allow it to generate monitoring model implementa-
tions for different technological platforms. While the developed
prototype only implements Transformation T1 Tool able to
transform the static view of the monitoring model into evaluation
functions defined as Bayesian Networks, new transformation T1
tools can be included into MAMS.

JaCaMo platform allowed implementing web services in a
native way. Agents were programmed through a set of beliefs,
rules, goals, and plans able to be automatically tailored for
monitoring schedules of different supply processes in a transpar-
ent and concurrent way. The multi-agent environment was
specified by artefacts and workspaces. Artefacts provided tools
as first-class entities to perform model-to-model and model-to-
code transformation, executing inference processes to predict
disruptive events, and storing/retrieving previously generated
monitoring models. Workspaces distributed the subsystem in
containers, grouping artefacts and agents to be executed in
appropriate processing nodes.

Finally, a case study performed in a real environment allowed
illustrating the operation of the monitoring subsystem to
proactively detect and inform probable disruptive events in a
factory. The ability of MAMS to anticipate disruptive events was
analysed through a set of scenarios, which demonstrated
satisfactory results in predicting disruptive events well before
schedule execution ends.

In future work, new algorithms to predict disruptive events will
be developed. The aim is to have a repository of algorithms for
predicting disruptive events, from where they can be automati-
cally selected depending on the supply process to be monitored.
This selection must be transparent for hiring enterprises which
define high level and platform independent monitoring models as
instances of reference model.
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