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GLOBAL CONTROLLABILITY OF THE

1D SCHRÖDINGER–POISSON EQUATION

MARIANO DE LEO, CONSTANZA SÁNCHEZ FERNÁNDEZ DE LA VEGA,

AND DIEGO RIAL

Abstract. This paper is concerned with both the local and global internal

controllability of the 1D Schrödinger–Poisson equation i ut(x, t) = −uxx +
V (u)u, which arises in quantum semiconductor models. Here V (u) is a

Hartree-type nonlinearity stemming from the coupling with the 1D Poisson

equation, which includes the so-called doping profile or impurities. More pre-
cisely, it is shown that for both attractive and repulsive self-consistent poten-

tials —depending on the balance between the total charge and the impurities—

this problem is globally internal controllable in a suitable Sobolev space.

1. Introduction

We are mainly concerned with the controllability of the 1-D self-consistent
Schrödinger–Poisson equation

iut = −uxx + 2−1

(
|x| ∗

(
D(x)− |u|2

))
u, x ∈ R (1.1)

u(x, t0) = u0(x) (1.2)

posed in the Sobolev space H = {ϕ ∈ H1 :
∫ √

1 + x2|ϕ|2 < ∞}. We refer
to [2] for the well-posedness of the problem (1.1)–(1.2). Here, D(x) denotes the
fixed positively charged background or impurities, which will be referred to as the
doping profile, and it is assumed to be a positive regular function with compact
support.

The problem of exact internal controllability of equation (1.1)–(1.2) can be de-
scribed as the question of finding a control function h ∈ PC(t0, T,H) (where
PC(t0, T,H) means piecewise continuous with respect to the time variable) and
its associated state function u ∈ C(t0, T,H), such that

iut = −uxx + 2−1

(
|x| ∗

(
D(x)− |u|2

))
u+ h(x, t), x ∈ R, t ∈ (t0, T ) (1.3)

u(x, t0) = u0(x), u(x, T ) = uT (x), (1.4)
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where T > t0 are given target times and u0 and uT are the given initial and tar-
get states respectively. Equation (1.1) stems from quantum semiconductor models
where the main difficulty of the 1D situation is the treatment of low frequencies;
see [6] and references therein for semiconductor models. The problem of controlla-
bility for Schrödinger equations of nonlinear type appears often in nonlinear optics;
see [7, 3]. There are several results on controllability of the Schrödinger equation;
see [10] for a review on this topic. Among them we can cite a work of Illner, Lange
and Teismann [4], who considered exact internal distributed controllability of the
nonlinear Schrödinger equation posed on a finite interval with periodic boundary
conditions, i.e. they work in the function space H1

per(0, 1):

iut = −uxx − α|u|2u+ h(x, t), x ∈ Ω ⊂ Rn, t ∈ (0, T )

u(x, 0) = u0(x), u(x, T ) = uT (x).

The same three authors proved in 2006 [5] the noncontrollability for the following
nonlinear Hartree equation posed in H2(R3):

iut = −uxx −
1

|x|
u+

(
|u|2 ∗ 1

|x|

)
u+ (E(t) · x)u,

u(x, 0) = u0(x),

where x ∈ R3, t ∈ [0, T ] and E(t) ∈ R3 is the control function.
In 2009, L. Rosier and B.Y. Zhang [9] proved a local exact boundary controlla-

bility for the nonlinear Schrödinger equation

iut = −uxx − α|u|2u

posed on Hs(Ω), where Ω ⊂ Rn is a bounded domain, with either the Dirichlet
boundary conditions

u(x, t) = h(x, t), x ∈ ∂Ω

or the Neumann boundary conditions

∂u

∂ν
(x, t) = h(x, t), x ∈ ∂Ω.

In this paper we present an internal global exact controllability result for the
problem

iut = −uxx + 2−1

(
|x| ∗

(
D(x)− |u|2

))
u, x ∈ R

u(x, t0) = u0(x);

that is, given t0 < T fixed, then for every u0, uT ∈ H there exists a piecewise
continuous control h(x, t) such that the nonlinear problem (1.3)–(1.4) has a unique
solution u ∈ C(t0, T,H).

The rest of the paper is organized as follows. In Section 2, we prove the ex-
istence of dynamics and establish useful estimates for the related evolution. In
Section 3, we first study the linear system and prove global controllability in the
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space H. Then, we prove the local controllability for the nonlinear case. The non-
linear system (1.3) is proved to be globally exact controllable in H by an inductive
argument.

2. Preliminaries

2.1. Existence of dynamics. This subsection is devoted to show that the equa-
tion

iut = −uxx + 2−1

(
|x| ∗

(
D(x)− |u|2

))
u (2.1)

could be split in such a way that the resultant (related) linear operator generates a
semigroup. We then introduce the functions F (x) := 2−1

∫ (
|x− y| −µ(x)

)
D(y) dy

and µ(x) :=
√

1 + x2, and the operator

m(ϕ) := 2−1

∫ (
|x− y| − µ(x)

)
|ϕ(y, t)|2 dy. (2.2)

Using that

|x| ∗
(
D(x)− |u|2

)
=

∫
(|x− y| − µ(x))(D(y)− |u(y, t)|2) dy + µ(x)

∫
(D(y)− |u(y, t)|2) dy

=

∫
(|x− y| − µ(x))D(y) dy −

∫
(|x− y| − µ(x))|u(y, t)|2 dy

+ µ(x)
(
‖D‖L1(R) − ‖u(·, t)‖2L2(R)

)
,

after a suitable rearrangement of terms, equation (2.1) becomes

iut(x, t) = −uxx(x, t) + 2−1µ(x)
(
‖D‖L1(R) − ‖u(·, t)‖2L2(R)

)
u(x, t)

+ F (x)u(x, t)−m(u(x, t))u(x, t).

Since the total charge is constant along the trajectory, we may set the parameter
a := 2−1

(
‖D‖L1(R) − ‖u(·, 0)‖2L2(R)

)
, which only depends on the size of the initial

datum. Setting the linear operator L̃a(ϕ) := −ϕxx + aµ(x)ϕ, equation (2.1) reads

iut(x, t) = Lau−m(u(x, t))u(x, t), (2.3)

where the linear operator is given by

La(ϕ) := L̃a(ϕ) + F (x)ϕ. (2.4)

Lemma 2.1 (Existence of dynamics). With the notation previously introduced, the

linear operator La : D(La)→ H with D(La) = H is self adjoint.

Proof. It is a direct consequence of the following two claims:

(a) L̃a is a self adjoint operator in H.
(b) La is a bounded perturbation of L̃a.
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Claim (a) is handled as follows. For a ≥ 0 (focusing case) we have {L̃aϕ,ϕ} =

‖ϕx‖2L2 + a‖ϕ‖2L2
µ
≥ 0, thus L̃a is bounded from below in D(L̃a) ⊆ H and hence

(L̃a, D(L̃a)) is a self adjoint operator in H.
In the defocusing situation (i.e. for a < 0) we start showing that L̃a is a closed

operator. Let ϕ ∈ C∞0 (R) and (φn; L̃a(φn)) ∈ D(L̃a) × H a sequence such that

(φn; L̃a(φn)) → (φ;ψ) in H × H; since 〈ϕ;φ′′ − φ′′n〉 = 〈ϕ′′;φ − φn〉 → 0 and

〈ϕ;µ(φ−φn)〉 = 〈µ1/2ϕ;µ1/2(φ−φn)〉 → 0 we thus have 〈ϕ; L̃a(φ−φn)〉 → 0, and

consequently we conclude 〈ϕ;ψ − L̃aφ〉 = 〈ϕ;ψ − L̃aφn〉 + 〈ϕ; L̃a(φn − φ)〉 → 0.

This shows that L̃a : D(L̃a)→ H is a closed operator.
We now set the operator M(ϕ) := −ϕxx + µ(x)ϕ acting on D(M) ⊆ H. Since

µ(x) ≥ 1 we deduce that M ≥ I (the identity operator). For ϕ,ψ ∈ D(M) we set
the (well defined) quadratic form Qa(φ, ψ) := 〈φx;ψx〉+a〈φ;µψ〉. We now establish
two useful estimates:

|Qa(φ;ψ)| ≤ |〈φx;ψx〉|+ |a||〈φ;µψ〉|
≤ (1 + |a|)〈φ;Mψ〉

≤ (1 + |a|)‖M1/2φ‖L2 ‖M1/2ψ‖L2

and

|Qa(Mφ;ψ)−Qa(φ;Mψ)| = |〈φ; [M : L̃a]ψ〉
≤ (1 + |a|)|〈φ;µ′′ψ〉|+ 2(1 + |a|)|〈µ′φ;ψx〉|

≤ 3(1 + |a|)‖M1/2φ‖L2 ‖M1/2ψ‖L2 ,

where we have used the identity ‖M1/2ϕ‖2 = ‖ϕx‖2 + ‖ϕ‖2L2
µ
. Applying Theo-

rem X.36’ in [8] we obtain that L̃a is an essentially self–adjoint operator in H;

since it is closed, it follows that (L̃a, D(L̃a)) is a self adjoint operator in H.
We now turn to the next claim. Since

‖La(ϕ)− L̃a(ϕ)‖2H = ‖(F (x)ϕ)x‖2L2 + ‖F (x)ϕ‖2L2
µ

≤ ‖F ′‖2L∞‖ϕ‖2L2 + ‖F‖2L∞‖ϕ‖2H
and using that ‖F ′‖L∞ ≤ ‖D‖L1 , ‖F‖L∞ ≤ ‖D‖L1

µ
, we get the final estimate

‖La(ϕ)− L̃a(ϕ)‖H ≤
(
2‖D‖2L1

µ
+ ‖D‖2L1

)1/2‖ϕ‖H.
We recall below a result concerning semi–bounded perturbations of self–adjoint

operators.

Theorem 2.1 (Kato–Rellich Theorem; see [8], Th. X.12). Suppose that L is a
self-adjoint operator and B is a symmetric operator satisfying, for all φ ∈ D(L),
the estimate ‖Bφ‖ ≤ a‖Lφ‖+ b‖φ‖, with 0 < a < 1 and 0 < b. (In such a case B
is said to be L-bounded with relative bound a.) Then L+B is self-adjoint on D(L)
and essentially self-adjoint on any core of L.
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In our case, B = La−L̃a, which, from previous estimates, is a bounded operator

in H. This means that B is L̃a-bounded with relative bound a = 0. Applying the
Kato–Rellich Theorem we conclude that (La, D(La)) is a self adjoint operator in
H. �

Since no further distinction will be made in the sequel concerning the sign of
the parameter a, we will omit the subscript of the linear operator L given by (2.4).

2.2. Estimates. The previous lemma guarantees that L generates a group. In the
sequel we will exhibit useful bounds for the related evolution.

Lemma 2.2. Let U(t) be the group generated by L in H. Then

‖U(t)ϕ‖H ≤ ‖ϕ‖H
(

1 + |t|
(
‖D‖L1 + 1

))
.

Proof. Let u(t) = e−iLtϕ. We start computing d
dt

(
‖ux‖2L2+‖u‖2L2

µ

)
= 2 Re

〈
ut;µu−

uxx
〉
L2 . Using the self-adjointness of L̃ we get d

dt

(
‖ux‖2L2 +‖u‖2L2

µ

)
= 2 Re

〈
ux; (µ′+

iF ′)u
〉
L2 , from where we deduce the estimate

‖u‖2H(t) ≤ ‖ϕ‖2H + 2
(
‖F ′‖L∞ + ‖µ′‖L∞

)
‖ϕ‖L2

∫ |t|
0

‖ux‖L2(s)

≤ ‖ϕ‖2H + 2
(
‖D‖L1 + 1

)
‖ϕ‖L2

∫ |t|
0

‖u‖H(s)

≤ ‖ϕ‖2H + 2
(
‖D‖L1 + 1

)
‖ϕ‖H

∫ |t|
0

‖u‖H(s).

The inequality is obtained by means of a standard ODE argument given by the
following lemma. Details are given due to the lack of a suitable reference.

Lemma 2.3. Let y : [0, T ] → [0,+∞) be an L1 function satisfying the inequality

y2(t) ≤ y2(0) + C
∫ t

0
y(s) ds for some constant C > 0. Then y(t) ≤ y(0) + Ct/2.

Proof. Let w(t) :=
∫ t

0
y(s) ds and z(t) :=

√
y2(0) + Cw(t). Then ż(t) ≤ C/2 and

therefore y(t) ≤ z(t) ≤ z(0) + Ct/2. �

We then take y(t) = ‖u‖H(t) and we get the result, where C = 2
(
‖D‖L1 +

1
)
‖ϕ‖H. �

We now turn our attention to the non linear term in equation (2.3), and give
the following estimates.

Lemma 2.4. Let ϕ, φ ∈ H and let m(·) be given by identity (2.2). Then the
following estimates hold.

(1) (a) ‖m(ϕ)‖L∞ ≤ 2−1‖ϕ‖2L2
µ

(b) ‖m(ϕ)−m(φ)‖L∞ ≤ 2−1
(
‖φ‖L2

µ
+ ‖ϕ‖L2

µ

)
‖ϕ− φ‖L2

µ

(2) (a) ‖
(
m(ϕ)

)
x
‖L∞ ≤ ‖ϕ‖2L2

(b) ‖
(
m(ϕ)−m(φ)

)
x
‖L∞ ≤

(
‖φ‖L2 + ‖ϕ‖L2

)
‖ϕ− φ‖L2
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(3) ‖
(
m(ϕ)−m(φ)

)(
ϕ1 − φ1

)
‖H ≤ 3

2‖ϕ1 − φ1‖H
(
‖ϕ‖H + ‖φ‖H

)
‖ϕ− φ‖H

(4) ‖m(ϕ)ϕ−m(φ)φ‖H ≤ 3
2

(
‖ϕ‖2H + ‖ϕ‖H‖φ‖H + ‖φ‖2H

)
‖ϕ− φ‖H

Proof. The first and second assertions follow directly from the three estimates
||x− y| − µ(x)| ≤ µ(y), |ϕ|2−|φ|2 = ϕ(ϕ∗−φ∗)−φ∗(ϕ−φ), and

∣∣ sg(x−y)−µ′(x)
∣∣ ≤

2, where z∗ is the complex conjugate of z.
The third assertion is handled as follows:

‖
(
m(ϕ)−m(φ)

)(
ϕ1 − φ1

)
‖H

=

((
‖
(
m(ϕ)−m(φ)

)
x

(
ϕ1 − φ1

)
‖L2 + ‖

(
m(ϕ)−m(φ)

)(
ϕ1 − φ1

)
x
‖L2

)2
+ ‖
(
m(ϕ)−m(φ)

)(
ϕ1 − φ1

)
‖2L2

µ

)1/2

≤ 3

2
(‖ϕ‖H + ‖φ‖H)‖ϕ− φ‖H‖ϕ1 − φ1‖H.

A straightforward computation yields the last inequality. �

Remark 2.1. Local interactions of type |u|2σu with 0 < σ < 2 satisfy an estimate
similar to that in assertion 4 of Lemma (2.4), and therefore we can prove (3.3) for
m̃(u) := m(u) + |u|2σ.

3. Controllability

We start this section taking into consideration the controllability of the linear
problem, which in the present article means the existence of a control h(x, t) such
that the unique solution of the related non homogeneous linear equation

iut(x, t) = Lu(x, t) + h(x, t) (3.1)

u(x, tj) = uj(x), x ∈ R (3.2)

satisfies u(x, tk) = uk(x), for given tk > tj and uk(x) ∈ H, where L is given by
(2.4). Moreover, the control is given explicitly by

hjklin(x, s) :=
i

tk − tj
e−iLs

(
eiLtkuk(x)− eiLtjuj(x)

)
. (3.3)

Lemma 3.1 (Global controllability: linear case). Let tk > tj and uj , uk ∈ H; let
the control function h be given by (3.3), and let w̃(x, t) be the unique solution of
the related system (3.1)–(3.2). Then w̃(x, tk) = uk(x).

Proof. Since we have no restrictions for the control h and L generates a group, it
is easily proved that the control (3.3) makes the solution of (3.1)–(3.2) to satisfy
the required final condition.

In fact, if we use the Hilbert Uniqueness Method, we define the application S
as follows: let v0 ∈ H and let v denote the solution of the linear and homogenous
equation (3.1) with h = 0 and initial condition u(x, tj) = v0(x). Now, let w denote
the backward solution of the linear equation (3.1) with h = v and final condition
w(x, tk) = uk(x), and define S(v0) = w(x, tj) = eiL(tk−tj)uk + i(tk − tj)v0. S is
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clearly an isomorphism, and therefore we have no need to prove an observability
inequality.

We now make use of the following lemma (known as variation of parameters
formula or Duhamel’s formula); see [1, Lemma 4.1.1].

Lemma 3.2. Let X be a Banach space, A an m-dissipative operator with a dense
domain D(A), and UA(t) the contraction semigroup generated by A. Let φ ∈ D(A)
and f ∈ C([0, T ], X); we consider a solution u ∈ C([0, T ], D(A)) ∩ C1([0, T ], X)
of the problem ut(t) = Au(t) + f(t) for all t ∈ [0, T ], u(0) = φ. Then we have the
identity, valid for t ∈ [0, T ],

u(t) = UA(t)φ+

∫ t

0

UA(t− s)f(s) ds.

Using the previous identity with X = H, A = −iL, and f = −ih, we get

w̃(x, t) = e−iL(t−tj)uj − i
∫ t

tj

eiL(s−t)h(x, s) ds

=

(
1− t− tj

tk − tj

)
e−iL(t−tj)uj(x) +

t− tj
tk − tj

eiL(tk−t)uk(x). (3.4)

Evaluating in t = tk we obtain w̃(x, tk) = uk. This finishes the proof. �

We thus turn to the non linear situation:

iut(x, t) = Lu−m(u)u+ h(x, t)

u(x, tj) = uj(x), x ∈ R,

which shall be written as the integral equation,

u(x, t) = e−iL(t−tj)uj(x) + i

∫ t

tj

eiL(s−t)m(u(x, s))u(x, s) ds

− i
∫ t

tj

eiL(s−t)h(x, s) ds

We then set, for tk > tj and v ∈ C(tj , tk,H), the mappings

N (v, tj , r) := i

∫ r

tj

eiL(s−r)(m(v(s)) v(s)
)
ds (3.5)

hjklin(x, s) :=
i

tk − tj
e−iLs

(
eiLtkuk(x)− eiLtjuj(x)

)
(control: linear case)

hjk(x, s) :=
−i

tk − tj
e−iLseiLtkN (v, tj , tk) + hjklin(x, s) (control: non linear case)

We next define Γ : C(tj , tk,H)→ C(tj , tk,H) as follows:

Γ(v)(t) := N (v, tj , t)−
t− tj
tk − tj

e−iL(t−tk)N (v, tj , tk) + w̃(x, t). (3.6)

We shall remark that any fixed point of Γ yields the function needed to build
the control hjk ∈ C(tj , tk,H). Hence, it only remains to show that Γ has a fixed
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point. Let δ > 0 and set Kδ := {v ∈ C(tj , tk,H) : v(tj) = uj , v(tk) = uk, ‖v −
w̃‖L∞(tj ,tk,H) < δ}, where w̃ is given by (3.4). As usual, we must show that Kδ is
left invariant by Γ, and also that this is a contractive mapping. With this in mind
we list below some useful estimates.

Lemma 3.3. Let R > 0 and let uj , uk ∈ H be such that max{‖uj‖H; ‖uk‖H} < R;
let also δ > 0 and take v, u ∈ Kδ. Thus the following estimates hold, where Cjk :=

1 +
tk−tj

2

(
1 + ‖D‖L1

)
:

• ‖w̃‖L∞(tj ,tk,H) < CjkR

• ‖Γ(v)− w̃‖L∞(tj ,tk,H) < 3 |tk − tj |Cjk (CjkR+ δ)
3

• ‖Γ(v)− Γ(u)‖L∞(tj ,tk,H) < 9 |tk − tj |Cjk (CjkR+ δ)
2 ‖v − u‖L∞(tj ,tk,H).

Proof. Let t ∈ [tj , tk]. From the identity (3.4), taking H−norm, and using Lemma
2.2 we get the estimate

‖w̃(t)‖H ≤
(

1− t− tj
tk − tj

)
‖eiL(tj−t)uj‖H +

t− tj
tk − tj

‖eiL(tk−t)uk‖H

≤
(

1− t− tj
tk − tj

)
‖uj‖H

(
1 + (t− tj)(1 + ‖D‖L1)

)
+

tk − t
tk − tj

‖uk‖H
(

1 + (tk − t)(1 + ‖D‖L1)

)
≤
(

1− t− tj
tk − tj

)
‖uj‖H +

tk − t
tk − tj

‖uk‖H

+
(tk − t)(t− tj)

tk − tj
(1 + ‖D‖L1)

(
‖uk‖H + ‖uj‖H

)
≤ Cjk max{‖uj‖H; ‖uk‖H},

which proves the first assertion.
The remaining estimates rely on the identities below, valid for u, v ∈ H, which

follow directly from identities (3.5) and (3.6):

Γ(v)(t)− w̃(t) = −i
∫ t

tj

eiL(s−t)(m(v(s)) v(s)
)
ds (a)

+ i
t− tj
tk − tj

∫ tk

tj

eiL(s−t)(m(v(s)) v(s)
)
ds

Γ(v)(t)− Γ(u)(t) = −i
∫ t

tj

eiL(s−t)(N(v)(s)−N(u)(s)
)
ds (b)

+ i
t− tj
tk − tj

∫ tk

tj

eiL(s−t)(N(v)(s)−N(u)(s)
)
ds,

where N(v)(s) := m(v(s)) v(s).
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Identity (a), together with the estimates of Lemmas (2.2)–(2.4), allows us to
write the inequality, valid for t ∈ [tj , tk],

‖Γ(v)(t)− w̃(t)‖H ≤ 2

∫ tk

tj

‖eiL(s−t)(m(v(s)) v(s)
)
‖H ds

≤ 2

∫ tk

tj

‖m(v(s)) v(s)‖H
(

1 + (t− s)
(
‖D‖L1 + 1

))
ds

≤ 3

∫ tk

tj

‖v(s)‖3H
(

1 + (t− s)
(
‖D‖L1 + 1

))
ds

≤ 3‖v‖3L∞(tj ,tk,H)

∫ tk

tj

1 + (t− s)
(
‖D‖L1 + 1

)
ds

≤ 3‖v‖3L∞(tj ,tk,H) (tk − tj)Cjk.

Since ‖v‖L∞(tj ,tk,H) ≤ ‖v − w̃‖L∞(tj ,tk,H) + ‖w̃‖L∞(tj ,tk,H), we conclude the
second estimate.

A similar reasoning leads us to the inequality

‖Γ(v)(t)− Γ(u)(t)‖H

≤ 2

∫ tk

tj

‖eiL(s−t)(m(v(s)) v(s)−m(u(s))u(s)
)
‖H ds

≤ 2

∫ tk

tj

‖m(v(s)) v(s)−m(u(s))u(s)‖H
(

1 + (t− s)
(
‖D‖L1 + 1

))
ds

≤ 9(tk − tj)
(
CjkR+ δ

)2

Cjk‖v − u‖L∞(tj ,tk,H),

from where the third estimate follows easily. This finishes the proof. �

We are now in a position to present both the local and global controllability of
the non linear problem

iut(x, t) = Lu−m(u)u+ h(x, t) (3.7)

u(x, tj) = uj(x), x ∈ R, (3.8)

which, as in the linear case, means the existence of a control h ∈ C(tj , tk,H) such
that the related solution satisfies u(x, tk) = uk(x). In addition, the control is given
by

hjk(x, s) :=
−i

tk − tj
e−iLseiLtk + i

∫ tk

tj

eiL(s−tk)
(
m(v(s)) v(s)

)
+

i

tk − tj
e−iLs

(
eiLtkuk(x)− eiLtjuj(x)

)
.

(3.9)

Theorem 3.1 (Local controllability: non linear case). Let tk > tj be fixed, let
the control be given by hjk as in (3.9); then there exists ε > 0 such that for every
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uj , uk ∈ H with max{‖u0‖H; ‖uT ‖H} < ε the unique solution of (3.7)–(3.8) satisfies
u(x, tk) = uk(x).

Proof. As we have stated above, the proof relies on a fixed point argument. Set
Kδ := {v ∈ C(tj , tk,H) : v(tj) = uj , v(tk) = uk, ‖v − w̃‖L∞(tj ,tk,H) < δ}, where w̃
is given by (3.4), and let v ∈ Kδ. Using the estimates given by Lemma 3.3, we get
the the following sufficient conditions, where 0 < γ < 1:

3 |tk − tj |Cjk
(
Cjkε+ δ

)3

< δ

9 |tk − tj |Cjk
(
Cjkε+ δ

)2

≤ γ,

which are easily satisfied taking ε ≤ δ and δ < γ1/23−1|tk − tj |−1/2C
−1/2
jk

(
1 +

Cjk)
)−1

. �

Before giving the global result, we shall write down the explicit control. Let
t0 < T, u0, uT ∈ H and let t0 < t1 < · · · < tN = T be a partition of [t0, T ]; we set,
for j = 0, . . . , N, the family uj = w̃(tj), where w̃(x, tj) is given by (3.4), and we
define, for s ∈ [tj , tk], the piecewise continuous function

h(x, s) := hjk(x, s), (3.10)

where hjk is the control given by (3.3). In the next theorem we show that h yields
a control for the non linear problem

iut(x, t) = Lu−m(u)u+ h(x, t) (3.11)

u(x, t0) = u0(x), x ∈ R (3.12)

u(x, T ) = uT (x). (3.13)

Theorem 3.2 (Global controllability: non linear case). Let t0 < T be fixed; then
for every u0, uT ∈ H the piecewise continuous control h(x, t) given by (3.10) is
such that the nonlinear problem (3.11),(3.12),(3.13) has a unique solution u ∈
C(t0, T,H).

Proof. It relies on an inductive argument. Let N be an integer to be fixed, and let
{t0, . . . , tN := T} be a (regular) mesh. Let also, for j = 0, . . . , N, uj(x) = w̃(x, tj),
where w̃(x, tj) is given by (3.4); notice that w̃(x, t0) = u0 and w̃(x, tN ) = uT .
Henceforth, we shall focus in the inductive step. Let [tj , tj+1] be a subinterval,

let δ > 0 to be fixed, and set Kj
δ := {v ∈ C(tj , tj+1,H) : v(tj) = uj , v(tj+1) =

uj+1, ‖v−w̃‖L∞(tj ,tj+1,H) < δ}, and Γj : Kj
δ → C(tj , tj+1,H) as in (3.6). Applying

inequalities of Lemma 3.3 we get the the following sufficient conditions required for
the existence of a fixed point, where η := |T − t0|/N, R := max{‖u0‖H, ‖uT ‖H},
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and C(|T − t0|, ‖D‖L1) := 1 + 2−1|T − t0|(1 + ‖D‖L1):

3 η C(|T − t0|, ‖D‖L1)

(
C(|T − t0|, ‖D‖L1)R+ δ

)3

< δ

9 η C(|T − t0|, ‖D‖L1)

(
C(|T − t0|, ‖D‖L1)R+ δ

)2

≤ γ,

which are easily satisfied taking δ = R and η < γ(3R)−2
(
1+C(|T −t0|, ‖D‖L1)

)−4
.
�
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