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Introduction

&&please add academic titles (Dr./Prof.) for all authors where
appropriate in the author list above.&& The present energy
context urgently demands the availability of sustainable and
renewable resources to meet the needs of a growing world
population with increasing living standards and hence high
energy demand.[1] Chemical fuels constitute an attractive
energy vector, as they can be easily stored and used upon
demand.[2] Consequently, large-scale generation of chemical
fuels from decentralized and sustainable resources, like water
and sun, is considered one of the key challenges for science
and technology. In this context, photoelectrochemical genera-
tion of solar fuels with semiconductor materials is a promising

approach towards the direct conversion of solar energy into
chemical fuels.[3] Indeed, competitive solar-to-hydrogen effi-
ciencies over 10 % have been reported for different device ar-
chitectures using this approach.[4] However, recent techno-eco-
nomic analysis predicted that the future implementation of
this technology will depend on the feasibility of efficient and
durable devices targeting $ 2–4 kg�1 of dispensed H2.[5] This
stringent cost-requirement places low-cost materials and syn-
thetic strategies at the forefront of the research in the field.
Additionally, commercial systems should be capable of produc-
ing H2 from seawater without any chemical bias.

Semiconducting organic materials (particularly conjugated
polymers) have been thoroughly exploited in the field of opto-
electronics and photovoltaics. These materials can be pro-
cessed from solution techniques compatible with low cost
manufacturing, such as roll-to-roll processing.[6] Indeed, solar-
to-electricity efficiencies around 10 % have been achieved for
organic photovoltaic (OPV) devices.[7] In contrast, these materi-
als have not received comparable interest for the generation
of solar fuels for decades. The first report demonstrating that
conjugated polymers can photocatalyze H2 evolution in aque-
ous solutions containing sacrificial systems was carried out by
Yanagida in 1985.[8] Since then, only a few studies have ex-
plored the use of these materials for photoelectrochemical
generation of solar fuels.[9] In general, immersing organic pho-
toelectrodes in liquid solutions systematically led to very low
photocurrents (�1 mA cm�2) under application of light and
electrical bias and the poor stability of these devices rendered
reasonable doubts on the origin of the photocurrent. However,
it was recently showed that interfacing an OPV with a liquid
solution (0.1 m tetrabutylammonium hexafluorophosphate so-
lution in acetonitrile with a redox pair able to capture either
electrons or holes) does not deleteriously affect the photocur-
rent that the device can deliver in a solid-state configuration,
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Here, we have developed an organic photocathode for water
reduction to H2, delivering more than 1 mA cm�2 at 0 V versus
RHE and above 3 mA cm�2 at �0.5 V versus RHE with moderate
stability under neutral pH conditions. The initial competitive re-
duction of water to H2 and ZnO to metallic Zn is responsible
for the dynamic behaviour of both photocurrent and Faradaic
efficiency of the device, which reaches 100 % Faradaic efficien-

cy after 90 min operation. In any case, outstanding stable H2

flow of approximately 2 mmol h�1 is measured over 1 h at 0 V
versus RHE and at neutral pH, after equilibrium between the
Zn2+/Zn0 concentration in the AZO film is reached. This ach-
ievement opens new avenues for the development of all-solu-
tion-processed organic photoelectrochemical cells for the solar
generation of H2 from sea water.
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and quantitative photocarrier conversion has been demon-
strated.[10]

Focusing on organic photocathodes for water reduction,
some inspiring studies have highlighted the potential of OPVs
in acidic environments (pH~1) and a rapid increase of photo-
current from hundreds of mA cm�2 to some mA cm�2 has been
obtained.[11] The basic strategy behind this impressive progress
entails the optimization of hole and electron selective contacts
to deliver maximum photocurrents, while providing reasonable
stability for long-term application. Interestingly, organic photo-
anodes for water oxidation based on conjugated polymers
have been recently reported,[12] opening promising perspec-
tives for the development of all-organic tandem photoelectro-
chemical water splitting cells.

In a previous study,[11d] we reported stable water reduction
photocurrents of �250 mA cm�2 for more than 3 h (pH 2) by
using a cross-linkable poly(3,4-ethylenedioxythiophene)-poly(-
styrenesulfonate) (PEDOT:PSS) as the hole-selective layer and
a TiOx/Pt catalytic electron-selective layer sandwiching an ar-
chetypical poly(3-hexylthiophene) (P3HT)–phenyl-C61-butyric
acid methyl ester (PCBM) blend. The high resistance of the syn-
thesized TiOx layer has motivated the exploration of more con-
ductive electron-selective layers compatible with operation at
neutral pH. In the present study we developed an Al-doped
ZnO (AZO) electron-selective layer prepared by a novel process
compatible with low temperature synthesis. We show photo-
currents above 1 mA cm�2 at 0 V versus RHE (VRHE) and above
3 mA cm�2 at �0.5 VRHE with moderate stability at neutral pH
conditions, when a C/Pt catalyst is deposited on top of the
device. The Faradaic efficiency of the device for water reduc-
tion to hydrogen increases with time from 60 % up to 100 %
owing to the competitive partial reduction of the selective
ZnO layer to metallic Zn. Although other studies have reported
interesting efficiencies for water reduction at neutral pH, they
rely on more sophisticated photovoltaic technologies (e.g. ,
CIGS), which employ high-temperature and high-vacuum proc-
essing.[13] Consequently, the achievements of the current work
open new avenues for the development of all-solution-pro-
cessed photoelectrochemical cells for the solar generation of
H2 from sea water.

The AZO nanocrystals were chemically synthesized through
a solution approach that does not require bulky insulating li-
gands as surfactants, allowing the formation of thin films at
a low 85 8C annealing temperature with improved conductivity
compared to ZnO.[14] Figure 1 a shows a TEM image of the AZO
nanoparticles and Figure 1 b shows an AZO film observed by
SEM. The average diameter of these nanoparticles is 10 nm
and they appear dispersed without agglomeration by dynamic
light scattering measurements. The Al-doping level of 0.8 %
was determined by inductively coupled plasma mass spec-
trometry (ICP-MS) analyses. Powder X-ray diffraction (PXRD)
patterns shown in the Supporting Information (Figure SI1)
highlight the crystalline nature of the nanocrystals generated
using this synthetic procedure. The work function is 4.08 eV
with conduction band energy of 3.79 eV and ionization poten-
tial of 7.87 eV as determined in Ref. [14]. These values suggest
that AZO is a promising candidate to be used as an electron-

selective layer in organic photoelectrochemical devices and an
illustrative energy diagram of the full device is showed as Fig-
ure 2 a. Average mobility values of m= 2�10�5 cm2 Vs�1 were
extracted from field-effect transistors measurements (see Figur-
es SI2 and SI3 for details). Although this is not an extremely
high value, it is adequate to be used in devices with a few
tens of nanometers.

A representative cross-sectional micrograph of the full x-
PEDOT &&what does the x represent? This has not yet been
defined.&& / &&please define BHJ here. Bulk heterojunc-
tion? between what and what?&&(BHJ)/AZO/C/Pt device is
shown in Figure 2 b. The AZO layer appears as a nanoparticulat-
ed film on top of the device, coated by a ~1 nm thick layer of
the C/Pt catalyst. The thicknesses of the x-PEDOT, BHJ, and

Figure 1. a) TEM and b) SEM images of the AZO nanoparticles.

Figure 2. a) Energy diagram of the device with architecture ITO/x-PEDOT/
BHJ/AZO/C/Pt and pathway for electrons resulting in water reduction to H2.
b) SEM of the cross-section of a full device.
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AZO layers have been estimated as 40, 300, and 40 nm, respec-
tively. The C/Pt catalytic layer is below 1 nm and cannot be
identified by SEM.

The full devices were tested for H2 evolution under acidic
conditions (pH 2 and 5) showing poor performance (after the
first cyclic voltammetry scan) and stability as shown in Fig-
ure SI4. This is in good correlation with the Pourbaix diagram
of ZnO.[15] Then, the photoelectrochemical behavior of the de-

vices for water reduction at neutral pH (pH 6.9) was investigat-
ed and the results are showed in Figure 3. Figure 3 a shows the
current–voltage (j–V) curve under chopped illumination, ach-
ieving remarkable photocurrents of 1.2 mA cm�2 at 0 VRHE and
above 3 mA cm�2 at �0.5 VRHE. At the most positive values of
potential showed in Figure 3 a, cathodic spikes indicative of
electron accumulation are observed,[16] but at potentials more
negative than 0 VRHE, the spikes are not any longer visible, re-
flecting the fully faradaic nature of the photocurrent. Com-
pared to the pure Pt catalyst, the use of C/Pt notably improves
the performance of the photocathode (see Figure SI5). This en-
hanced behavior can be ascribed to two different reasons.
First, the size of the Pt nanoparticles is reduced, as nanoparti-
cle aggregation is hampered by the presence of the carbon
layer.[17] On the other hand, the carbon layer acts as an efficient
electron scavenger from the oxide film,[18] improving both the
charge-transfer kinetics (catalytic efficiency) and the long-term
stability. The stability of the devices was studied by chronoam-
perometric measurements at 0 VRHE and the obtained results
are shown in Figure 3 b. After 60 min chopped illumination,
the photocurrent decreases 50 %, but from this time on, the
decrease is much more moderate, around 5 % over the next
60 min, as can be seen in Figure SI6.

To gain insights into the time evolution of the photocurrent,
surface characterization on pristine and aged devices (after 1 h
testing at pH 7) was carried out by X-ray photoelectron spec-
troscopy (XPS, Figures 4 SI7). Typical XPS spectra for the Zn 2p
electrons before and after chronoamperometric testing are
shown as Figure 4 a and b, respectively. These spectra suggest
some changes in the electronic structure of Zn. More conclu-
sive information can be obtained from the Auger spectra
showed in Figure 4 c and d. The Zn L3M45M45 Auger line mea-
sured with Al-Ka photons allows monitoring different Zn oxi-
dation states, owing to the pronounced difference between
positions and line shapes for both Zn and ZnO spectral com-

Figure 3. a) j–V plot for x-PEDOT/BHJ/AZO/C/Pt at pH 7 at a scan speed of
5 mV s�1. b) j–t plot at Vbias = 0 VRHE.

Figure 4. XPS spectra obtained from a x-PEDOT/BHJ/AZO/C/Pt device a, c, e) before and b, d, f) after chronoamperometric testing over 1 h at pH 7 under chop-
ped illumination. a–b) Zn 2p signal, c–d) Zn Auger signal, e–f) Pt 4f signal, g–h) C 1s signal.
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ponents.[19] The results show that Zn is present as ZnO in the
pristine sample, but a component of metallic Zn is detected
after the chronoamperometric test, clearly indicating partial re-
duction of the metallic oxide upon operation under cathodic
photocurrent. On the other hand, both the XPS spectra for
Pt 4f (Figure 4 e–f) and C 1s (Figure 4 g–h) show that the C/Pt
catalyst does not suffer significant degradation during opera-
tion for 1 h at neutral pH.

Finally, H2 production was evaluated by carrying out the
measurements in a sealed cell where the output gas flow was
periodically analyzed by gas chromatography, Figure 5 a. Con-
sistent with the results obtained from XPS (Figure 4), the elec-
trode evolves during the first 90 min. Initially, the production

of H2 (�5 mmol h�1 cm�2) is high, in agreement to the mea-
sured values of photocurrent. However, less than 60 % of the
photogenerated electrons are reducing water efficiently ac-
cording to the calculated Faradaic efficiency. The rest of photo-
generated electrons in the organic blend are injected into the
AZO film with the subsequent Zn2 + reduction to Zn0, as clearly
suggested by Auger spectroscopy (Figures 4 c–d). This behavior
is more noticeable during the first 15 min. After this period,
the photocurrent decreases while the Faradaic efficiency in-
creases, indicating that the photogenerated electrons are more
effectively directed to the water reduction reaction compared
to the competitive reduction of Zn2+ . An equilibrium situation
is reached after 60 min, with the measurement of a stable pho-

tocurrent and an H2 flow of approximately 2 mmol h�1 cm�2

during the next hour, and a Faradaic efficiency of 100 % after
90 min.

These results can be easily explained by the energetic dia-
gram shown in Figure 5 b. In this diagram, the energy levels for
both Zn2+ and H2O reduction are included and we consider
that both reduction reactions below [Eqs. (1) and (2)] are com-
petitive.

2 H2Oþ 2e� ! H2 þ 2 OH� ð1Þ

Zn2þ þ 2 e� ! Zn0 ð2Þ

The photogenerated electrons within the organic blend are
collected at the LUMO band of the acceptor (PCBM). In contact
with the organic blend (p-type semiconductor), the layer of
AZO (n-type semiconductor) provides an excellent electron-se-
lective contact for the formation of a rectifying p–n junction,
which assists the extraction of the photogenerated electrons,
with adequate energy to reduce both water to H2 [Eq. (1)] and
the Zn2 + cations of the AZO layer to Zn0 [Eq. (2)] . Initially, the
reduction of Zn2+ is favored (time 0 in Figure 5 b), and the de-
crease of the Zn2+ concentration shifts the redox potential of
Eq. (2) to higher values according to the Nernst equation
(slope = 0.029 log[Zn2 +]) &&ok?&& until equilibrium is
reached and no further net Zn2+ reduction takes place. Then,
all photogenerated electrons follow the desired hydrogen evo-
lution reaction [Eq. (1)] . In the real device, the energetic dia-
gram is more complex compared to that shown in Figure 5 b,
because the Zn2+ ions are present in the AZO layer (not in the
electrolyte). In any case, the electrode surface is significantly af-
fected as shown by surface analysis, and the simplified energy
diagram of Figure 5 b can reasonably explain the evolution of
the electrode with time (Figure 5 a). Although we use a C/Pt
catalyst deposited by sputtering to analyze the response of
the engineered photocathodes, to minimize losses at the semi-
conductor/solution interface, the basic device configuration is
solution processed (photoactive material and selective con-
tacts). Consequently, as far as the authors know, this is the first
time that H2 generation with a solution-processed organic
photoelectrochemical system at neutral pH is reported.

Conclusions

We have developed an organic photoelectrochemical device
able to reach photocurrents of more than 1 mA cm�2 at 0 V
versus RHE, with reasonable stability under neutral pH condi-
tions. The achieved performance is based on the use of an
AZO nanoparticulated layer as an electron-selective contact, al-
lowing device operation at neutral pH. Furthermore, we have
clarified the origin of the evolution of photocurrent and Fara-
daic efficiency with time. The initial competitive reduction of
both water and the AZO layer is responsible for the increased
Faradaic efficiency from 60 % to up to 100 % after 90 min oper-
ation. Noteworthy after 1 h of operation of the device, a quite
stable H2 flow of approximately 2 mmol h�1 g�1 is obtained for
1 h. These results highlight the versatility and potential of or-

Figure 5. a) H2 evolution for the system x-PEDOT/BHJ/AZO/C/Pt at pH 7, the
measured photocurrent and the Faradaic efficiency. b) Energetic model of
the photogenerated electrons at the electrode/electrolyte interface and the
evolution of the energetic levels of the electrolyte with time, during H2 gen-
eration. The redox potential of water reduction is corrected to pH 6.9.
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ganic photoelectrochemical devices as a real low-cost alterna-
tive for the generation of solar fuels.
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