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This contribution presents the theoretical foundations of a Failure-Oriented Multi-scale variational Formu-
lation (FOMF) for modeling heterogeneous softening-based materials undergoing strain localization phe-
nomena. The multi-scale model considers two coupled mechanical problems at different physical
length scales, denoted as macro and micro scales, respectively. Every point, at the macro scale, is linked
to a Representative Volume Element (RVE), and its constitutive response emerges from a consistent homog-
enization of the micro-mechanical problem.

At the macroscopic level, the initially continuum medium admits the nucleation and evolution of cohe-
sive cracks due to progressive strain localization phenomena taking place at the microscopic level and
caused by shear bands, damage or any other possible failure mechanism. A cohesive crack is introduced
in the macro model once a specific macroscopic failure criterion is fulfilled.

The novelty of the present Failure-Oriented Multi-scale Formulation is based on a proper kinematical
information transference from the macro-to-micro scales during the complete loading history, even in
those points where macro cracks evolve. In fact, the proposed FOMF includes two multi-scale sub-models
consistently coupled:

(i) a Classical Multi-scale Model (ClaMM) valid for the stable macro-scale constitutive response.
(ii) A novel Cohesive Multi-scale Model (CohMM) valid, once a macro-discontinuity surface is nucleated,

for modeling the macro-crack evolution.

When a macro-crack is activated, two important kinematical assumptions are introduced: (i) a change
in the rule that defines how the increments of generalized macro-strains are inserted into the micro-scale
and (ii) the Kinematical Admissibility concept, from where proper Strain Homogenization Procedures are
obtained. Then, as a consequence of the Hill–Mandel Variational Principle and the proposed kinematical
assumptions, the FOMF provides an adequate homogenization formula for the stresses in the continuum
part of the body, as well as, for the traction acting on the macro-discontinuity surface.

The assumed macro-to-micro mechanism of kinematical coupling defines a specific admissible RVE-dis-
placement space, which is obtained by incorporating additional boundary conditions, Non-Standard
Boundary Conditions (NSBC), in the new model. A consequence of introducing these Non-Standard Bound-
ary Conditions is that they guarantee the existence of a physically admissible RVE-size, a concept that we
call through the paper ‘‘objectivity’’ of the homogenized constitutive response.

Several numerical examples are presented showing the objectivity of the formulation, as well as, the
capabilities of the new multi-scale approach to model material failure problems.

� 2012 Elsevier B.V. All rights reserved.
1. Introduction

Materials, in general, have an intrinsic heterogeneous nature.
From a micro-structural point of view, they can be composed of
a number of constituents and heterogeneities that govern the
mechanical response of the material at the macro-structural level.
For example, the evolution of inelastic/dissipative mechanisms, as
well as the nucleation process of macroscopic failure phenomena,
usually depends on the complex interaction between defects and
heterogeneities at smaller length scales. Thus, suitable theoretical
frameworks based on Multi-scale formulations arise as a powerful
modeling tool to describe more general heterogeneous material
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responses or, according to the particular interest of the present
contribution, to understand more precisely the phenomenologies
leading to material failure.

During the last decades, a great diversity of multi-scale method-
ologies for material modeling has been proposed and formulated
from different perspectives, such as the approaches based on: the
Effective Medium [8,24], the Self-Consistent Models [14,5], the Varia-
tional Boundary Methods [13,43], the Homogenization Theory of
Asymptotic Expansions [35,10], among others. All these strategies
have rigorous conceptual foundations and have been deduced
using analytical or semi-analytical procedures. Nevertheless, they
are restricted to micro-structures with simple topology of hetero-
geneities or adopt specific assumptions, limiting the scope of their
applicability, specially if material failure is addressed.

In order to circumvent these limitations, multi-scale techniques
based on the existence of a statistically Representative Volume Ele-
ment (RVE), which is associated to the scale where the material het-
erogeneities are observable, have gained popularity [21–23]. A
particular class of this multi-scale methodology uses two different
scales: the ‘‘macro’’ and the ‘‘micro’’ scale, although generalizations
for including additional length scales could be considered. In such
approach, it is assumed that the constitutive behavior at the
macro-scale is derived by means of two basic steps: (i) a specific
insertion process of the macro strains into the RVE domain, which
is interpreted as the prescribed action stimulating the micro
mechanical problem; this step is sometimes called ‘‘localization’’
by some authors [9] and (ii) a variationally consistent homogeniza-
tion procedure, or volumetric average, of the constitutive response
at the micro-level. Specific kinematical constraints, as well as ener-
getic equivalence principles, are additionally included in the model
to obtain a consistent mechanical framework.

In this kind of approach, the notion of constitutive equation is a
concept that is only defined at the micro-structural level (RVE-le-
vel). Meanwhile, at the macro-level, the material response is a con-
sequence of the micro mechanical behavior and the adopted model
to transfer the information between scales. From this perspective,
the constitutive model defined in the micro-mechanical problem
turns out to be a particularly important ingredient in the multi-
scale formulation.

Regarding the following two general local continuum constitu-
tive relation categories that can be adopted to describe the micro-
mechanical response:

– Constitutive relations derived from associative flow rules
and hardening-based inelastic evolutions models, here
called for simplicity Standard or Generalized Associative
Materials.

– Constitutive relations based on non-associative flow rules or
strain softening models, generally adopted for describing
degradation mechanisms and failure,

and inspired in the issues addressed in this paper; the fundamental
difference between them is attributed to the intrinsic ability of the
Softening-based material models to induce strain localization into
narrow bands. These strain localization bands are the precursor to
the development of strong discontinuities, which can be associated
with cracks, shear bands, etc. On the contrary, the Standard or
Generalized materials completely inhibit the development of strain
localization bands.

A number of well-established two-scale RVE-based approaches
using Generalized/Associative Materials has been proposed in the lit-
erature, see for example [21,23,40,41,29] and references cited
therein. We call this family of approaches: the ‘‘Classical Multi-scale
Model (ClaMM)’’. However, in their present form, they cannot be
applied to problems involving material failure because they give
inconsistent results, as will be shown in the following.
Adoption of materials with softening, for modeling failure at the
micro-mechanical level as a mechanism inducing degradation at
the macro-level, introduces some theoretical issues which should
be particularly considered in the development of multi-scale
formulations. Aside from the well-known fact that continuum
onstitutive equations with softening have to be regularized, we
mention that:

– Material softening induces dissimilar mechanical regimes in
the RVE domain, such as loading into strain localization
bands and unloading in the remaining domain. Under favor-
able kinematical conditions, this strain-localization phe-
nomenon can evolve throughout the RVE and, eventually,
nucleate a bifurcation mode at the macro scale. Hence, the
traditional assumptions of Classical Multi-scale Models by
which a macro-strain is uniformly distributed into the
micro-cell, as well as, the standard stress homogenization
procedure extended over the entire RVE domain, have a
debatable physical meaning and need to be reformulated.

– Strain localization phenomena induce a ‘‘size-effect’’ in the
micro-cell response, a well-known behavior in the context
of structural analysis [2]. A consequence of this, in the Clas-
sical Multi-scale setting, is that the stress homogenized
response becomes sensitive with respect to the micro-cell
size [11]. Then, some action must be adopted to remove this
deficient behavior.

From these observations, an alternative class of multi-scale
models should be developed whenever strain localization phenom-
ena are considered. Pursuing this objective, recent contributions
have been proposed. For instance, Belytschko and co-workers
[4,39] presented a specific stress homogenization procedure
excluding, from the integration domain where the stresses are
averaged, the zones where strain localization is detected. They
called this methodology the ‘‘Multi-scale Aggregating Discontinu-
ities’’ model. By construction, the so obtained homogenized
mechanical response keeps the material stability. A connection
between the micro-cell domain measure and the finite element
size at the macro-level is introduced.

A second-order (gradient-based) computational homogeniza-
tion scheme has been proposed by Kouznetsova and co-authors
[16–18]. Recently, this model has been adapted for the analysis
of strain localization problems introducing a generalized periodic-
ity boundary condition, that is aligned with the direction of the
localization band developed in the micro scale domain [6].

An alternative technique for modeling the constitutive response
of a ‘‘pre-existent’’ macro-adhesive discontinuity is due to Matouš
and co-workers [20,19]. They postulated a multi-scale model based
on the existence of a volumetric heterogeneous RVE, linked to the
macroscopic adhesive-interface. A limitation of their approach is
that the thickness of the assumed RVE is associated with the phys-
ical thickness of the macro-adhesive surface. They do not give a
procedure to determine the RVE cell size in more general problems.
An additional limitation of this model is that it cannot be trivially
extended to nucleate discontinuities from an initially continuum
medium. Thus, according to the authors, the discontinuity surfaces
must be predefined in the body.

Verhoosel et al. [42] developed a method for determining the
homogenized macro cohesive model derived from micro-struc-
tures with possible nucleation of micro-cohesive cracks and adhe-
sive micro-interfaces. Nguyen et al. [26] have extended this
proposal to include micro-cells with a damaged material model
regularized with an enhanced gradient approach. They also intro-
duced the notion of ‘‘failure zone averaging technique’’, where the
homogenized procedure for micro-stresses is only extended over
the RVE active damaged sub-domain. Although the so-called
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‘‘failure zone averaging technique’’ seems to have a consistent
physical meaning, this concept is presented as an ‘‘a priori’’
mechanical definition and there is no clear relation established
between the imposed macro and micro kinematics. The authors
show, through numerical experimentation, the existence of objec-
tive macro responses, with respect to the RVE-size.

Up to the authors’ knowledge, a unified framework based
exclusively in physical/modeling arguments, and not only on
numerical ones, where the adopted hypotheses and derived conse-
quences are well established and fully justified, has not yet been
completely developed in the context of material failure multi-scale
modeling. This subject remains an open issue at present and this
paper addresses some contributions in this direction.

In this contribution we present a Failure-Oriented Multi-scale
Formulation (FOMF) that uses a specific insertion of macro-strains
into the micro scale domain [34]. The Insertion Operator is
incorporated in the kinematical description of the RVE and it
is used to introduce the concept of Kinematical Admissibility
between the strains at macro and micro levels. Then, following a
purely variational framework, a number of associated mechanical
consequences are derived, as for example the micro-equilibrium
problem and the stress homogenization procedure. The
FOMF comprehends two multi-scale sub-models sequentially
coupled in a consistent manner: (i) a Classical Multi-scale Model
(ClaMM) and (ii) a new Cohesive Multi-scale Model (CohMM). A
number of distinguishing features of the FOMF are shown in detail
in the body of the paper and they are summarized as follows:

(I) We systematically follow a well established variational
methodology.

(II) All developments are based on ‘‘kinematical hypotheses’’.
(III) The generalized stress homogenization procedures arise as a

‘‘consequence’’ of the formulation, as a dual concept from the
adopted kinematical hypotheses (ruled by the Insertion
Operator) and consistent with the Hill–Mandel principle.
Thus, they are not an ‘‘a priori’’ definition. Furthermore, this
generalized stress homogenization procedure is character-
ized by an integration over specific RVE sub-domains, and
not over the entire micro-cell.

(IV) The topology of the RVE sub-domain, where the strain local-
ization takes place, emerges from the evolution of the
mechanical problem. It depends on the complexities of the
underlying micro-structure and the loading history.
Fig. 1. Multi-scale (macro–micro) mod
(V) The proposed formulation is able to nucleate a macro cohe-
sive crack, and model its evolution, from an initially classical
macro-continuum medium. Therefore, the classical or stan-
dard multi-scale model represents a particular case of the
proposed multi-scale formulation.

(VI) The micro-mechanical problem is solved considering new
kinematical constraints, imposed through additional bound-
ary conditions that naturally emerge in the present formula-
tion. By construction, they assure the objectivity of the model
with respect to the RVE-size.

Since our interest in this paper is to highlight the fundamental
aspects of the formulation, additional topics such as: the constitu-
tive softening regularization model adopted at the RVE-level, the
classical displacement boundary conditions defined in the RVE
describing the Taylor, Linear or Periodic models among others,
are not discussed in detail in this manuscript.

The remainder of this document is structured as follows. In Sec-
tion 2, the governing equations for a macro-mechanical problem,
in which failure mechanisms in the form of cohesive cracks can
nucleate and evolve, are discussed. The need for two homogeniza-
tion rules is shown: a classical model for the stress–strain response
during the macroscopic pre-bifurcation stage and a new one, giving
a traction-separation cohesive model for the evolution of macro-
scopic displacement discontinuities. Such discontinuities are acti-
vated after detecting a macroscopic bifurcation point, and this is
discussed in Section 2.2. Section 3 is devoted to reviewing the
foundations of Classical Multi-scale Models (ClaMM). Some general
operators, useful for the subsequent developments, are introduced.
In Section 4, a new variational formulation is discussed in detail.
We show that, following the same basic theoretical steps used in
the context of ClaMM and introducing additional ingredients, a
well-posed model, called Cohesive Multi-scale Model (CohMM)
which captures objective cohesive responses from a degraded/
localized RVE, is obtained. Section 5 presents several numerical
examples showing the mechanical consistency of the complete
multi-scale formulation here proposed (FOMF). In Section 6 the
important role played by the kinematical restriction imposed on
the boundary of the strain localization domain, named in the paper
as NSBC, is highlighted through several examples. Conclusions are
exposed in Section 7. For the sake of completeness, Appendix A is
devoted to a brief description concerning the numerical techniques
used for the FOMF implementation into a finite element code.
el idealization for failure analysis.



Fig. 3. Schematic representation of the whole constitutive response provided by the proposed Failure-Oriented Multi-scale Formulation (FOMF).

Fig. 2. Basic ingredients and nomenclature defining a mechanical problem exhibiting strong discontinuities across the material surface S.
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2. Macro-model with cohesive crack for modeling material
failure

In the subsequent paragraphs, the main features of the macro-
mechanical equilibrium problem, along with the associated set of
governing equations, are presented. The purpose of this Section is
to provide the reader a comprehensive presentation of the coupled
macro–micro multi-scale formulation. The model is fully deter-
mined with the developments addressed in the forthcoming Sec-
tions 3 and 4. A summary of the multi-scale formulation
developed in this Section is presented in Box 1.

2.1. Preliminaries

The following premises define the basic assumptions of the
model:
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(i) Quasi-static problems are considered. A monotonically
increasing pseudo-time variable t 2 ½0; T�, which belongs to
the pre-established interval of analysis ½0; T�, is used to
account for the evolution of the non-linear material
response.

(ii) Infinitesimal strain theory is assumed. Then, X denotes the
reference configuration of the body B defined as an open
bounded set in Rndim, ‘‘ndim’’ refers to the spatial dimension
of the problem. A material point of B, at the macro-scale, is
denoted: ‘‘x’’, see Fig. 1. In the following, we use the prefix
‘‘macro-ð�Þ’’ to denote the fields depending on x and omit-
ting, for the sake of simplicity, this functional dependence.

(iii) B undergoes a loading process given by body forces per unit
of volume, b, and external tractions per unit of surface area,
t. As usual, C symbolizes the piece-wise smooth boundary of
X, which can be split into two sub-sets CD and CN , where
predefined values of displacements, uD, and traction, t, are
prescribed, respectively. Besides we have: CD [ CN ¼ C,
CD \ CN ¼ ;, and m is the outward unit vector normal to C,
as shown in Fig. 1.

(iv) Initially, the macro-scale is idealized as a homogeneous con-
tinuum body where displacements, u, macro-strains, e, and
macro-stresses, r, characterize the mechanical state of the
continuum medium. However, since softening-based mate-
rials are considered for the definition of the micro-scale
problem, an alternative macro-mechanical scenario can
arise. A strain localization mode can nucleate and develop
in x after a critical condition is fulfilled. This critical condi-
tion is governed by the progressive accumulation of micro-
failure mechanisms. The strain localized macro-modes can
represent shear bands, fractures/cracks, slip surfaces, etc.,
depending on the considered problem. A fundamental
assumption of the present formulation is that the mechani-
cal phenomenology associated to these failure modes are
adequately represented, at the macro-scale, by the inclusion
of a ‘‘Cohesive Crack’’ [7,1,15].

(v) Every point x 2 X is linked to the micro-scale through a het-
erogeneous RVE. The same concept exists for those points x
that belong to the macro-crack. Thus, it arises a mechanical
representation of the displacement jumps and cohesive
forces characterizing the ‘‘discontinuity interface’’ through
a ‘‘volumetric’’ micro-cell domain, see Fig. 1.

(vi) For simplicity, it is assumed that the macro-cracks do not
intersect neither the Dirichlet boundary CD nor the non-
homogeneous Neumann boundary CN . In addition, the
macro-cracks do not intersect each other.

The Cohesive Crack concept introduces, in the macro mechanical
formulation, two features which cannot be reproduced by means of
the standard (stress–strain) mechanical description: (i) the activa-
tion of a new independent kinematical field, accounting for dis-
placement discontinuities through the faces of the crack
(commonly known as Strong Discontinuity Kinematics), and (ii) an
additional generalized stress variable T , called the Cohesive Trac-
tion vector or the Cohesive Generalized Force, conjugated to the dis-
placement discontinuity field. Once a macro cohesive crack is
activated at point x, it is not possible to return to the classical con-
tinuum description. The constitutive response of the crack is gov-
erned, exclusively, by the so-called cohesive model (traction-
jump model) which, in turn, is determined from a specific stress
homogenization procedure performed in the micro scale.

Remark 2.1. In the context of softening material modeling, we
postulate that a physically admissible RVE does exist. We adopt the
classical definition of RVE given in the literature (see for example
[25]) in which, a micro-cell is a RVE whenever it has the property
of material statistical representativeness with respect to micro-
structural patterns.

In the present context of analysis, the essential key point to
determine the RVE, and thus its existence, lies on the fact that a
well-posed multi-scale model does exist, in the sense that a
sequence of increasing micro-cell sizes furnishes a convergent
macroscopic homogenized response. Standard multi-scale tech-
niques fail to reach this goal, obscuring the notion of the
existence of a physically admissible RVE for softening-based
materials [11].

From this point of view, in the following development of the
model, speaking of RVE, Micro-Cell or Unit-Cells is immaterial.
These terms are here used only to keep in mind the existence of an
underlying heterogeneous material micro-structure.
2.2. Failure criterion at the macro scale

A criterion to decide ‘‘when’’ and ‘‘how’’ a cohesive cracks has to
be inserted, or activated, in the initially continuum medium, is an
ingredient to be defined in the present formulation. The failure cri-
terion here adopted is derived from the RVE Homogenized mechan-
ical state. It specifies the following two attributes of the macro-
crack:

- the nucleation pseudo-time tN 2 ½0; T�, defined as the instant at
which an admissible mechanical condition for the development
of a bifurcation mode, at the macro-level, is reached for the first
time during the load history;

– the orientation of the discontinuity surface given by the unit
vector n orthogonal to the crack direction.

For this purpose, the classical bifurcation analysis based on the
spectral properties of the Localization Tensor, is considered
[32,30,33]. This criterion determines the mechanical conditions
under which a strain rate discontinuity, across a given material
interface, is admissible.

Defining the jump, or discontinuity, operator across a material
surface S with normal vector n as follows:

sð�Þt ¼ ð�ÞjðxþdxÞ � ð�Þjðx�dxÞ 8x 2 S;

dx parallel to the n-direction and jjdxjj ! 0 ð1Þ

then, the Maxwell’s kinematical compatibility condition establishes
that a discontinuity in the strain rate s _et has the following
structure:

s _et ¼ _c�sn ð2Þ

where _c is an arbitrary (pseudo-) velocity vector and the symbol �s

denotes the external symmetric dyadic product.
We admit the existence of a strain-localization band inside

which the strain rate, _eB, experiences a jump with respect to the
strain rate in the surrounding continuum medium, _eC , and such
that: _eB ¼ _eC þ s _et. Additionally, an incrementally linear strain
rate-stress rate behavior at the macro-scale is assumed to exist
as a result of the homogenization procedure:

_r ¼ CðeðtÞÞ _e ð3Þ

where the symbol eðtÞ denotes the history of the strains up to the in-
stant ‘‘t’’ and C represents the homogenized tangent constitutive
operator which, for general non-linear models, depends on eðtÞ

(see Section 3.4). Then, the traction continuity condition across S
implies:

s _rtn ¼ s _Tt ¼ _TB � _TC ¼ CðeðtÞÞs _et
� �

n ¼ 0 ð4Þ
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where the term s _rtn ¼ _TB � _TC represents the jump between
the (rate of) traction inside the strain-localization band, _TB,
and the (rate of) traction in the continuum part of the body,
_TC . Note that (4) has been derived by assuming the same incre-
mental constitutive behavior, loading-regime, on both sides of
the surface S.

Taking into account (2) and considering the minor symmetries
of C, expression (4) yields:

C eðtÞ
� �

n
� �

_c
� �

n ¼ QðeðtÞ;nÞ _c ¼ 0 ð5Þ

where the definition of the so-called Localization Tensor QðeðtÞ;nÞ is
introduced. Non trivial solutions for the system (5), with _c – 0, can
be obtained only if Q is singular:

det QðeðtÞ;nÞ
� �

¼ 0 ð6Þ

Eq. (6) is a necessary condition for the existence of discontinu-
ous strain rate modes in the body, and can also be interpreted as a
necessary condition for the activation of velocity discontinuities
across a material surface S with normal n [27,3].

The failure criterion here adopted postulates that the nucle-
ation of a macro-crack is determined once the instability condi-
tion (6) is verified for the first time (t ¼ tN) during the loading
history. The criterion also determines the normal vector to the
localization direction n. In particular, when C possesses major
symmetries, the solution of (6) has two conjugate eigenvectors:
n and the initial opening (pseudo-) velocity direction _ci [28].
The solution of the nucleation problem (6) is denoted as:
SN ¼ ftN;n; _cig.

2.3. Macroscopic kinematical description with strong discontinuities

When a non-trivial solution SN ¼ ftN;n; _cig of the problem (6) is
detected at point x, a cohesive crack along the surface denoted S, is
there inserted. Once the crack is active, its orientation remains
fixed for all t > tN . The nucleation and evolution of a crack requires
a specific kinematical description which is presented in this
Section.

Let us consider the mechanical problem of a body B, in its con-
figuration X, exhibiting a discontinuity in the displacement field
across the surface S (S � X) with a unit normal vector n, see
Fig. 2(a). In two-dimensional cases, as depicted in the same figure,
for each point x 2 S it is possible to define a local cartesian system
fn; sg. S divides X in two sub-domains: Xþ and X�, according to
the direction of n (with n pointing to Xþ).

For subsequent developments, we define Xu as an arbitrary
sub-domain of X (Xu � X) including the interface discontinuity
S (S � Xu), with piece-wise smooth boundary Cu which
can be split as: Cu ¼ Sþ [ S� [ Cu

I [ Cu
II , see Fig. 2(b). Also, note

that S divides Xu in two sub-domains Xu
þ and Xu

� (n pointing
towards Xu

þ). The (outward) unit vectors nþ, n�; nI and nII

are normal to the boundaries Sþ; S�; Cu
I and Cu

II of Xu,
respectively.

After the insertion of the macro-crack, a strong discontinuity
develops on S. Let us consider the total macro-displacement field
u and the arbitrary smooth vectorial function b, defined in
X� ½tN; T� ! Rndim, which is such that:

bðx; tÞ :¼ ½½u��ðx; tÞ 8x 2 S and ðrxbÞn ¼ 0 8x 2 X ð7Þ

Thus, b represents the displacement jump in S. Following to [38],
the discontinuous macro-displacement field can be written as the
addition of two terms:

uðx; tÞ ¼ uðx; tÞ
zfflfflffl}|fflfflffl{continuous

þMSðxÞbðx; tÞ
zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{discontinuous

; 8x 2 X ð8Þ
where uðx; tÞ is a smooth function in X and is called the continuous
displacement term, andMSðxÞ is a prescribed function, constant in
time, usually called the Unit Jump function and defined as follows,
see Fig. 2(b):

MSðxÞ :¼ HSðxÞ �uðxÞ; HSðxÞ ¼
0 8x 2 X�
1 8x 2 Xþ

�
; uðxÞ ¼

0 8x 2 X� nXu
�

1 8x 2 Xþ nXu
þ

(
ð9Þ

HSðxÞ : X! R is the Heaviside step function shifted to the disconti-
nuity surface S and uðxÞ : X! R is a sufficiently smooth and arbi-
trary function with the two requirements showed in Eq. (9)-right.
From equations (9) MSðxÞ has compact support and it coincides
with Xu (MSðxÞ � 0 8x 2 X nXu).

In view of the above definitions, the strain tensor e, compatible
with Eq. (8), is expressed as:

e ¼rs
xu ¼ rs

xuþMSrs
xb� b�srxu ¼ eRðu;bÞ;

8x 2 X n S ð10Þ

wherers
x is the symmetric gradient operator. Note that the expres-

sion eRðu;bÞ is a regular bounded term. Considering the compact
support of b; MS and u, from expression (10), we have:
e ¼ rs

xu; 8x 2 X nXu.
For the macro-points located in S, we introduce the notion of

generalized strain which, in this case, is characterized by: (i) the
vector b in S with normal n and (ii) the regular counterpart eR,
see Eq. (10). Then, generalized strains in S are characterized
through the list of variables: feR; b;ng.

Kinematically admissible discontinuous macro-displacements
u, are described by the elements ðu; bÞ of the linear manifold U ,
which is defined as:

U � ðu;bÞ ; u 2 H1ðXÞ; b 2 H1ðXÞ and ujCD
¼ uD

n o
ð11Þ

where H1ð�Þ is the vectorial space of functions whose first deriva-
tive is square-integrable. In the present context, the vector space
V characterizing the virtual kinematically admissible actions
(velocities), denoted by û ¼ ûþMS b̂, reads:

V � ðû; b̂Þ; û 2 H1ðXÞ; b̂ 2 H1ðXÞ and ûjCD
¼ 0

n o
ð12Þ
2.4. Variational equilibrium problem at the macro-level

In problems with nucleation and evolution of cohesive cracks,
the equilibrium at the macro level is described by means of the
Principle of Virtual Power (PVP), as follows:

Given prescribed values of body forces b and predefined trac-
tions t; find the kinematically admissible displacement field
ðu; bÞ 2 U , such that:
Z

XnS
rðu; bÞ 	 êR dXþ

Z
S

Tðu;bÞ 	 b̂ dS

�
Z

XnS
b 	 ðûþMS b̂Þ dX��

Z
CN

t 	 û dC ¼ 0; 8ðû; b̂Þ 2 V

ð13Þ
where the first integral term is the internal virtual power in the
continuous part of the solid, and the second one is the internal vir-
tual power of the cohesive crack, noting that this term is present in
the formulation whenever the failure criterion presented in Sec-
tion 2.2 has been fulfilled. In both terms, êR ¼ eRðû; b̂Þ and b̂ repre-
sent the virtual kinematically admissible generalized-strains. On the
other hand, the third and fourth terms in (13) are the external vir-
tual power.
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In order to completely define the mechanical problem at the
macro-scale, constitutive relations for the stress field, r, and for
the cohesive traction, T , need to be prescribed. In this contribu-
tion it is assumed that each one of this constitutive relations is
obtained using specific multi-scale formulations that are defined
in the following Sections. In general, we consider non-linear
material responses, where the functionals of the stress-like
macro-quantities r and T , at time t, depend on the history of
the strain-like macro-variables up to the time t, here denoted
as: eðtÞR and bðtÞ.

Defining the history of the generalized strains in the spatial do-
mains and time intervals by means of:
eðtÞR ðx; tÞ; 8x 2 X n S and 8 t 2 ½0; T� ð14Þ

feðtÞR ðx; tÞ;b
ðtÞðx; tÞg; 8x 2 S and 8 t 2 ½tN ; T� ð15Þ
the generalized stress functionals can be written as follows:
r ¼ F ðeðtÞR Þ ¼ F 
ðeðt�dtÞ
R ;deRÞ; 8x 2 X n S; 8 t 2 ½0; T� ð16Þ

T ¼T ðeðtÞR ; b
ðtÞÞ ¼ T 
ðeðt�dtÞ

R ;bðt�dtÞ;deR;dbÞ; 8x 2 S ;

8 t 2 ½tN ; T� ð17Þ
where the symbols eðt�dtÞ
R and bðt�dtÞ stand for the history of the gen-

eralized strains up to time ðt � dtÞ and dð�Þ represents the infinites-
imal increments at t. The last terms in the right side of both
equations explicitly introduce, in the arguments of the stress func-
tionals, the kinematically admissible strain increments deR and db,
at t. Also, the generalized stresses can be written in incremental
form:
r ¼ rt�dt þ dr; T ¼ T t�dt þ dT ð18Þ
where the sub-indices identify the pseudo-time at which the vari-
ables are evaluated. From now on, and in order to simplify the nota-
tion, we remove the sub-indices when variables are evaluated at the
present time ‘‘t’’.

Remark 2.2. From a thermodynamical point of view, T only
produces virtual power through the kinematically admissible
variations b̂, i.e. T is conjugate to b̂. Thus, the regular component
eR, in the argument of function (17), works as a parameter when
the virtual power of cohesive forces is evaluated. In Section 4 we
exploit this feature.
2.5. The whole constitutive response via a Failure-Oriented Multi-scale
Formulation (FOMF)

From the perspective of the variational formulation, the solu-
tion of the equilibrium problem at the macro-level requires the
definition of two different constitutive multi-scale models. Each
one is enunciated as follows:

� A Classical Multi-scale Model (ClaMM) for the regular domain in
the macro-scale (refer to Section 3 for more details):
– 8x 2 X n S and 8 t 2 ½0; T�,
– given the history of regular strains eðt�dtÞ

R and the strain incre-
ment deR, obtain the associated increment of macroscopic
stress dr.
� A Cohesive Multi-scale Model (CohMM) for the points in the
macro-crack (refer to Section 4 for additional details):
– 8x 2 S and 8 t 2 ½tN; T�,
– given the history of generalized strains eðt�dtÞ

R ; bðt�dtÞ
n o

and the generalized strain increment fdeR; dbg, obtain
the associated increment of macroscopic cohesive traction
dT .

The FOMF approach proposed in this contribution is based
on a consistent mechanical coupling between the two
sub-models: ClaMM and CohMM. In order to clarify ideas,
Fig. 3 sketches the whole homogenized constitutive response
of a macro-point x which, at t ¼ tN , nucleates a cohesive
crack.

The basic ingredients defining the macro-mechanical problem
with nucleation and evolution of cohesive cracks are summarized
in Box 1, while both sub-models, the ClaMM and CohMM, are de-
scribed in the two following sections.
3. Classical Multi-scale variational Model (ClaMM)

Following the similar axiomatic framework described in
[40,41,29], the foundations of the so-called Classical Multi-scale
Model (ClaMM) are here summarized. In addition, we introduce
the definitions and nomenclature of new operators, that are use-
ful in the subsequent developments of Section 4. We remark, as
a particular aspect in this Section, the effect that the kinematical
assumptions and the Hill–Mandel Principle have on the resulting
stress homogenization rule and the equilibrium problem at mi-
cro-level.

The ClaMM results an important ingredient of the complete pro-
posed multi-scale methodology. It is used to obtain the macro
homogenized constitutive response in the following two situa-
tions, see the item 4.1 in Box 1 and also Fig. 3:

(i) in those points where, according to the criterion discussed in
Section 2.2, no crack formation is detected during the entire
load history;

(ii) during the period of stable homogenized material response
in the points where, eventually at a posterior time, a crack
is inserted.

From the previous explanations, the kinematics at macro-level,
in the present context of analysis, is only characterized by the reg-
ular strain component eR.

As it is well known, material models with softening charac-
terizing the micro-structural constituents, require a ‘‘regulariza-
tion’’ of the constitutive theories to keep the mechanical
problem well-posed. Depending on the specific technique used
to perform this regularization, some particular aspects of the fol-
lowing ClaMM can be described through different approaches. To
avoid unnecessary details that would obscure the following pre-
sentation, we adopt a regularization strategy based on the
‘‘Smeared Crack Approach’’ to fracture (SCA) [31], which uses a
standard continuum mechanical description at the micro-scale
level and regularizes the softening parameter according to the
fracture energy and a predefined characteristic length. However,
the foundations of the proposed multi-scale formulation works
well with different regularization strategies, such as: non-local
schemes, gradient/higher-order models as well as strong discon-
tinuity techniques with cohesive laws. In other word, the meth-
odology is flexible for adopting different regularization strategies
in the RVE.



Box 1: Macro-mechanical problem with strong discontinuities. Basic concepts and ingredients

1.Kinematics:

u ¼ uþMS b ; 8x 2 X

e ¼ eR ¼ rs
xuþMSrs

xb�rxu�sb ; 8x 2 X=S

ðu;bÞ 2 U ; U � ðu;bÞ; u 2 H1ðXÞ; b 2 H1ðXÞ and ujCD
¼ uD

n o
1. Virtual kinematically admissible actions (velocities):

û ¼ ûþMS b̂

ðû; b̂Þ 2 V; V � ðû; b̂Þ; û 2 H1ðXÞ; b̂ 2 H1ðXÞ and ûjCD
¼ 0

n o
2.Variational Equilibrium Problem:

Given b and t; find ðu; bÞ 2 U such that :Z
XnS

r 	 rs
xðûþMS b̂Þ dXþ

Z
S

T 	 b̂ dS

�
Z

XnS
b 	 ðûþMS b̂Þ dX�

Z
CN

t 	 û dC ¼ 0; 8ðû; b̂Þ 2 V

3.Constitutive response via the Failure-Oriented Multi-scale Formulation (FOMF):

4:1 8x 2 X=S and 8 t 2 ½0; T� : Given eðt�dtÞ
R and deR; find dr;

via a Classical Multi-scale Model (ClaMM), refer to Section 3 and Box 2. Update stresses: r ¼ rt�dt þ dr

4:2 8x 2 S and 8 t 2 ½tN; T� : Given feðt�dtÞ
R ;bðt�dtÞg and fdeR;dbg; find dT;

via the Cohesive Multi-scale Model (CohMM), refer to Section 4 and Box 3. Update tractions: T ¼ T t�dt þ dT

4.Cohesive crack nucleation criterion:

Find SN ¼ ftN;n; _cig; verifying the singularity of the Localization Tensor QðeðtÞ;nÞ :

det QðeðtÞ;nÞ
� �

¼ 0; 8x 2 X=S and 8n 2 Rndim

where QðeðtÞ;nÞ _c ¼ ½ðCðeðtÞÞnÞ _c�n; 8 _c 2 Rndim

and CðeðtÞÞ is the Homogenized Tangent Constitutive Tensor; obtained via a Classical Multi� scale Model ðClaMMÞ
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3.1. Kinematical description at the micro-cell level

Let us consider a reference configuration Xl (Xl � Rndim) of the
heterogeneous micro-cell Bl having a piece-wise smooth boundary
Cl, see Fig. 1. A specific reference system is introduced to describe
the mechanical problem at the micro-scale. Points in Bl are de-
noted ‘‘y’’ (y 2 Xl).

Macro-fields depend on ‘‘x’’, whereas those defined at the mi-
cro-scale depend on ‘‘y’’. For the sake of simplicity, all functional
dependencies on ‘‘y’’ are omitted, while the sub-index ð�Þl denotes
the variables defined in Bl. Additionally, we use the prefix ‘‘micro-
ð�Þ’’ for the fields defined at the micro-scale.

Let eR ¼ rs
xu ¼ eRðu; bÞ be the regular component of the strain at

the point x 2 X n S, see Eq. (10). We define the total micro-strain
field, el, as the addition of two contributions:

el ¼ IyðeRÞ þ eel ð19Þ

where the first term represents the (macro-to-micro) insertion of the
regular macro-strain into the RVE, and the second term is the micro-
strain fluctuation field given by eel ¼ rs

y
eul, with eul being the fluc-

tuation of the micro-displacement field. From now on, the supra-
symbol ðe�Þ denotes fluctuations in Bl.

The Insertion Operator Iyð�Þ maps a symmetric second order
tensor, defined at the macro-scale, into a symmetric second order
tensor field in the micro-cell domain. In addition, Iyð�Þ is a linear
application, thus it can be expressed in the form:

Iyð�Þ � IðyÞ ð�Þ ð20Þ

with IðyÞ being a fourth order tensor micro-field, that must be prop-
erly defined.

Using the incremental format introduced in the previous Sec-
tion, and the property (20), we can alternatively write Eq. (19) as
follows:

del ¼ IðyÞdeR þrs
ydeul ð21Þ

We say that del is ‘‘Kinematically Admissible’’ in Xl, for a given
IðyÞð�Þ, if it satisfies:Z

Xl

del dXl ¼
Z

Xl

IðyÞdeR dXl ð22Þ

In the Classical Multi-scale Formulation, the Insertion Operator is de-
fined as the identity operator, such that for each point y 2 Xl, it can
be characterized by the fourth order identity tensor: I. Then, deR is
homogeneously inserted into Xl, and Eq. (21), results:

del ¼ deR þrs
ydeul ð23Þ

Under this condition, the Eq. (22) yields:
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deR ¼
1
jXlj

Z
Xl

del dXl ð24Þ

with jXlj being the measure of Xl.
Replacing del, defined in (21), in (24) and using standard math-

ematical manipulation, Eq. (24) results equivalent to the following
kinematical constraint at the micro-cell level:Z

Cl

deul�sml dCl ¼ 0 ð25Þ

where ml is the outward unit vector normal to the boundary Cl.
Prescription (25) defines what is known as the Minimally Con-
strained Vector Space of kinematically admissible incremental displace-
ment fluctuations at the RVE-level: ~Ul. We establish that deul is
admissible if deul 2 ~Ul, where ~Ul is defined as:

~Ul � deul; deul 2 H1ðXlÞ and
Z

Cl

deul�sml dCl ¼ 0

( )
ð26Þ

from where we can define the minimally constrained vector space
Vl of virtual kinematically admissible actions (velocities), ûl, as
follows:

Vl � ûl; ûl 2 H1ðXlÞ and
Z

Cl

ûl�sml dCl ¼ 0

( )
ð27Þ

Summarizing, we have: deul 2 ~Ul and ûl 2 Vl � ~Ul.
Taking into account (21) and (27), it is also possible to introduce

the concept of virtual kinematically admissible (rate of) micro-
strain êl:

êl ¼ IðyÞ êR þrs
yûl; 8 êR and 8 ûl 2 Vl ð28Þ

êR being a virtual kinematically admissible (rate of) macro-regular
strain.

Remark 3.1. Expression (24) is widely known as the Strain
Homogenization Principle. In the present framework, we remark
the fact that expression (24) is not a Principle, but a condition
derived from the Kinematical Admissibility concept, introduced in
(22). Then, alternative multi-scale models can be derived by
adopting different Insertion Operators Iy that lead to Strain
Homogenization Procedures not coinciding with (24).
Remark 3.2. From (26), alternative Classical Multi-scale Models
can be defined by adopting different sub-spaces of the minimally
constrained vector space ~Ul (and Vl), such as: the Taylor or homo-
geneous strain model, the Linear or affine RVE-boundary displace-
ment model, the Periodic RVE-boundary displacement fluctuations
model. Moreover, it can be proved that the formulation with min-
imum kinematical restrictions, given by the definition (26), repre-
sents the so-called Uniform boundary Traction model [40].
3.2. The Hill–Mandel Variational Principle of macro-homogeneity

In order to guarantee the energetic consistency between the
macro and micro scales, the Hill–Mandel Variational Principle is
assumed. This principle establishes an equivalence between the
virtual internal power at the macro-scale and the homogenized
virtual internal power at the micro-scale:

r 	 êR ¼
1
jXlj

Z
Xl

rl 	 êl dXl;

8 êR and 8 êl kinematically admissible ð29Þ

where rl is the stress tensor field in the micro-scale. Alternatively,
writing r and rl in term of stress increments, as shown in expres-
sion (18)left, and considering that the variational equation (29) is
satisfied throughout the history, this Variational Principle reads:
dr 	 êR ¼
1
jXlj

Z
Xl

drl 	 êl dXl;

8 êR and 8 êl kinematically admissible ð30Þ

Inserting (28) into (30), and after some algebra, the Hill–Mandel
Variational Principle is expressed as:

dr� 1
jXlj

Z
Xl

IðyÞð ÞT drl dXl

" #
	 êR �

1
jXlj

Z
Xl

drl 	 rs
yûl dXl ¼ 0;

8 êR and 8 ûl 2 Vl ð31Þ

where IðyÞð ÞT represents the transpose of the Insertion Tensor IðyÞ. In
the present context: IðyÞð ÞT ¼ IðyÞ ¼ I.

3.2.1. First consequence of the Hill–Mandel Principle: the homogenized
mechanical response

From expression (31), considering arbitrary variations of êR and
fixing to zero ûl, it is derived the so-called micro-to-macro Stress-
Homogenization Operator Hð�Þ:

HðdrlÞ ¼ dr ¼ 1
jXlj

Z
Xl

IðyÞð ÞT drl dXl ð32Þ

which, for the particular case of the ClaMM, it results in the conven-
tional stress homogenization procedure:

HðdrlÞ ¼ dr ¼ 1
jXlj

Z
Xl

drl dXl ð33Þ

Note that the Insertion Operator, Iyð�Þ, plays a fundamental role
in the characterization of the Stress Homogenization Operator Hð�Þ,
see Eq. (32). Any change in Iyð�Þ, i.e. changes of the kinematical
description, would introduce modification in the stress homogeni-
zation process to hold the energetic consistency, the Hill–Mandel
Principle in this case. We exploit this concept in Section 4.

3.2.2. Second consequence of the Hill–Mandel Principle: the RVE
equilibrium problem

Alternatively, considering arbitrary variations ûl and fixing to
zero the variations êR in expression (31), it is derived the RVE equilib-
rium problem that is written in a variational format as follows:

Given the history of the regular strains eðt�dtÞ
R and a kinemati-

cally admissible increment deR; find the incremental micro-dis-
placement fluctuation field deul 2 eUl, such that:
Z

Xl

drl 	 rs
yûl dXl ¼ 0; 8 ûl 2 Vl ð34Þ
Eq. (34) prescribes a self-equilibrated micro-stress field, which
can be understood as a reaction to the imposed generalized loading
system induced by IyðdeRÞ.

Remark 3.3. From the topics discussed in the present Section, the
conceptual guidelines for the formal treatment of a kinematical
and variationally consistent multi-scale formulation can be sum-
marized in three basics steps:

(1) Postulate the kinematical description at the micro-level by
introducing the definition of the strain tensor field el

through the selection of the Insertion Operator Iyð�Þ.
(2) Apply the (incremental) Kinematical Admissibility concept,

Eq. (22), from where a Strain Homogenization Procedure
emerges.

(3) Postulate the energetic equivalence between the macro and
micro scales through the Hill–Mandel Variational Principle.
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Once defined this theoretical framework and following purely
variational arguments, both mechanical ingredients: (i) the
homogenized stresses, i.e. the definition of the Stress-Homogeni-
zation Operator Hð�Þ, and (ii) the RVE mechanical equilibrium
equations, emerge as ‘‘direct consequences’’ of the formulation.

Assumptions of purely kinematical character, such as those de-
scribed in points (1) and (2) above, guide our proposal to general-
ize the Classical Multi-scale Formulation for modeling material
failure problems.

3.3. Constitutive model at the micro-scale

In general, the stress state in the RVE, rl, depends on the history
of the micro-strains through a given constitutive functional of the
type:

rl ¼ Fl eðtÞl
� 	

ð35Þ

For the problems addressed in this work, the functional Fl de-
scribes a generic dissipative inviscid material model with regular-
ized softening, not necessarily derived from a convex potential.

3.4. Homogenized tangent constitutive tensor

The linearization of the macro-homogenized constitutive re-
sponse defines the so-called Homogenized Tangent Constitutive Ten-
sor C. Evaluation of C is necessary for two reasons: (i) numerical
procedures to solve the fully coupled non-linear macro–micro
multi-scale problem, generally requires its computation and (ii)
as it is explained in Section 2.2 and based on this tensor, we define
a material stability criterion in order to determine the instant
when a cohesive crack is introduced in a point x at the macro-level.
The last item motivates this Section.

Let us consider the conventional definition of the constitutive
tangent operator, which can be expressed as:

CðeðtÞÞ ¼ Dr
DeR






eR

¼ Ddr
DdeR






eR

ð36Þ

where D
DeR
ð�Þ denotes the ‘‘total derivative’’ with respect to eR. Then,

regarding the dependence of dr with drl through expression (33),
jointly with the definition of rl in (35) and el in (21), the expres-
sion (36) can be rewritten as follows:

C ¼ D dr
D deR






eR

¼ 1
jXlj

Z
Xl

Cl dXl|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
Taylor Contribution

þ 1
jXlj

Z
Xl

Cl
@ deel

@ deR
jeR

dXl|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
Fluctuation contribution

¼ CT þ eC ð37Þ

where Cl ¼ @drl
@del





eR

represents the tangent constitutive tensor for

each point y, at the RVE-level, which depends on the functional
Fl, see Eq. (35). From expression (37), two terms contribute to
the homogenized tangent constitutive tensor C: the first one called
the Taylor term, CT , and the second one called the fluctuation con-

tribution eC . The Taylor component CT is determined through direct
averaging of the micro-constitutive tangent tensors Cl. The compu-

tation of the fluctuation component eC is here summarized for a
cartesian system with base vectors (e1; e2; e3). It is given by:

eC ¼ 1
jXlj

Z
Xl

ðClÞijpq ðrs
yDeuklÞpq

" #
ei � ej � ek � el ð38Þ

where Deukl is the Tangential Displacement Fluctuation vector deter-
mined by solving one linear system of equations for each macro-
strain component ðek�selÞ, with k; l ¼ 1;2;3. This set of variational
linear problems is enunciated as follows: for k; l ¼ 1;2;3 find
Deukl 2 Vl such that:Z

Xl

Clrs
yDeukl 	 rs

yûl dXl ¼ �
Z

Xl

Cl ðek�selÞ 	 rs
yûl dXl

" #
;

8 ûl 2 Vl ð39Þ

Additional details about this derivation can be found in [40,29].
A summary of this Section is presented in Box 2, where the basic

ingredients defining the ClaMM are shown.

4. Cohesive Multi-scale variational Model (CohMM)

The variational multi-scale formulation presented in this Sec-
tion is envisaged for the modeling of the macroscopic post-critical
stage of materials whose micro-structure undergoes degradation
and failure. According to the methodology proposed in this contri-
bution, a cohesive-crack is inserted in a macro-point x when the
stress–strain state fulfills the criterion discussed in Section 2.2. In
this case, the Homogenized Cohesive-type Constitutive Relation,
developed in this Section, defines the corresponding constitutive
response of the point x.

We show that, following the same systematic approach of the
previous Section (see in particular the Remark 3.3), and incorporat-
ing some rational kinematical ingredients, a variationally consis-
tent framework can be established for modeling material failure
in a multi-scale setting. The following developments describe, in
detail, the item 4.2 in Box 1.

4.1. Kinematical description of the RVE

Let us focus our attention in the pseudo-time interval t > tN ,
with tN being the instant when the macro-crack nucleation
criterion is first fulfilled at a certain point x. An increment of the ‘‘gen-
eralized’’ macro-strain is characterized by a kinematically admissible
increment of the displacement jump db across the macro-crack Swith
normal n, and by an increment of the regular counterpart deR. Thus, the
kinematics in x is determined by: fdeR; db;ng.

Similarly to the ClaMM, the incremental micro-strain field, del,
can be described as the addition of two contributions:

del ¼ I 
yðdeR;dbÞ þ deel ð40Þ

involving an adequate definition of the Insertion Operator I 
y , which
depends on y, and a fluctuation component: deel :¼ rs

y deul. With
similar arguments to those given in the previous Section, only the
regular component, deR, is uniformly inserted in Xl. Then, expres-
sion (40) can be rewritten as follows:

del ¼ deR þ I L
yðdbÞ þ rs

ydeul ð41Þ

and the kinematical description reduces to define the new operator
I L

yð�Þ, which establishes ‘‘how’’ the localized macro-mode is in-
serted into the RVE, such that it is consistent with the physical phe-
nomenology of material failure at the micro-scale.

We denote XL
l (XL

l � Xl) the sub-domain where the micro-
strain field, el, localizes. The criterion that defines XL

l, at the nucle-
ation time tN , is described in Section 4.3. It is postulated that an
increment of the localized macro-kinematics, characterized by
the elements fdb;ng, is uniformly inserted into XL

l, instead of being
uniformly inserted into Xl. Then, the ‘‘macro-to-micro’’ kinematical
information transference is defined through the so-called Failure-
Oriented Insertion Operator I L

yð�Þ:

I L
yðdbÞ ¼ /L

lðyÞ
db�sn
‘M

8y 2 Xl; /L
lðyÞ ¼

jXl j
jXL

l j
¼ ‘M

‘l
8y 2 XL

l

0 otherwise

(
ð42Þ
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Fig. 4. Minimal Kinematical Constraints (boundary conditions) to be imposed on the micro-cell: (a) Classical Multi-scale Model (ClaMM), (b) Cohesive Multi-scale Model
(CohMM).
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where /L
lðyÞ is a collocation function and ‘l represents the thick-

ness where the strain localization process takes place, see Fig. 4.
Furthermore, ‘M is a length parameter that, from the definition of
/L

lðyÞ, results:

‘M ¼ ‘l
jXlj
jXL

lj
ð43Þ
Remark 4.1. In the present methodology ‘M results immaterial,
as we show in the following. Contrarily, ‘l plays a very important
and fundamental role in the mathematical formulation. Let us
consider the so called Irwin’s characteristic length of the material:
‘ch ¼ EGF=r2

u (where E is the Young’s modulus, GF the fracture energy
and ru represents an ultimate limit stress). As exposed by Bazant
and Planas [2], this physical parameter, ‘ch, is related to the width of
the localization band in softening materials. Then, ‘l could be
associated with ‘ch. However, from the modelling point of view, it is
convenient to differentiate both parameters, such that, even for a
given material with fixed ‘ch, a localization bandwidth ‘l, can be
taken depending on the adopted model for regularizing the material
softening. Typically, for example, considering a smeared crack
approach at the RVE level, ‘l should be associated to the finite
element size, while the ratio ‘l=‘ch is used to define an intrinsic
softening modulus of the continuum that regularizes the material
response during the softening regime. Alternatively, by adopting a
strong discontinuity model [27], it can be considered that: ‘l ! 0
while ‘ch remains fixed.

In the present formulation, and from Remark 4.1, the parameter
‘l, is called the localization bandwidth at the RVE finite element
discretization level.

Since the Failure-Oriented Insertion Operator I L
yð�Þ is linear,

expression (42) can be rewritten as:

I L
yðdbÞ � ILðyÞ db ¼

db�sn
‘l

8y 2 XL
l

0 otherwise

(
ð44Þ

where ILðyÞ is a third order tensor field, that maps vectors ðdbÞ
into symmetric second order tensors of the form given by (44).
Note that, irrespective of the micro-cell size, for a given
value of the macro displacement jump increment db; I L

yð�Þ
imposes ‘‘identical’’ micro-strains into the localized sub-domain XL

l.
The tensor ILðyÞ has the following property: let R be a symmet-
ric second order tensor and x an arbitrary vector, then:

R 	 ILðyÞx ¼ ILðyÞ
� 	T

R 	x ¼
1
‘l

Rn 	x 8y 2 XL
l

0 otherwise

(
8x 2 Rndim

ð45Þ

Hence ILðyÞ
� 	T

is such that:

ILðyÞ
� 	T

R ¼
1
‘l

Rn 8y 2 XL
l

0 otherwise

(
ð46Þ

We define that del, given by (41) and (44), is Kinematically
Admissible if it fulfills the following two constraints:

Z
Xl

deR þ I L
yðdbÞ

h izfflfflfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflfflfflffl{I
yðdeR ;dbÞ

dXl ¼
Z

Xl

del dXl ð47Þ

Z
XL

l

deR þ I L
yðdbÞ

h i
|fflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflffl}

I
yðdeR ;dbÞ

dXL
l ¼

Z
XL

l

del dXL
l ð48Þ

which, considering (42) and (44), are equivalent to:

deR þ
db�sn
‘M

¼ 1
jXlj

Z
Xl

del dXl ð49Þ

deR þ
db�sn
‘l

¼ 1
jXL

lj

Z
XL

l

del dXL
l ð50Þ

In the present formulation, equations (49) and (50) define the Strain
Homogenization Procedures. Notice the similarities between (49) and
(50) and the strain homogenization formula (24), of the previous
Section.

Considering the definitions (41) and (42), and after simple
mathematical manipulation, expression (49) results equivalent to
the following kinematical restriction on the micro-displacement
fluctuation increments deul:Z

Cl

deul�sml dCl ¼ 0 ð51Þ

Eq. (51) represents the conventional kinematical constraint, already
analyzed in the context of ClaMM. Therefore, we call this expression



232 P.J. Sánchez et al. / Comput. Methods Appl. Mech. Engrg. 257 (2013) 221–247
the ‘‘Standard Boundary Condition (SBC)’’ for the proposed multi-
scale formulation.

Similarly, in view of (41) and (44), the strain homogenization
procedure (50) imposes an additional kinematical constraint on
deul, given by:Z

CL
l

deul�smL
l dCL

l ¼ 0 ð52Þ
Box 2: Classical Multi-scale Model (ClaMM): given eðt�dtÞ
R and deR; find

macro-point)

1.Kinematics:

del ¼ IyðdeRÞ þ deel ¼ deR þrs
ydeul; 8y 2 Xl

Iyð�Þ � IðyÞð�Þ ¼ ð�Þ; 8y 2 Xl

1.a Kinematical Admissibility Concept and Strain HomogenizatioZ
Xl

I yðdeRÞ dXl ¼
Z

Xl

del dXl ) deR ¼
1
jXlj

Z
Xl

del dXl

deul 2 eUl; eUl � deul; deul 2 H1ðXÞ and
Z

Cl

deul�sml dCl ¼ 0

( )

1.b Virtual kinematically admissible actions (velocities):

ûl 2 Vl; Vl � ûl; ûl 2 H1ðXÞ and
Z

Cl

ûl�sml dCl ¼ 0

( )
êl ¼ I yðêRÞ þ rs

yûl; 8 êR and 8 ûl 2 Vl

2.Hill-Mandel Variational Principle of Macro-Homogeneity:

dr 	 êR ¼
1
jXlj

Z
Xl

drl 	 êl dXl ; 8 êR and 8 êl kinematically admis

2.a First consequence of the Hill-Mandel Principle: Stress Homoge

HðdrlÞ ¼
1
jXlj

Z
Xl

IðyÞð ÞT drl dXl ¼
1
jXlj

Z
Xl

drl dXl ¼ dr

2.b Second consequence of the Hill-Mandel Principle: Micro-Equil

Given eðt�dtÞ
R and deR; find deul 2 eUl such that :Z
Xl

drl 	 rs
yûl dXl ¼ 0 8 ûl 2 Vl

3.Constitutive Model at the micro-scale:

rl ¼ FlðeðtÞl Þ

4.Homogenized Tangent Constitutive Tensor:

C ¼ CT þ eC
4.a Taylor contribution

CT ¼
1
jXlj

Z
Xl

Cl dXl

4.b Fluctuation contribution

For k; l ¼ 1;2;3; find Deukl 2 Vl such that :Z
Xl

Clrs
yDeukl 	 rs

yûl dXl ¼ �
Z

Xl

Cl ðek�selÞ 	 rs
yûl dXl

" #
;

eC ¼ 1
jXlj

Z
Xl

ðClÞijpq ðrs
yDeuklÞpq dXl

" #
ei � ej � ek � el
where CL
l is the boundary of XL

l and mL
l its outward unit normal vec-

tor. Observe that Eq. (52) naturally emerges from the adopted kine-
matical assumptions and induces kinematical boundary conditions
to be applied on the new boundary CL

l. Hereafter, expression (52) is
called the ‘‘Non-Standard Boundary Condition (NSBC)’’. It is interesting
to observe here that the kinematical boundary condition NSBC to be
prescribed over the new boundary CL

l is of the same type of the kine-
matical boundary condition SBC applied over the boundary of the
RVE, Cl. Furthermore, from the theoretical point of view they do
not need to be identical. See the examples in Section 5.4 and 5.6.
dr and C (Equations governing the stable material response of a

n Procedure:

sible

nization Operator Hð�Þ

ibrium problem

8 ûl 2 Vl
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Remark 4.2. The distinguishing features of the present CohMM
approach are threefold: (i) the nature of the adopted Insertion Operator
I L

yð�Þ defined in expression (42), (ii) the ‘‘Kinematical Admissibility’’
concept given by expressions (47), (48) and (iii) the additional derived
kinematicalconstraintsgivenbyexpression(52).Thesefeaturesrepresent
the most salient differences between the present model and existing
multi-scale formulations accounting for failure and strain localization.

The set of Eqs. (51) and (52) defines what we call the Minimally
Constrained Vector Space of kinematically admissible incremental dis-
placement fluctuations in the RVE: eU L

l. Formally, the micro-field deul

is kinematically admissible if deul 2 eU L
l:

eU L
l � deul; deul 2 H1ðXlÞ;

Z
Cl

deul�sml dCl ¼ 0 and

(
Z

CL
l

deul�smL
l dCL

l ¼ 0

)
ð53Þ

Then, the minimally constrained vector space VL
l of virtual kinemat-

ically admissible actions (velocities), ûl, can be defined as:

VL
l � ûl; ûl 2 H1ðXlÞ;

Z
Cl

ûl�sml dCl ¼ 0 and
Z

CL
l

ûl�smL
l dCL

l ¼ 0

( )
ð54Þ

from where: eU L
l � VL

l. Furthermore, it follows that:
VL

l � Vl ð55Þ
where Vl has been defined in expression (27).

Considering (41), (44) and (54), it is also possible to introduce
the concept of virtual kinematically admissible micro-strain êl:

êl ¼ ILðyÞ b̂þrs
yûl ¼ /L

lðyÞ
b̂�sn
‘M
þrs

yûl; 8 b̂ and 8 ûl 2 VL
l

ð56Þ
where b̂ is a virtual kinematically admissible macro-displacement
jump defined in S. Comparing Eq. (41) with (56), it can be noticed
that, for t > tN; deR does not induce virtual actions in the micro-scale.

In Fig. 4, we compare the Minimal Kinematical Constraints that are
imposed on a generic RVE using both, the ClaMM and the CohMM ap-
proaches. As we show in Section 4.2, the additional restriction (52)
gives mechanical consistency to the formulation, in the sense that the
homogenized response results objective with respect to the RVE-size.

The Standard Boundary Condition (51) is included in the model from
the beginning of the analysis. Meanwhile, the Non-Standard Boundary
Condition (52) is introduced once the sub-domain XL

l is properly de-
fined, i.e. after fulfilling the macro-crack nucleation criterion at
t ¼ tN . In this context, the adopted ‘‘incremental’’ framework plays a
fundamental role because it allows for a time continuous kinematical
transition, from the ClaMM to the new CohMM, which is adapted for
the treatment of generalized kinematics (strain and macro-discontinu-
ities). The topology of XL

l has to be established according to the micro-
cell mechanical state at tN . In Section 4.3, we propose a kinematical cri-
terion to define the geometry and boundaries of XL

l.

Remark 4.3. Alternative Failure-Oriented Multi-scale sub-models
can be adopted by taking sub-spaces of eU L

l and VL
l, such as: (i) the

Taylor model, (ii) the Linear or Affine model and (iii) the Periodic
model. Note also that, any alternative combination between the
multi-scale sub-models derived from the Standard Boundary
Condition (51) and those derived from the Non-Standard Boundary
Condition (52), are also possible. From this perspective, expression
(52) represents the most flexible Kinematical Constraint.

Henceforth, we follow the same conceptual steps and variational
arguments discussed in the context of the ClaMM. Thus, once the kine-
matics of the multi-scale model has been defined, the Hill–Mandel
Principle is postulated and its variational consequences are derived.
This fact evidences the kinematical character of the assumptions incor-
porated in the present multi-scale framework, justifying the comments
in the items (I) and (II) listed in the introductory Section.
4.2. The Hill–Mandel Variational Principle of macro-homogeneity

In order to guarantee energetic consistency, the Hill–Mandel
Variational Principle of Macro-Homogeneity is postulated. For the
present case we adapt this Principle to deal with the generalized
stresses, T , and generalized virtual displacement, b̂, which are de-
fined at the macro-level. Thus, the macro internal virtual power per
unit of crack area is given by:
Pint
S ¼ T 	 b̂ ð57Þ

Then, for t > tN , the Hill–Mandel Principle is written as follows:

T 	 b̂ ¼ ‘M

jXlj

Z
Xl

rl 	 êl dXl; 8 b̂; 8 êl kinematically admissible ð58Þ

where the right hand side term represents the RVE total internal vir-
tual power per unit of area of a RVE characteristic surface, orthogo-
nal to the vector n, and representative of the failure domain in Xl.
The area of this surface is given by: jXlj=‘M .

Considering that the variational equation (58) is satisfied during
the previous loading history, see the remark (4.5) below, and the
definition of virtual micro-strain êl from (56), the Hill–Mandel
Principle can be expressed in an incremental form, as follows:

dT � ‘M

jXlj

Z
Xl

ILðyÞ
� 	T

drl dXl

" #
	 b̂� ‘M

jXlj

Z
Xl

drl 	 rs
yûl dXl ¼ 0;

8 b̂; 8 ûl 2 VL
l ð59Þ
4.2.1. First consequence of the Hill–Mandel Principle: the Failure-
Oriented homogenized mechanical response

From the variational equation (59), by taking arbitrary varia-
tions b̂ and ûl � 0, it is derived the micro-to-macro Failure-Oriented
Stress Homogenization Operator HLð�Þ:

dT ¼HLðdrlÞ ¼
‘M

jXlj

Z
Xl

ILðyÞ
� 	T

drl dXl; for t > tN ð60Þ

and by recalling the property of the tensor ILðyÞ
� 	T

, given by
expression (46), this Operator reads:

HLðdrlÞ ¼
1
jXL

lj

Z
XL

l

drl n dXL
l; for t > tN ð61Þ

Observe that the homogenization of the stresses at the micro-
level, Eqs. (60) and (61), is not an ‘‘a priori’’ mechanical definition,
but it arises as a consequence of the adopted admissible kinemat-
ics, defined through the operator I L

yð�Þ, and the Hill–Mandel
Principle.

The expression (60) is a Non-Standard homogenization procedure
for stresses. It has two distinctive features with respect to the classi-
cal stress homogenization approach defined in Eq. (33):

(i) the homogenization is performed considering the contribu-
tion from points y 2 XL

l, according to the definition of the
adopted insertion operator I L

yð�Þ, and
(ii) the homogenization is performed with the incremental trac-

tion drl n.

The previous considerations give a full justification for the point
(III) enunciated in the introductory Section.

Remark 4.4. The present stress homogenization procedure
ensures an objective connection between dT and db, irrespective
of the RVE-size. Observe that the application of the additional Non-
Standard Boundary Condition (52) associates the increments of the
generalized strains, db, with the strains inserted into XL

l, since:R
XL

l
deel dXL

l ¼ 0.
This remark justifies the item (VI) listed in the introduction

Section.
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4.2.2. Second consequence of the Hill–Mandel Principle: the RVE
equilibrium problem

From expression (59), by adopting b̂ � 0 and arbitrary varia-
tions ûl, it is derived the variational equilibrium at the micro-level,
which is enunciated as follows:
Given the history of macro-generalized strains feðt�dtÞ
R ; bðt�dtÞg and

kinematically admissible increments fdeR; dbg; find the incremen-
tal micro-displacement fluctuation field deul 2 eU L

l, such that:Z
Box
mac

1.K

del

/L
lð

I L
yð

1

1

2.H

dT

2

2

Xl

drl 	 rs
yûl dXl ¼ 0; 8 ûl 2 VL

l and for t > tN ð62Þ
The variational equation (62) determines that the incremental

micro stress field, drl, is self-equilibrated. This stress is the reac-
tion to the imposed generalized loading system induced by the
application of the generalized macro-strain increments, deR and
I L

yðdbÞ, in Xl and XL
l, respectively. Moreover, notice that the vari-

ational equilibrium problem is subjected to special kinematical
restrictions according to the definitions of eU L

l and VL
l, expressed

in (53) and (54)), which are consistent with the two strain homog-
enization procedures (49) and (50).
3: Cohesive Multi-scale Model (CohMM): given feðt�dtÞ
R ;bðtÞg and f

ro-cohesive cracks)

inematics:

¼ deR þ I L
yðdbÞ

zfflfflfflfflfflfflfflfflfflffl}|fflfflfflfflfflfflfflfflfflffl{
I
yðdeR ;dbÞ þ deel ¼ deR þ /L

lðyÞ
db�sn
‘M

þrs
ydeul; 8

yÞ ¼
jXl j
jXL

l j
¼ ‘M

‘l
8y 2 XL

l

0 otherwise

(

�Þ � ILðyÞ ð�Þ ¼ /L
lðyÞ

ð�Þ�sn
‘M

; 8y 2 Xl

.a Kinematical Admissibility Concept and Strain HomogenizatioZ
Xl

deR þ I L
yðdbÞ

h i
dXl ¼

Z
Xl

del dXl ) deR þ
db�sn
‘M

¼Z
XL

l

deR þ I L
yðdbÞ

h i
dXL

l ¼
Z

XL
l

del dXL
l ) deR þ

db�sn
‘l

¼

deul 2 eU L
l; eU L

l � deul; deul 2 H1ðXÞ;
Z

Cl

deul�sml dCl ¼ 0 and

(
.b Virtual kinematically admissible actions (velocities):

ûl 2 VL
l; VL

l � ûl; ûl 2 H1ðXÞ;
Z

Cl

ûl�sml dCl ¼ 0 and
Z

CL
l

(

êl ¼ I L
yðb̂Þ þ rs

yûl ¼ /L
lðyÞ

b̂�sn
‘M
þrs

yûl; 8 b̂ and 8 ûl 2 VL
l

ill-Mandel Variational Principle of Macro-Homogeneity:

	 b̂ ¼ ‘M

jXlj

Z
Xl

drl 	 êl dXl; 8 b̂ and 8 êl kinematically admissibl

.a First consequence of the Hill-Mandel Principle: Failure-Orient

HLðdrlÞ ¼
‘M

jXlj

Z
Xl

ILðyÞ
� 	T

drl dXl ¼
1
jXL

lj

Z
XL

l

drl n dXL
l ¼ d

.b Second consequence of the Hill-Mandel Principle: Micro-Equil

Given feðt�dtÞ
R ;bðt�dtÞg and fdeR;dbg; find deul 2 eU L

l such that :Z
Xl

drl 	 rs
yûl dXl ¼ 0 8 ûl 2 VL

l

For convenience, the relevant expressions defining the CohMM
are summarized in Box 3. Note the similarities and differences be-
tween the main ingredients of Boxes 2 and 3.

Remark 4.5. The derivation of Eq. (59) in terms of
increments, from expression (58), requires the time continuity of
macro-tractions inS. Particularly, this requirement has to be fulfilled at
t ¼ tN . This is a delicate issue which motivates the specific selection of
the domain XL

l described in the following Section 4.3. This time
continuity condition can be expressed as follows:

TClaMM ¼ TCohMM for t ¼ tN ð63Þ
where TClaMM is the traction vector in S evaluated with the ClaMM
formulation:

TClaMM ¼ 1
jXlj

Z
Xl

rl n dXl ð64Þ

and TCohMM is the traction vector in S evaluated with the CohMM
formulation:

TCohMM ¼ 1
jXL

lj

Z
XL

l

rl n dXL
l ð65Þ
deR;dbg; find dT (Expressions valid for the points belonging to the

y 2 Xl

n Procedures:

1
jXlj

Z
Xl

del dXl

1
jXL

lj

Z
XL

l

del dXL
lZ

CL
l

deul�smL
l dCL

l ¼ 0

)

ûl�smL
l dCL

l ¼ 0

)

e

ed Stress Homogenization Operator: HLð�Þ

T

ibrium problem
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4.3. Identification of the localization sub-domain XL
l in the micro-cell

The so-called Localization sub-domain XL
l has to be identified at

t ¼ tN when the macro-crack nucleation condition is detected. In
this Section, we define a criterion to perform this task.

First, we recall that the nucleation criterion of Section 2.2,
determining tN , is based on the existence of a strain localization-
band, normal to the vector n, and the unit vector _ci which is parallel
to the initial (pseudo-) velocity crack-opening direction. It is pre-
sumed that in the interior points of the macro-band, the strain rate
component in the direction ð _ci�snÞ increases. On the contrary, in
the exterior points of the band, this strain rate component de-
creases. Then, it is reasonable to postulate that XL

l can be identified
by exploiting this feature. The procedure to define XL

l is enunciated
in the following two steps.

Let be given the set: SN ¼ ftN;n; _cig determined at the macro-
crack nucleation time tN:

(i) Apply to the micro-cell, a uniform strain rate given by
ð _ci�snÞ. Compute the corresponding increments of the strain
rate fluctuation, d _eel, by solving a similar variational equilib-
rium problem as it is done in the previous pseudo-time
instants, see expression (34). Observe that the ClaMM setting
is still considered in this step.

(ii) In the micro-cell domain, compute the projection of the
micro-strain rate fluctuation in the direction ( _ci�sn). Then,
define XL

l as follows:
Fig. 5.
strain-l
XL
l ¼ y 2 Xl; d _eelðyÞ : ð _ci�snÞ > 0 for t ¼ tN

n o
ð66Þ
It is noted that this methodology is exclusively based on a ‘‘kine-
matical’’ criterion and does not take into account the specific con-
stitutive response of points in XL

l.
The kinematic based rule (66) defining XL

l, describes a wide
range of different situations, as for example those illustrated in
Fig. 5 where the shaded dark gray zone identifies the points fulfill-
ing the requirement (66), and thus, it is identified as the strain-
localization band XL

l. Also, in this Figure, the points where the
material is described through a constitutive model with softening
are denoted: XLs

l , the additional supra-index ‘‘s’’ indicates soften-
ing. Each situation is characterized as follows:

(a) The simpler and more intuitive case is sketched in Fig. 5(a),
where the micro-strain localization band, XL

l, is constituted
of materials displaying softening. Evidently, in this case we
have: XL

l � XLs
l .
(a) (b
Localization sub-domain XL

l for different types of heterogeneous micro-structure
ocalization sub-domain composed of softening-material and elastic fibers, and (c
(b) Fig. 5(b) shows the case where the points fulfilling the crite-
rion (66) comprise an inclusion of elastic material, XLe

l ,
which never displays unstable behavior nor softening. Then:
XL

l ¼ XLs
l [XLe

l .
(c) Fig. 5(c) shows the case where the micro-structure has voids.

In this case, the voids must be thought of being constituted
of an extremely flexible elastic material, with the elasticity
coefficient going to zero. Then, the void interior points can
also be tested through the criterion (66). Those points fulfill-
ing the criterion are denoted: XLv

l . In this case, the localiza-
tion sub-domain is defined as: XL

l ¼ XLs
l [XLv

l .

Even when we cannot formally prove that the present selection
of XL

l guarantees the continuity condition (63) in all conceivable
situations, we show in the numerical tests that traction time con-
tinuity at t ¼ tN is fulfilled in the entire range of tested situations,
which turns to encompass a wide spectrum of possible failure sce-
narios. We consider that this issue still remains open in the present
FOMF.

5. Numerical tests

The variational FOMF is implemented into a finite element code.
Details of the numerical approximation, as well as several algorith-
mic aspects of the model, are exposed in Appendix A.

In this Section we show a series of problems that are focused in
the analysis of the fundamental aspects of the methodology, that is
the nucleation and evolution of strain localized bands in the RVE
and the ‘‘objectivity’’, with respect to the micro-cell size, of the
resulting homogenized constitutive response to be transferred to
the macro-scale. All the numerical tests share the following
characteristics:

– Micro-structures display a simple topology of heterogeneities.
– The sub-domains XL

l in which strain-localization takes place is
pre-induced from the beginning of the analysis by means of
the material definition at the micro-level; thus the boundary
CL

l, following the guidelines given in Fig. 5, is also pre-induced
(although criterion (66) is employed in its determination).

– In the numerical assessments performed in Sections 5.2, 5.3,
5.4, 5.5, the non-linear macro equilibrium equations are not
solved. We define the RVE micro-mechanical problem by insert-
ing an arbitrary history of generalized macro-strains given by
the successive insertion of fdeR; dbg, at each pseudo-time
instant. However, in order to demonstrate that the present
approach works as a multiscale formulation, a simple fully cou-
pled (macro–micro) stretching numerical test is addressed in
Void

) (c)
s: (a) strain-localization sub-domain composed, entirely, of softening-material, (b)
) strain-localization sub-domain composed of softening-material and voids.



1 In a fully coupled multi-scale environment, the incremental macro-kinematics
fdeR; dbg will be obtained from the solution of the macro-equilibrium problem.

2 In the context of kinematically-based multi-scale formulations, the application of
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Section 5.6. The invariance of the macroscopic solution with
respect to the finite element mesh refinement in the micro-
scale is also showed in the fully coupled stretching example.

5.1. Preliminaries. General settings

A generic unit system is adopted: the unit of length is repre-
sented by ½L� and the unit of force by ½F�.

Two conventional rate-independent constitutive models are
used to simulate the material response at the microscopic level:

– A J2 isotropic elasto-plastic model characterized by the follow-
ing material parameters: Young’s modulus, El, Poisson ratio,
ml, yield stress, rlY and fracture energy per unit of surface area,
GlF .

– A scalar isotropic elastic-damage model characterized by:
El; ml; rlu; GlF , where rlu represents the ultimate uniaxial
limit strength.

Linear and/or exponential strain softening models are assumed
in both material responses, see [36,37] for a detailed description of
these conventional constitutive models. Conventional implicit
schemes are used for the integration of such constitutive models.
A constitutive regularization method based on the concept of
Smeared Crack Approach (SCA) [31], is adopted. Thus, the initial soft-
ening modulus Hl0 which depends, among other parameters, on the
micro-structural material characteristic length ‘ch ¼ ElGlF=r2

lY , is
regularized as shown in Table 1. In the following examples, the local-
ization bandwidth, ‘l, is chosen in advance according to the size of
the finite element mesh. However, it is noted that in more general
problems, this parameter is a result derived from the RVE analysis
and the evaluation of the localization domain: XL

l.
Except for the coupled macro–micro problem of Section 5.6, the

incremental strains inserted in the micro-cell domain,
fdeR;I

L
yðdbÞg, are parameterized as follows:

deR ¼ dvðtÞ ðK�sHÞ; K ¼ ½cosðKÞ; sinðKÞ�T ;

H ¼ ½cosðHÞ; sinðHÞ�T ð67Þ

I L
yðdwðtÞdbÞ ¼ dwðtÞ/L

lðyÞ
ðdb�snÞ
‘M

;

db ¼ ½cosðbÞ; sinðbÞ�T ; ‘M ¼ ‘l
jXlj
jXL

lj
ð68Þ

where K; H and b are arbitrary angles to be defined in each example,
/L

lðyÞ is the localization function, given by expression (42), and
n ¼ ½cosðgÞ; sinðgÞ�T , with g analytically determined in each case, is
the unit vector normal to the macro-cohesive crackS and parameter-
ized through the angle g. The coefficients dv and dw define the mag-
nitude of the regular and localized strain increments, respectively.

Sections 5.2–5.5 are devoted to analyze the objectivity of the
RVE homogenized response with respect to the micro-cell size.
Thus, for such numerical examples, we define: (i) a basic heteroge-
neous micro-structural cell, called RVE1 (the term RVE is used in the
sense explained in the remark 2.1 of Section 2), and (ii) two addi-
tional micro-cells, named RVE2 and RVE3, which are a repetition of
the basic heterogeneous cell RVE1. The homogenized constitutive
Table 1
Initial softening modulus Hl0, according to the adopted constitutive model and the
SCA.

Linear softening Exponential softening

J2-plasticity Hl0 ¼ El
2
‘l
‘ch

Hl0 ¼ El
‘l
‘ch

Elastic-damage Hl0 ¼ 1
2
‘l
‘ch

Hl0 ¼ ‘l
‘ch
response is computed and compared for the three micro-cells
using two multi-scale approaches:

– The ClaMM, described in Section 3, for the complete loading his-
tory. No kinematical enrichment (db � 0 8 t) is incorporated
during the complete analysis. The micro-mechanical problem
is entirely driven by deR. In this case, a monotonically increasing
value of deR is applied during the loading process.

– The FOMF, which consists of the ClaMM discussed in Section 3
sequentially coupled at time t ¼ tN to the CohMM (see Section 4).
In this case, for t > tN a change in the macro-kinematics, charac-
terized by fdb;ng, is induced and inserted into the micro-cells.
The evolution of these fields is ruled by expression (68). Fur-
thermore, for t > tN , we also control the regular strain incre-
ment deR. In some tests we adopt: deR ¼ 0 for t > tN . In other
situations, eR is decreased, as it should be expected when the
complete macroscopic problem is considered. In any case, for
t > tN , the localized inserted strain term, fdb;ng, is dominant
compared with deR. Thus, the cohesive homogenized response
is not very sensitive to the particular choice about the inserted
regular value deR.1

For all testes, the ‘‘Minimal Kinematical Restriction’’ is considered
for the Standard Boundary Condition ‘‘SBC’’, defined in Cl through
Eq. (51). For the Non-Standard Boundary Condition in CL

l, see Eq.
(52), the ‘‘NSBC-Minimal Kinematical Restriction’’ has been adopted,
except for the application to situations involving micro-structures
with voids (see Sections 5.4 and 5.6) where the ‘‘NSBC-Linear
Boundary Condition’’ has been applied.2 Plane strain conditions are
considered in all cases.

5.2. Micro-structures with homogeneous strain localization bands

5.2.1. Case 1-(a): horizontal strain localization bands
The first test consists of micro-cells with embedded ‘‘homoge-

neous’’ strain localization bands. The geometry for the basic heter-
ogeneous micro-structure, RVE1, is shown in Fig. 6(a) where we
define: h ¼ b ¼ 1½L� and a ¼ 0�. The additional micro-cell domains,
RVE2 and RVE3, which are used in the objectivity analysis, are also
shown in Fig. 6(b) and (c). The material M1 is linear-elastic whereas
the material M2 is characterized by an isotropic elastic-damage
relation endowed with linear and exponential strain-based soften-
ing models. Table 2 describes the material properties for M1 and
M2. The localization bandwidth, ‘l, represents the thickness where
the micro-strain field localizes. The value ‘l ¼ 0:091 ½L� has been
adopted for the three RVEs, coinciding with the finite element size
in the n-direction. The regularized initial softening modulus, Hl0, is
computed from expressions given in Table 1.

Fig. 6(f) shows the RVE1-mesh which consists of 3 quadrilateral
finite elements, while the discrete model for the RVE2 and RVE3

contains 6 and 9 elements, respectively.
The first numerical simulation is obtained considering:

K ¼ H ¼ 90�; dv ¼ 1e� 5, see Fig. 6(d). Notice that from this
the Minimal Kinematical Constraint is equivalent to imposing an Uniform Traction
Boundary Condition on the micro-cell boundary. Whenever the stiffness of a micro-
constituent intersecting the RVE-boundary goes to zero, the uniform traction also
goes to zero and so, the minimally constrained multi-scale model provides an invalid
homogenized response. The situation is worse if a pore reaches the RVE-boundary. In
such cases, alternative multi-scale models are preferred. This argument, and taking
into account the possibility of finding pores being cut by the strain-localization band
XL

l , justifies the use of the Linear multi-scale model that is proposed for the NSBC.
Independently of the previous comment and after various numerical experiments our
conclusion is that, in general, the Linear Boundary Condition is an appropriate selection
for the NSBC.
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Table 2
Material properties for the micro-structures displayed in Fig. 6.

El ½F=L2� ml rlu ½F=L2� GlF ½F=L� ‘ch ½L�

Material: M1 2.1e4 0.2 – — —
Material: M2 2.5e3 0.2 42 0.60 0.85
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setting, we model micro-structures with horizontal softening-
bands subjected to a purely axial regular strain in the vertical
direction, i.e. only eRyy – 0, see Eq. (67).

Fig. 7(a) and (b) display the homogenized stress–strain consti-
tutive relation in terms of the axial components (ryy vs. eRyy) that
are obtained with the ClaMM and considering both, linear and
exponential, softening models. During the elastic range, indicated
as A–B in these figures, the macro mechanical responses are iden-
tical for the three considered RVE-sizes. Thus, the constitutive
ClaMM is objective with respect to this parameter. However, a
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Fig. 7. Homogenized stress–strain relation (ryy vs. eRyy) obtained using the
regular macro-strain increase after crossing the point B originates,
for different RVE sizes, a very marked non-objective mechanical re-
sponse, as displayed by curves denoted B–C1, B–C2 and B–C3.

Point B marks the (pseudo-) time instant in which the Classical
homogenized response loses objectivity. It agrees with the nucle-
ation time, tN , obtained using the procedure based on the spectral
properties of the Homogenized Tangent Constitutive Tensor, C,
introduced in Section 2.2. The vector n, also given by such a crite-
rion, is consistent with the direction of the softening bands defined
in the micro-structure.

Fig. 8 shows the results obtained with the Cohesive Multi-scale
Model (CohMM) after crossing the point B (t > tN). The homoge-
nized cohesive responses are depicted in terms of the cartesian
components Ty vs. by, see Fig. 8(a) and (b). For t > tN , the (incre-
mental) inserted strain localized mode, I L

yðdbÞ, is characterized
by: b ¼ 90�; dw ¼ 1:5e� 4 and g ¼ 90�. In addition, the regular
component, eR, remains constant and equal to eRðtNÞ. Fig. 6(e) de-
picts a schematic representation of the functions vðtÞ and wðtÞ that
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control the generalized strains during the loading history, from the
beginning of the analysis. Note that the selected set of parameters
defines a pure Mode I of fracture for the macro-cohesive crack.

Fig. 8 evidences that the CohMM provides an objective cohesive
response during the post-critical regime. This property holds for
both strain-softening damage models, linear and exponential, see
the curves denoted as B–D in Fig. 8(a) and (b), respectively.

The area under the curve Ty–by, i.e. the gray shaded zones in
Fig. 8(a) and (b), defines the fracture energy per unit of surface area
at macro-level, here denoted as GF . Note that the new multi-scale
cohesive formulation returns an objective measure of GF , irrespec-
tive of the RVE-size. In this particular case, due to the simplicity of
the test3, the macro-fracture energy obtained by the integration of
the curve Ty–by, agrees with the fracture energy defined for the
material at the micro-level (GF � GlF), for both softening-based dam-
age models.

The whole constitutive response, given by the proposed varia-
tional FOMF, provides two homogenized responses for different
time intervals: (i) the ClaMM solution, for t < tN , range A–B in
Fig. 7, and (ii) the CohMM solution, for t > tN , range B–D in Fig. 8.
3 The onset of the non-linear behavior at the micro-scale coincides with the
activation of the crack at macro-level and the softening-band is homogeneous in the
micro-scale.
5.2.2. Case 1-(b): inclined strain localization bands
A second set of numerical simulations, considering identical

material properties for M1 and M2, is analyzed. For the sake of sim-
plicity, only an exponential softening rule is adopted. Inclined
bands of material with softening, characterized by an angle
a ¼ 20�, define the topology of the heterogeneous micro-structure.

The increments of regular strains, deR, and the localized compo-
nent, IyðdbÞ, inserted into the micro-scale, are defined by:
H ¼ b ¼ 60�; K ¼ 110� and g, with g determined with the crack
nucleation criterion. As a result, once the cohesive crack is acti-
vated at the macro-level, a Mixed Mode of fracture is simulated.
Minimal kinematical restriction is applied on the boundary Cl of
Xl. Observe that this type of kinematical constraint is consistent
with the nucleation and subsequent development of inclined soft-
ening bands, whereas others types of boundary conditions, such
as Linear or Periodic, do not admit such failure pattern.

The coefficients that control the generalized loading history,
dvðtÞ and dwðtÞ, are similar to those defined in the previous case
1-(a), see Fig. 6(d) and (e).

Numerical results obtained with the ClaMM are shown in Fig. 9.
Fig. 9(a) depicts the homogenized stress–strain constitutive re-
sponse in terms of the axial components, ryy vs. eRyy, while
Fig. 9(b) displays the curve rxy vs. eRxy. In the pre-critical regime,
denoted as A–B in the plots, the macro-mechanical response is
objective with respect to the RVE-size. However, after crossing
the point B, this property is lost, see the ranges B–C1, B–C2 and
B–C3 in the same Figure. Larger RVE-sizes provide more brittle
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Table 3
Material properties for the micro-structures depicted in Fig. 11.

El ½F=L2� ml rlY ½F=L2� GlF ½F=L� ‘ch ½L�

Material: M1 2.1e5 0.3 – – –
Material: M2 2.0e4 0.3 42e1 3.80 0.43
Material: M3 2.0e4 0.3 25e1 0.70 0.224
Material: M4 2.0e4 0.3 48e1 21.00 1.82
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homogenized macro-responses. This result proves that the notion
of a classical RVE is lost in the context of material failure whenever
the standard homogenization rules are used.

As explained above and by considering the bifurcation analysis
of Section 2.2, the point B, as well as the angle g, are automatically
detected during the simulations. In this case we obtain g ¼ 110�

agreeing almost exactly with the angle of the normal to the pre-de-
fined band with strain softening in the RVE.

Solutions obtained with the CohMM are displayed in Fig. 10. The
Fig. 10(a) depicts the homogenized cohesive response in terms of
the components Ty vs. by and Fig. 10(b) plots the Tx vs. bx compo-
nent. Observe that the CohMM returns an objective mechanical re-
sponse, insensitive to the RVE-size.
In this case, the fracture energy at the macro level, GF , is ob-
tained as the addition of the areas under the curves Ty–by, here de-
noted as Gy

F , and Tx-bx denoted Gx
F , i.e. GF ¼ Gy

F þ Gx
F (see the gray

shaded zones in Fig. 10(a) and (b)). Due to the simplicity of the test,
the computed value of GF agrees with the fracture energy adopted
for the material M2: GlF ¼ 0:60 ½F=L�.

In summary, the proposed FOMF, which includes both the
ClaMM for t < tN and the CohMM for t > tN , provides an objective
mechanical response during the complete loading history.

5.3. Micro-structures with non-homogeneous strain localization bands

The heterogeneous micro-structural pattern modeled in this
Section has horizontal strain localization bands composed of differ-
ent softening materials, resembling the presence of obstacles and
weaker inclusions during the propagation of the micro-failure
mechanisms.

The basic heterogeneous micro-cell geometry, denoted RVE1, is
observed in Fig. 11 as well as the additional micro-cell domains
RVE2 and RVE3, with the characteristic dimensions: h ¼ b ¼ 1½L�.
The material M1 is linear-elastic, whereas the materials
fM2;M3;M4g which compose the bands, are characterized by
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isotropic J2 elasto-plastic models equipped with linear softening,
see in particular the zoomed picture in Fig. 11(a). Table 3 describes
the material parameters. Dissimilar values have been assigned to
the yield stress (rlY ) and the fracture energy (GlF ), and thus to
‘ch, for M2; M3 and M4. Note that the localization bandwidth,
‘l ¼ 0:091 ½L�, coincides with the finite element size in the n-
direction.

Fig. 11(f) depicts the RVE1-mesh composed of 121 quadrilateral
finite elements. The discrete model for the RVE2 and RVE3 contains
242 and 363 elements, respectively.

The increments of generalized strains transferred from the
macro to the micro scale, are characterized through the following
angles: K ¼ g (g is evaluated with the nucleation criterion, result-
ing: g ¼ 90�), H ¼ b ¼ 0�. For the simulations based on the ClaMM,
it is adopted dv ¼ 1e� 5 8 t, see Fig. 11(d). Alternatively, for the
CohMM formulation, we select: dv ¼ 1e� 5 for t 6 tN; dv ¼ 0 for
t > tN and dw ¼ 5e� 4 for t > tN , see Fig. 11(e). Note that the de-
scribed set of strain loading parameters, defines a pure shear defor-
mation mode for both, the pre-critical and the post-critical regime.

Fig. 12(a) shows the homogenized stress–strain constitutive re-
sponse, in terms of the cartesian components rxy vs. eRxy, obtained
with the ClaMM. Due to the presence of weak material inclusions in
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discretization for the RVE1.
the micro-cell domain, material M3, the non-linear behavior begins
at the point denoted A0 in the figure, which is significantly below
the limit load point. Point B denotes the macro-bifurcation position
(t ¼ tN) defined with the criterion of Section 2.2. During the range
A0–B, there exist degradation mechanisms with evolution of soften-
ing at the micro-level. However, such irreversible processes are not
enough to induce material instability at the macro scale. This situ-
ation describes a stable energy dissipation regime at the macro-
scopic level even when softening is taking place in regions of the
micro-cell. Observe that the ClaMM provides an objective homoge-
nized constitutive response in the whole range A–B, which includes
a purely linear elastic behavior (A–A0) and an elasto-plastic re-
sponse due to micro-material softening (A0–B). After crossing the
point B, the classical formulation loses constitutive objectivity with
respect to the RVE-size, see the ranges B–C1, B–C2 and B–C3, in
Fig. 12(a), which correspond to the solutions of the RVE1, RVE2

and RVE3 micro-cells, respectively.
Point B is correctly detected with the nucleation criterion,

which also provides the angle g ¼ 90� defining the unit vector n
that characterizes the localized macro-deformation mode. In the
proposed multi-scale formulation, a macro-cohesive crack, with
normal n and displacement jump b, is nucleated after crossing
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the point B. In Fig. 11(a), the definition of the localization sub-do-
main XL

l is sketched. Fig. 12(b) displays the homogenized cohesive
response, represented in this case through the relation Tx vs. bx,
when the CohMM is used. Clearly, a physically admissible and
objective macro-fracture energy, GF , is captured, independently of
the RVE-size, as shown in the range denoted: B-D in Fig. 12(b). Note
also that, even though the elasto-plastic relations defined at the
micro-level are characterized with linear softening models, the
homogenized cohesive response is non-linear. This is a conse-
quence of the non-homogeneous degradation mechanisms taking
place in the micro-cell.

5.4. Micro-structures with voids

This test is based on a micro-structure containing two types of
heterogeneities: (i) micro-voids and (ii) horizontal strain localiza-
tion bands. Fig. 13 depicts the three considered micro-cell do-
mains: RVE1, RVE2 and RVE3. The characteristic dimensions of the
problem are: h ¼ b ¼ 1 ½L�, while the porosity ratio is 0:12. The
material M1 is linear elastic and M2 is described by a J2 elasto-plas-
tic relation with an exponential strain softening model, see
Fig. 13(a). Table 4 defines the parameters that characterize the
material behavior at the micro-scale. In this case, the localization
bandwidth is: ‘l ¼ 0:025 ½L�.

For the RVE1, Fig. 13(f) displays the finite element mesh used in
the numerical simulation, which is composed of 720 quadrilateral
elements. The discrete model for the RVE2 and RVE3 contains 1440
and 2160 elements, respectively.

The increments of the generalized macro-strains, inserted in the
micro-cell, are defined through the angles K ¼ 90�, H ¼ b ¼ 0�,
whereas the angle g is evaluated with the nucleation criterion of
Section 2.2, resulting: g ¼ 90�. These data agrees with a pure shear
deformation mode applied to the RVE for both, the pre-critical and
the post-critical regimes.

The first numerical simulation is performed using the ClaMM.
We adopt a monotonically increasing regular macro-strain eR,
which is controlled by the incremental coefficient
dv ¼ 2e� 5 8 t, see Fig. 13(d) and Eq. (67). Fig. 14(a) shows the
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Fig. 14. Homogenized response for porous micro-structures with horizontal strain locali
obtained using the CohMM for t > tN .

Table 4
Material properties for the micro-structures displayed in Fig. 13.

El ½F=L2� ml rlY ½F=L2� GlF ½F=L� ‘ch ½L�

Material: M1 2.1e5 0.3 – – –
Material: M2 2.0e4 0.3 42e1 5.25 4.54
homogenized stress–strain response: rxy vs. eRxy. Point B corre-
sponds with the macro bifurcation time. Objectivity with respect
to the RVE-size is observed only for the range denoted: A–B. After
crossing the point B, the macro constitutive response becomes
strongly dependent on the micro-cell size, see the ranges B–C1,
B–C2 and B–C3 in the same Figure.

Let us now consider the numerical results obtained with the
CohMM. In this case, the (strain-driven) loading history is charac-
terized by: dv ¼ 2e� 5 for t 6 tN; dv ¼ 0 for t > tN and
dw ¼ 6e� 4 for t > tN , see the plot of vðtÞ and wðtÞ in Fig. 13(e)
and expression (68). Fig. 14(b) plots the homogenized cohesive re-
sponse in terms of the components Tx vs. bx. A physically admissi-
ble objective solution is computed for the three RVE micro-cells, see
the range denoted: B–D in the same figure.

Fig. 13(a) shows the topology of the localization sub-domain XL
l

evaluated with the methodology discussed in Section 4.3. Note that
XL

l includes a portion of the void. Observe also that the proposed
identification of XL

l ensures: (i) an objective constitutive behavior
and (ii) the traction continuity condition between the ClaMM and
the CohMM at the nucleation time, tN , as can be seen by comparing
the points denoted B in Fig. 14(a) and (b), respectively.

5.5. Macro-cohesive response undergoing a loading–unloading process

Loading–unloading strain-driven processes are evaluated dur-
ing the macroscopic post-critical regime (t > tN). For this purpose
we analyze the problem presented in Section 5.2.2, Case 1-(b), with
an isotropic exponential softening model.

The incremental strain history applied after the nucleation time
(t > tN) consists of: (i) removing quickly, the strain component eR,
simulating a sudden regular unloading mechanism at the macro-
scale and (ii) controlling the inserted generalized strain, I L

yðdbÞ,
through a coefficient dw ¼ 1:5e� 4 and inserting three unloading
processes, which are simulated by changing, alternatively, the sign
of dw.

The homogenized cohesive responses determined with the
CohMM are shown in Fig. 15. The homogenized traction vs. crack
opening relation is presented, for both cartesian components, in
Fig. 15. The intrinsic mechanical response of the underlying micro-
scopic damage model, is inherited at the macroscopic level. In this
sense, subsequent unloading branches are characterized by a de-
graded elastic response related with the damage level taking place
in the localized strain softening bands.

Considering three different micro-cell sizes, RVE1, RVE2 and
RVE3, the CohMM provides an objective homogenized cohesive
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Fig. 15. Micro-structures with inclined strain localization bands subjected to loading–unloading processes. Homogenized cohesive response obtained with the CohMM for
t > tN: (a) Ty–by relation, (b) Tx–bx relation.
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response for both: loading and unloading regimes. The obtained
macro-fracture energy GF (¼ Gy

F þ Gx
FÞ is objective and agrees with

the material property, GlF , assigned to the damage-based material
M2, in the micro-scale.

5.6. A simple fully coupled macro–micro material failure simulation

This numerical experiment is devoted to show key additional
aspects concerning the present multi-scale formulation, such as:
(i) the numerical response of a fully coupled (macro–micro) simu-
lation of the material failure at macro-scale as a result of strain
localization at the micro-scale and (ii) the invariance of the homog-
enized macro-mechanical response with respect to finite element
mesh refinement in the micro-scale. Objectivity with respect to
b
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Fig. 16. 1D stretching test: (a) physical model description at the macro and micro scale
Mesh1, (d) micro-scale finite element model: Mesh2.
RVE-size has been widely proved through the examples of Sections
5.2, 5.3, 5.4, 5.5, so it is not considered here.

In order to keep the presentation as simple as possible, a 1D
stretching test is proposed. Fig. 16(a) schematizes the model at
both physical scales. The problem geometry is defined through
the following characteristic dimensions: b ¼ 180 ½L� and
bl ¼ b=100 ½L�. At the macroscopic level, the specimen left end is
clamped while its right end is stretched with a prescribed (mono-
tonically increasing) displacement value: uD. The macro-structure
is composed of two different materials: (i) a homogeneous elastic
material, called M1, modelled by means of a standard phenomeno-
logical linear-elastic law and (ii) an inelastic material located at the
center of the specimen, which is equipped with a heterogeneous
micro-structure and modelled using the proposed multi-scale for-
m
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mulation, refer to Fig. 16(a). As can be seen in the sketch, the mi-
cro-scale also comprises dissimilar material behaviors, that is: (i)
an elastic material M1, (ii) a damage material M2 with linear soft-
ening and (iii) the material M3 which, in a first simulation (Sim1), it
is considered identical to M2 and later, in a second simulation
(Sim2), it represents a void. Evidently, Sim1 corresponds to a homo-
geneous softening band in the micro-scale. In Table 5, the material
properties are described. They have the same physical meaning gi-
ven in the previous examples. In addition, the same softening reg-
ularization formulas defined in Table 1 are considered.

The problem is numerically solved by applying the FOMF frame-
work. Fig. 16 (right) show the finite element meshes used in the
simulations. At the center of the macro-specimen, triangular finite
elements with embedded strong discontinuities are considered
(refer to Fig. 16 (b)) once the bifurcation condition (6) is reached
in the corresponding RVEs (i.e. 8 t > tN). Henceforth, and within
the finite element technology context explained in the Appendix
A, two integration points are activated (PGR and PGL) in order to
impose the incremental traction equilibrium across the nucleated
macro-cohesive crack. Note that PGR is linked to a classical RVE
while PGL is linked to a localized RVE where to so-called NSBC has
been included on CL

l. Thus, the homogenized response for PGR
(in terms of ‘‘stresses’’) is obtained by applying the ClaMM and
the homogenized response for PGL (in terms of ‘‘cohesive tractions’’)
arises from the proposed CohMM.

In the micro-scale, two meshes of bi-linear quadrilateral finite
elements are used, here referred to as: Mesh1 and Mesh2, see
Fig. 16(c) and (d), respectively. The softening regularization is tack-
led by means of the smeared crack approach. Thus, the thickness of
the localization band in the RVE-discrete model is ruled by the fi-
nite element size. In this context we have: ‘Mesh1

l =bl=15 and
‘Mesh2
l =bl=45, which correspond to the minimum size of the finite

element in Mesh 1 and in Mesh 2, respectively.
All numerical simulations are carried out using Minimal Kine-

matical Restriction for the SBC and Linear Boundary Conditions for
the NSBC. Plane strain conditions are assumed at both scales.
Table 5
Material properties for the 1D stretching test.

El ½F=L2� ml rlY ½F=L2� GlF ½F=L� ‘ch ½L�

Material: M1 3.0e4 0.0 – – –
Material: M2 1.5e4 0.0 10.0 0.40 60.0
Material: M3 (Sim1) 1.5e4 0.0 10.0 0.40 60.0
Material: M3 (Sim2) 0.0 0.0 – – –
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Fig. 17. 1D stretching test – Sim1 (homogeneous softening band in the micro-scale): (a)
Tx–bx .
First, let us consider the case referred to as Sim1. Fig. 17(a)
shows the macroscopic Load–Displacement curve (Px vs. uD) on
the right end of the specimen, while Fig. 17(b) displays the homog-
enized cohesive response of the macro-crack, in terms of the carte-
sian components Tx vs. bx. For this 1D test, due to fact that the
softening band is homogeneous in the RVE, the onset of the post-
critical non-linear behavior at the micro-level coincides with the
crack nucleation at the macro-level. The dissipation process takes
place, exclusively, in the macro-cohesive crack; there is no volu-
metric dissipation at the macro-scale. Thus, both responses: the
area under the Load–Displacement curve (per unit of cross sec-
tional area) and the area under the Traction-Separation curve
(Tx–bx), provide the homogenized macro-fracture energy:
GF ¼ 0:40 ½F=L�. As expected, the so obtained magnitude of effec-
tive fracture energy coincides with the value defined at the mi-
cro-scale, Gl F , for M2 � M3. Note that the numerical results are
insensitive to mesh refinement in the micro-cell.

For the Sim2 case, a pore is included in the micro-cell definition.
Fig. 18(a) shows the macroscopic Load–Displacement curve on the
right end of the specimen. In this case, there is a volumetric stable
dissipation period at the macro-level because inhomogeneous soft-
ening takes place in the RVE, see the range A-B in Fig. 18(a). When
the damage reaches a critical level in the material M2 (at the micro-
scale), the bifurcation condition, given by Eq. (6), is satisfied and a
macro-crack is nucleated. Henceforth, the dissipation only takes
place in the cohesive interface. Fig. 18(b) displays the homogenized
cohesive response of the macro-crack after crossing the bifurcation
point (t > tN), in terms of Tx vs. bx. The area under the Tx-bx curve
gives the effective fracture-energy: GF � 0:35 ½F=L� which, as ex-
pected, is smaller than the fracture energy defined for the material
M2 (GlF ¼ 0:40½F=L�), in the micro-scale. In this case, the area under
the macroscopic Load–Displacement curve is not directly related to
the effective fracture energy, since it also includes mechanisms of
stable volumetric dissipation. Note that, once again, the numerical
results are insensitive to mesh refinement in the micro-cell.

Even though the presented stretching test is simple, the prob-
lem involves all the fundamental ingredients characterizing the
FOMF, which have been implemented into a finite element code,
such as: (i) a criterion to detect macroscopic bifurcation using
homogenized information from the micro-scale, (ii) crack nucle-
ation at the macro-scale, (iii) specific macro-kinematic insertion
into the RVE-domain, (iv) generalized homogenization for stresses
(v) imposition of Standard as well as Non-Standard Boundary Condi-
tions in the micro-cell, among other rather conventional tech-
niques. The numerical results at the macro-scale level are
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Fig. 19. Example N�1, Case 1-(a). Micro-structures with horizontal localization bands. Homogenized cohesive response obtained removing from the Failure-Oriented Multi-
scale Formulation the additional Non-Standard Boundary Condition (NSBC) applied over the boundary of the localization sub-domain: (a) linear softening, (b) exponential
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physically consistent and insensitive to mesh refinement in the mi-
cro-scale.

6. Additional discussions

Regarding the FOMF, in this Section we investigate the effect
that the removal of the Non-Standard Boundary Condition (NSBC)
has on the objectivity of the cohesive response with respect to
the RVE-size. Except for the NSBC removal, all the remaining kine-
matical and mechanical ingredients are preserved. Such a fictitious
model is conceptually characterized by the collection of elements
fI L

yð�Þ;HLð�Þ; eUl;Vlg meaning that, in Box 3, we change eU L
l and

VL
l by eUl and Vl, respectively. With this modified model, we eval-

uate the homogenized cohesive-response, via numerical
simulations.

The proposed numerical test is based on the Case 1-(a) of Sec-
tion 5.2.1. Fig. 19 shows the homogenized cohesive response, in
terms of the components Ty vs. by, during the post-critical regime
(t > tN), for linear and exponential damage models. Note that, for
the selected arbitrary strain-driven loading path, the objectivity of
the constitutive response, with respect to the RVE-size, is lost. This
result clearly evidences, even for this simple application, the fun-
damental role played by the Kinematical Admissibility concept along
with the ‘‘two’’ derived Kinematical Constraints, i.e. the Standard and
also the Non-Standard Boundary Condition, in order to obtain a
mechanically well-posed (objective) homogenized response. Simi-
lar conclusions are obtained for all the tests in Section 5, when
the NSBC is removed.

7. Conclusions

Throughout this work, two main contributions have been ex-
posed in the context of RVE-based Multi-scale Formulations.

First, following a variational and kinematical based approach,
the introduction of the so-called Insertion Operator Iyð�Þ allows
us to generalize the Classical Multi-scale formulations. We showed
that this operator determines the stress homogenization procedure
which emerges from a duality relation with Iyð�Þ through the Hill–
Mandel Variational Principle of macro-homogeneity. The equilib-
rium problem at the micro level and the stress homogenization
procedure are direct consequences of the formulation, once the
operator Iyð�Þ and the Kinematical Admissibility concept have been
properly defined.

Second, we presented the Failure-Oriented Multi-scale Formula-
tion (FOMF) that models heterogeneous materials whose micro-
structure undergoes softening, nucleation of strain-localization
bands and degradation phenomena. This formulation has been
envisaged for situations in which micro-failure mechanisms are
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eventually manifested through the nucleation and evolution of a
macro cohesive crack. The FOMF includes two multi-scale sub-
models that are consistently coupled: (i) a Classical Multi-scale
Model (ClaMM) valid for the macro-scale stable constitutive re-
sponse and (ii) a Cohesive Multi-scale Model (CohMM) that charac-
terizes the cohesive crack evolution. In this sense, the model
provides a standard Stress–Strain Homogenized response for the
continuum part of the solid as well as a Cohesive Homogenized Con-
stitutive Relation for the macro-crack.

The FOMF is based on a change of the macro-to-micro kinemat-
ical information transference after crossing a specific (pseudo-)
time in the loading history, denoted in this article as the nucleation
time tN . A criterion based on the spectral properties of the Homog-
enized Localization Tensor was proposed to detect the nucleation
time. After crossing this critical time, the macro-kinematics is gen-
eralized, accounting for strains and displacement discontinuities.
Such a generalized macro-kinematics is consistently inserted in
the micro-cell domain by means of a proper definition of the Inser-
tion Operator I L

yð�Þ, jointly with the Kinematical Admissibility con-
cept, related to it. In this context, two Strain Homogenization
Procedures are obtained imposing, respectively, two constraint
equations in the micro-cell kinematics: (i) the classical family of
boundary conditions in the multi-scale formulations, on the mi-
cro-cell boundary and (ii) an additional new kinematical (non-
standard) constraint on the boundary of the localization sub-
domain.

The incorporation of the Non-Standard Boundary Condition
(NSBC) guarantees the mechanical objectivity of the new formula-
tion with respect to the RVE-size and also physically consistent re-
sults. Making use of such kinematics based ingredients and
introducing the Hill–Mandel Principle of energetic equivalence,
both the Stress Homogenization Operator HLð�Þ and the variational
equilibrium problem to be solved at the micro-level, are consis-
tently derived.

A criterion to detect the localization sub-domain XL
l, at the RVE-

level, has also been presented. This strategy is fully consistent with
the nucleation criterion of Section 2.2, and postulates that every
point in the micro-cell in which the increment of strain fluctuation
field tends to localize after the nucleation instant, should be in-
cluded in the definition of XL

l. Such a methodology is quite general
and it is not restricted to points in the micro-cell displaying unsta-
ble constitutive response. It represents a purely kinematics based
criterion which, eventually, can include points that belong to mate-
rials still in a stable regime, weak elastic inclusion or, as a limit
case, parts of voids that are crossed by the strain localization
bands. The criterion allows to solve a problems of micro-structures
with voids porous micro-structure problem (see Section 5.4), as
also, opens a research area to future applications considering mi-
cro-structures composed of a softening matrix endowed with weak
elastic materials (inclusions, fibers, etc). The correct definition of
XL

l is a fundamental ingredient of the proposed Failure-Oriented
multi-scale technique.

Within the proposed multi-scale approach, a length parameter
‘l, has been introduced representing the thickness where strain-
localization takes place in the RVE. From a strictly mechanical point
of view, ‘l has a clear physical meaning as a material property of
the micro-constituents in the RVE. However, from the modelling
point of view, ‘l is not necessarily related to the Irwin’s character-
istic material length parameter ‘ch, and depends on the model that
is used to regularize the material softening. Then, the effective
fracture energy of the macro-crack, GF , depends on ‘ch, the topology
of the localization sub-domain XL

l, and the loading history, but not
on ‘l. On the other hand the characteristic length ‘M , present in the
formulation, is immaterial and must be considered as a subsidiary
parameter, which does not play any role. In fact, it is completely re-
moved from the equations governing the problem.
The FOMF allows to tackle the question about the existence of a
RVE domain when softening materials are considered.

Several numerical examples have been presented showing the
capabilities of the formulation and the objectivity of the homoge-
nized constitutive response with respect to the micro-cell size.
We claim that the proposed methodology provides not only a
well-posed variational and mechanical framework but also a com-
putationally viable technique for modelling material failure in a
multi-scale environment. Future works will address specific appli-
cations of the theory in order to incorporate large deformations,
the analysis of complex heterogeneous micro-structures for real
technological problems, as well as the use of more elaborated reg-
ularized constitutive models defined at the micro-scale level.
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Appendix A. Numerical implementation of the FOMF

A brief description of the numerical techniques used and devel-
oped for the computational implementation of the FOMF, within
the context of a finite element code, is presented. We only high-
light the non-conventional numerical aspects that must be devel-
oped in order to demonstrate the computational viability of this
methodology.

A.1. The finite element technique

The FOMF is particularly adequate to be numerically tackled
using the finite element method. Two different techniques are
used: (i) one is that adopted for simulating the macro scale, where
a strong discontinuity kinematics is assumed in the model, and (ii)
an alternative technique is used to solve the RVE-problem. Consid-
ering that material softening is assumed in the micro-scale, the use
of a mathematically well-posed approach becomes imperative in
order to regularize the constitutive model and obtain mesh inde-
pendent results.

A.1.1. Macro-scale finite element modeling with embedded strong
discontinuities

A non-symmetric formulation with a kinematic enrichment, the
addition of a new shape function which has one element support,
such as that described in [27] and denoted E-FEM technique, is here
adopted. This formulation introduces additional displacement
modes which specifically capture the strong discontinuity kinemat-
ics, or macro-crack, defined by Eq. (8). Triangular elements with con-
stant regular strain are used as the underlying FE technology. The
enhanced shape function is discontinuous and the strong disconti-
nuity mode is characterized by a constant displacement jump inside
every finite element crossed by the crack, see Fig. 20(a). An advanta-
geous characteristic of this technique is that the macro-crack could
intersect the finite element in any arbitrary direction.

Fig. 20(b) depicts the most salient characteristic of this element.
Two integration points (named PGR and PGL) are used to satisfy the
additional traction incremental continuity condition across the dis-
continuity surface Se, given by the equation:
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Fig. 20. Finite element technique with embedded strong discontinuities in the macro-scale: (a) shape function for the enhanced discontinuous mode, (b) a body discretized
with a finite element mesh using the E-FEM methodology.
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dr|{z}
PGR

ne ¼ dT|{z}
PGL

ð69Þ

where ne is the unit vector normal to the cohesive interface Se

embedded into the finite element ‘‘e’’. Each Gauss point is linked
to their corresponding RVE. Prior to the macroscopic bifurcation,
both RVEs evolve identically, since a constant regular-strain triangle
is adopted. Thus Eq. (69) is trivially fulfilled. After crossing the
bifurcation point, each RVE evolves following different branches,
as it is explained next.

The integration point PGR (square-symbol in Fig. 20(b)) is re-
lated with the regular component of the strain, eR, see Eq. (10).
Since b, the displacement jump, is constant into the finite element,
the second term in this expression vanishes. The Classical Multi-
scale Model (ClaMM), defined in Section 3 and Box 2, is used for
the stress homogenization procedure in the point PGR, during the
complete loading history. Thus the corresponding incremental
strain, dee

R, is homogenously inserted into the RVE and so, the incre-
ment of the homogenized stress, dre, is obtained. After detecting
the macro-bifurcation condition, an elastic evolution is imposed
in every point of this RVE forcing, in that way, an homogenized
elastic unloading process in the regular Gauss point.

The integration point PGL (x-symbol in Fig. 20(b)) is related with
the strain-localization phenomenon taking place in the micro-
scale. The Cohesive Multi-scale Model, defined in Section 4 and
Box 3, is used for homogenizing the traction in the point PGL, after
bifurcation. Making use of the Insertion Operator (see Eq. (42)), the
incremental generalized kinematics, characterized by fdee

R; b
e;neg,

is inserted into the RVE. Note that both, the Standard as well as
the Non-Standard Boundary Conditions (SBC and NSBC) are imposed
to this RVE. The increment of the homogenized traction vector, dTe,
is then obtained by using the generalized Homogenization Operator,
given by expression (61).

A.1.2. Micro-scale (RVE) modeling
A smeared crack approach is used at the RVE-level. We do not

give additional details about its numerical implementation be-
cause it is a rather standard technique, see for example [31]. The
only requirement to be carefully implemented, is the re-definiton
given to the continuum softening modulus, as it was shown in Ta-
ble 1 and in each of the numerical examples.

A.1.3. Numerical treatment of the boundary conditions in the RVE
The algorithmic treatment given to the incremental displace-

ment fluctuations of the RVE-boundary nodes, D~Ul, to satisfy the
required boundary conditions in different multi-scale models, de-
serves further explanation. Note that we introduce the notation
D~Ul, instead of d~ul, to represent ‘‘discrete incremental nodal dis-
placement fluctuations’’.
A.1.3.1. Standard Boundary Conditions (SBC) over the boundary
Cl. Displacement restrictions arising either, in the minimum kine-
matical constraint defined through Eq. (25), in the periodic bound-
ary model or in any other model, are satisfied by adding additional
linear equations to the standard system of equations governing the
micro-equilibrium problem. One equation for every specific con-
straint. In what follows, we define ‘‘c’’ being the list of degrees of
freedom (d.o.f.) with imposed kinematical constraints and ‘‘f’’ the
d.o.f. list without restrictions. Sub-index ‘‘c’’ (constrained) and ‘‘f’’
(free) denote the belonging of each d.o.f. in the FE model. Thus
the vector of nodal incremental displacement fluctuations can be

expressed as: D~Ul ¼ ½D~Ulðf Þ D~UlðcÞ�T . We can write the restrictions
arising in every multi-scale models through the linear restriction

matrix LClaMM
l , such that: D~UlðcÞ ¼ LClaMM

l D~Ulðf Þ. With the previous
definition at hand, for each current iteration ‘‘k’’ in the Newton–
Raphson procedure at the micro-scale level, the incremental dis-
placement fluctuation is obtained via static condensation, using
the following expressions:

D~UðkÞlðf Þ ¼ � Kðk�1Þ
l

h i�1
DRðk�1Þ

l ð70Þ

D~UðkÞlðcÞ ¼ LClaMM
l D~UðkÞlðf Þ ð71Þ

Kðk�1Þ
l ¼ Kðk�1Þ

lðff Þ þ Kðk�1Þ
lðfcÞ LClaMM

l þ LClaMM
l

h iT
Kðk�1Þ

lðcf Þ

þ LClaMM
l

h iT
Kðk�1Þ

lðccÞ LClaMM
l ð72Þ

DRðk�1Þ
l ¼ DRðk�1Þ

lðf Þ þ LClaMM
l

h iT
DRðk�1Þ

lðcÞ ð73Þ

where DRl represents the nodal incremental Residue vector of the
micro-equilibrium problem, and Kl is the Stiffness operator defined
as: Kl ¼ @DRl

@D~Ul
.

Note that for the SBC, LClaMM
l should be evaluated once, since it

does not change during the entire simulation. The formal construc-
tion of the linear restriction matrix LClaMM

l and the proper selection
of the constrained d.o.f. of D~Ul, have to be done in accordance with
the particular class of multi-scale model under consideration, see
Remark (3.2). This subsidiary issue is not additionally tackled in
this contribution (refer to [12] and also [29] for specific implemen-
tation details).

A.1.3.2. Non-Standard Boundary Conditions (NSBC) over the boundary
CL

l. The numerical treatment given to the constraints on the incre-
mental displacement fluctuations, D~Ul, arising over the boundary
nodes of XL

l (the so called NSBC), follows an identical procedure
to that given for the SBC. The only difference lies on the fact that



P.J. Sánchez et al. / Comput. Methods Appl. Mech. Engrg. 257 (2013) 221–247 247
NSBC are imposed once the bifurcation condition has been de-
tected, at the macroscopic level, i.e. during the evolution of the
mechanical problem.

From the algorithmic point of view and considering the strategy
described in the previous section, the simultaneous imposition of
the SBC and NSBC requires, at t ¼ tN , an update of the list ‘‘c’’ of
d.o.f. with kinematical constraints including proper d.o.f. belonging
to the boundary CL

l (consistently the list ‘‘f’’ is also updated). A un-
ique reevaluation of the linear restriction matrix is also required
which, in this context, is named LCohMM

l including both the SBC
and the NSBC. Then, the same expressions (70)–(72) are used to
find D~UðkÞl for each k-iteration, but replacing LClaMM

l by LCohMM
l :

D~UðkÞlðf Þ ¼ � Kðk�1Þ
l

h i�1
DRðk�1Þ

l ð74Þ

D~UðkÞlðcÞ ¼ LCohMM
l D~UðkÞlðf Þ ð75Þ

Kðk�1Þ
l ¼ Kðk�1Þ

lðff Þ þ Kðk�1Þ
lðfcÞ LCohMM

l þ LCohMM
l

h iT
Kðk�1Þ

lðcf Þ

þ LCohMM
l

h iT
Kðk�1Þ

lðccÞ LCohMM
l ð76Þ

DRðk�1Þ
l ¼ DRðk�1Þ

lðf Þ þ LCohMM
l

h iT
DRðk�1Þ

lðcÞ ð77Þ
A.2. Determination of the bifurcation condition at the macro-scale

After the Newton–Raphson iterative procedure converges, at
the macro-scale level, the bifurcation condition (6) is evaluated
as follows. The homogenized constitutive tangent tensor, C, is
determined in every quadrature point (see Section 3.4), and thus
we can compute Q (the localization tensor). Then, using a swept
algorithm, we find the minimum value:

x ¼ min
h¼0:Dh:p

det QðhÞð Þ ð78Þ

by typically predefining an angle increment: Dh.
When the condition x 6 0 is found for the first time, the flag

indicating the bifurcation state of that quadrature point is set to
‘‘TRUE’’ (the nucleation time tN is obtained). Both solutions
(h1; h2) provided by (78) determine the unit normal vector to the
crack n and _c, used in Eq. (66).
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