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ABSTRACT
This work focused on obtaining an improved and expanded general theoretical analysis of a two-dimensional film draining on a quasivertical
plate, solving rigorous mass, momentum, and energy balances. A dimensional analysis and scaling was used to simplify the mathematical
description, and a generalized Newtonian fluid was assumed as the film-forming material. A new quantity that governs the draining flow
and film characteristics, called viscous dissipation, was proposed as part of the novel analytical expressions obtained in this work. Velocity
profile, average velocity, flow rate, and local and average film thickness expressions can be obtained, allowing to simplify the overall calculation
complexity and to find new potential analytical expressions using more complex rheological models.
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I. INTRODUCTION

Draining flow is common in many industrial processes. For
example, it is considered a critical step in self-metered free coating
techniques, such as dip coating, because it is assumed that draining
will determine the thickness and global characteristics of the film.1 If
the draining flow is considered as an isothermal and nonevaporative
phenomenon, as occurs in many practical situations, the analyti-
cal solutions of balance equations can be obtained. In this sense,
efforts in previous works have been made in order to obtain ana-
lytical expressions for the main outputs (velocity, flow rate, and film
thickness) that describe the film draining flow on regular geometries,
such as vertical plates.2–5

During free draining, the shear flow of the film-forming mate-
rial is due mainly to gravity forces that generate the movement of
the film. The energy that must be supplied to maintain the rela-
tive motion of a fluid under simple shear, and that is often con-
sidered to be a dissipated power, is usually referred to as viscous
dissipation.6,7

To the author’s knowledge, the influence of viscous dissipation
on the draining flow behavior has not yet been analyzed and dis-
cussed in the literature. For this reason, the objective of this work
was to obtain an improved and expanded general theoretical analysis
of a two-dimensional draining film on a quasivertical plate, solving

rigorous mass, momentum, and energy balances. The mathematical
description was simplified using a dimensional analysis and scal-
ing, while a generalized Newtonian fluid was assumed as the film-
forming material. A new quantity that governs the draining flow
and film characteristics, called viscous dissipation, was proposed as
part of the novel analytical expressions obtained here. This study
proposes to increase the number of ways of calculation and the inter-
connection of the main variables helping to obtain their analytical
expressions for a given rheological model.

II. THEORETICAL APPROACH
The problem described in this work is derived from a simplified

description of the film draining process shown in Fig. 1. Here, a film
is drained from the surface of a quasivertical plate under the effect of
gravity. Basically, at the beginning (t = 0), a plate is submerged into
a vessel containing a film-forming fluid. The surface plate is per-
fectly in contact with the fluid. Then, the plate is withdrawn from
the fluid letting gravity to act onto the film. This produces defor-
mations in the film that lead to draining. The flow that arises from
this process can be modeled from mass, momentum, and energy
balances. In the following sections, a general but simple model
to describe the main variables in a film draining process will be
presented.
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FIG. 1. Film draining process representation.

A. Equations of change
The main equations that describes the phenomena taken place

in the system shown in Fig. 1 are as follows:8

● mass balance (continuity),

∂ρ
∂t

+∇ ⋅ (ρv) = 0, (1)

● momentum balance (Cauchy),

ρ(
∂v
∂t

+ v ⋅ ∇ v) = −∇ p −∇ ⋅ τ + F e, (2)

● kinetic energy balance,

∂

∂t
( 1

2ρv2
) = −∇ ⋅ 1

2ρv2v −∇ ⋅ pv + p(∇ ⋅ v)

−∇ ⋅ (τ ⋅ v) + τ : ∇ v + v ⋅ F e, (3)

where ρ is the density, t is the time, v is the velocity vector, p is
the thermodynamic pressure, τ is the shear stress tensor, and F e

is the volumetric forces vector. Now, due to the complexity of the
system expressed by Eqs. (1)–(3), analytical solutions are extremely
difficult or impossible to obtain. Several methods can be used to
tackle this issue and obtain useful mathematical models. Here, a
combination of assumptions and a basic dimensional analysis will be
used.

The main assumptions and preferences used in this work are as
follows: (1) the film-forming fluid is incompressible (ρ ≠ f (x, t)), (2)
the external forces are mainly gravitational (F e = ρg), (3) the sur-
face interactions are negligible (capillary number Ca ≫ 1), (4) the
system is open (∇p ≈ 0), (5) the system can be represented in Carte-
sian coordinates (x = xi + yj + zk), (6) the problem is mainly two
dimensional (i.e., vz ≈ 0 and changes in the z-direction are negligi-
ble), and (7) gravity acts in the x-direction (g = gxi). Some additional
minor assumptions will be made throughout the manuscript when
needed.

Consequently, a dimensional analysis is useful in order to
obtain simpler expressions of those equations that are also repre-
sentative of the phenomena taking place in the studied process.

The following dimensionless variables are defined:

ṽx =
vx

U
, ṽy =

vy

V
, x̃ =

x
L

, ỹ =
y

hL
,

ṽ =
v

√
V2 + U2

=
v

√
ε2U2 + U2

=
v

U
√
ε2 + 1

,

τ̃xy = τ̃yx =
τxy

ηR(U/hL + V/L)
=

τxy

ηR(U/hL)(1 + ε2)
,

τ̃xx =
τxx

ηR(U/L)
, τ̃yy =

τyy

ηR(V/hL)
,

p̃ =
p

ηR(U/hL)
, t̃ =

t
(L/U)

, ε =
hL

L
,

(4)

where U and V are the reference velocities for the x-direction and
y-direction, respectively (m/s), L is the length of the plate (m), hL
is the local thickness of the film at L (m), ηR is an apparent steady
state viscosity at a reference condition, and ε is the slenderness of
the system.

The dimensionless forms of the shear stress tensor components
were chosen taking into account that:9 τyx = −η(∂vy/∂x + ∂vx/∂y),
τxx = −2η(∂vx/∂x), and τyy = −2η(∂vy/∂y). Based on the previous
assumptions and a nondimensionalization process, the significant
dimensionless components of the momentum balance [Eq. (2)] can
be written as

Re ε(
∂ṽx

∂ t̃
+ ṽx

∂ṽx

∂x̃
+ ṽy

∂ṽx

∂ỹ
) = −ε

∂τ̃xx

∂x̃
− (ε2 + 1)

∂τ̃yx

∂ỹ
+ St, (5)

Re ε(
∂ṽy

∂ t̃
+ ṽx

∂ṽy

∂x̃
+ ṽy

∂ṽy

∂ỹ
) = −(ε2 + 1)

∂τ̃xy

∂x̃
−
∂τ̃yy

∂ỹ
, (6)

where St = Re/Fr is the Stokes number,10 Re = ρUhL/ηR is the
Reynolds number, and Fr = U2

/(gxhL) is the Froude number.
In a slender system, such as a film draining, the length of the

film on the plate is much larger than the average thickness of the film.
That is, ε ≪ 1. Also, if the fluid is highly viscous and/or the film is
thin, the flow tends to be laminar and Re ε≪ 1. Then, the minimum
set of dimensionless equations that can be used to describe the flow
of a coating film during draining becomes

∂ṽx

∂x̃
+
∂ṽy

∂ỹ
= 0, (7)

Phys. Fluids 31, 083108 (2019); doi: 10.1063/1.5110480 31, 083108-2

Published under license by AIP Publishing

https://scitation.org/journal/phf


Physics of Fluids ARTICLE scitation.org/journal/phf

∂τ̃yx

∂ỹ
= St, (8)

∂τ̃xy

∂x̃
+
∂τ̃yy

∂ỹ
= 0. (9)

Here, the order of magnitude of Re and Fr should be simi-
lar in order to obtain an analytical solution different from a con-
stant. Equations (7)–(9) are similar to the ones obtained through a
lubrication approximation.

Equation (3) will be analyzed in Sec. II F.
Even though Eqs. (7)–(9) were obtained assuming that the grav-

itational effect on the y-direction was negligible, small tilt angles of
the substrate can be accepted as long as the conditions presented in
Sec. II B are fulfilled. So, the quasivertical plates can be described
simply by using the following expression for gx:2

gx = ∣g∣ cos θ, (10)

where ∣g∣ is the magnitude of g and θ is the angle between the x-axis
and the direction of g.

B. Range of theoretical validity of the approach
An important feature of the approach presented in Sec. II A is

the capability to estimate the expected range of validity of Eqs. (7)–
(9). The following set of conditions was assumed to be true:

ε≪ 1, Re ε≪ 1, St = O(1), (11)

where O(1)means “in the order of one.”
Here, as stated by Peralta et al.,2 it is necessary to define two

parameters in order to evaluate those conditions: (1) ηR and (2) U.
As St = O(1), a valid assumption would be that U =

O(ρgxh2
L/ηR). The calculation of ηR will depend on the constitutive

(rheological) model adopted to estimate η.

C. Constitutive equation
To solve the system of Eqs. (7)–(9), an equation that relates the

film tension with the film deformation rates is needed. The simplest,
but general, model to describe this relationship is the Generalized
Newtonian Fluid (GNF).8 Many important fluids are described as a
GNF. In these materials, the relationship between the shear stress
tensor and the shear rate tensor (γ̇) is given by9

τ = −η(τ, γ̇, p, T, C)γ̇, (12)

where η is the apparent steady-state viscosity, τ is the second invari-
ant or norm of τ, γ̇ is the second invariant or norm of γ̇, T is the
temperature, and C is the concentration. The minus sign in Eq. (12)
is adopted mainly for consistency purposes between momentum,
heat, and mass transfer.8

Several models have been used to successfully estimate η for
a wide range of fluids and operative conditions,2,4,5 for example,
Ofoli et al., extended Quemada, and Carreau-Yasuda, among other
models. These particular models are versatile because they include
multiple simpler but important rheological models such as Car-
reau, Cross, Heinz-Casson, Casson, Herschel-Bulkey, Sisko, Ellis,
Meter-Bird, Reiner-Phillipoff, and Bingham, among other models.

The values of τ and γ̇ can be obtained from their definitions,8

τ =

√
1
2
τ : τ, (13)

γ̇ =
√

1
2
γ̇ : γ̇, (14)

where γ̇ = ∇ v + (∇ v)T .
On one hand, assuming that τ is symmetric, and using two-

dimensional Cartesian coordinates and the dimensionless parame-
ters defined in Eq. (4), Eqs. (13) and (14) can be written as

τ̃ =

√
ε2

2
(τ̃2

xx + τ̃2
yy) + (1 + ε2)

2τ̃2
yx, (15)

˜̇γ =

¿
Á
Á
ÁÀ2ε2

⎡
⎢
⎢
⎢
⎢
⎣

(
∂ṽx

∂x̃
)

2
+ (

∂ṽy

∂ỹ
)

2⎤
⎥
⎥
⎥
⎥
⎦

+ (
∂ṽx

∂ỹ
+ ε2 ∂ṽy

∂x̃
)

2

, (16)

where τ̃ = τ/[ηR(U/hL)] and ˜̇γ = γ̇/(U/hL).
On the other hand, and based on Eq. (8), the only component of

τ needed to be computed is τyx. Then, using Eq. (4), the component
τyx yields

τ̃yx = −η̃(ε2 ∂ṽy

∂x̃
+
∂ṽx

∂ỹ
), (17)

where η̃ = η/ηR.
As ε2

≪ 1, Eqs. (15)–(17) can be written in a dimensional form
as

τ = ∣τyx∣, (18)

γ̇ = ∣
∂vx

∂y
∣, (19)

τyx = −η
∂vx

∂y
. (20)

Additionally, the shear stress acting on the film can be calcu-
lated from Eqs. (8), (19), and (20). In the dimensional form,

τyx = −ρgx(h − y). (21)

This expression, which agrees with the literature for film drain-
ing systems,11 states that the shear stress profile in the y-direction
is linear with a slope of ρgx (Fig. 2). Moreover, the maximum shear
stress (as a negative value due to the adopted sign convention) is esti-
mated at the wall (i.e., y = 0) as τm = −ρgxh and the minimum is zero
at the fluid-air interface (i.e. y = h). The profile of τyx is linear in the
y-direction, regardless of the fluid nature.

D. Viscous dissipation
Viscous dissipation (P) can be defined as the rate of irreversible

conversion from kinetic to internal energy and expressed as8

P = −τ : ∇ v. (22)

Taking into account that the components and variations of
parameters in the z-direction are negligible, the symmetry of τ, and
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FIG. 2. General representation of the shear stress (τyx ) film profile as a function
of y.

Eq. (4), the dimensionless viscous dissipation (P̃) can be expressed
as

P̃ = −ε2τ̃xx
∂ṽx

∂x̃
− τ̃yx(

∂ṽx

∂ỹ
+ ε2 ∂ṽy

∂x̃
) − ε2τ̃yy

∂ṽy

∂ỹ
, (23)

where P̃ = P/[ηR(U/hL)]. Then, considering that ε2
≪ 1, Eq. (23)

yields (in dimensional form)

P = −τyx
∂vx

∂y
. (24)

Taking into account Eqs. (18) and (19), then

P = τγ̇. (25)

This expression shows that the rate at which the energy is lost
irreversibly can be calculated by multiplying the norms of the shear
stress tensor and the shear rate tensor and agrees with the result
found in literature.6 In practice, this energy must effectively be sup-
plied continuously to maintain the relative motion under simple
shear, despite the friction between fluid layers. Thermodynamically,
this energy contributes to the increase in the internal energy of the
system, generating the rise of its temperature. But the heat exchange
with the surroundings, in particular, with the solid walls, may allow
the system to remain at the same temperature. Although these effects
are usually negligible for gases, they become significant for viscous
liquids under high shear rates.6

A general viscous dissipation profile as a function of y, for
a certain value of x, is presented in Fig. 3. The film dissipation
shows a maximum value Pm = −τmγ̇m (maximum degradation of
energy) at the substrate-fluid interface (i.e., y = 0). Conversely, a
minimum value of zero is obtained at the air-fluid interface (i.e.
y = h). The profile shows a convex shape with a maximum slope
(ρgx[h(∂γ̇/∂y)0 − γ̇m]) at y = 0 and a slope of zero (minimum) at
y = h.

E. Velocity profile
The velocity profile in the film can be calculated by integrating

Eq. (19),

vx = ∫

y

0
γ̇dy. (26)

FIG. 3. General representation of the viscous dissipation (P) profile as a function
of y.

Here, Eq. (26) needs to be rearranged accordingly based on the
dependency of η on either τ or γ̇. Taking into account Eqs. (18)–(20),
the vx can be calculated as

vx =
1
ρgx
∫

τm

τ

τ
η(τ)

dτ, (27)

vx =
1
ρgx
∫

γ̇m

γ̇
[γ̇2 ∂η(γ̇)

∂γ̇
+ γ̇ η(γ̇)]dγ̇, (28)

where τm is the maximum shear stress at position x and γ̇m is the
maximum shear stress at the same position x.

A general velocity profile as a function of y is shown in Fig. 4.
The profile is concave with a maximum value vm at the air-fluid
interface and a minimum value of zero at y = 0. The profile slope
is the local shear rate γ̇ [Eq. (19)], so a maximum γ̇m is expected at
y = 0 and a minimum of zero at y = h.

F. Average velocity and flow rate
The area-averaged velocity (⟨vx⟩A) can be calculated by

⟨vx⟩A =
1
A ∫A

vx dA, (29)

FIG. 4. General representation of the velocity profile (vx ) as a function of y.
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where A is the perpendicular area to the flow at a position x. Here,
dA = dydz and A = Wh, where W is the plate width. So, Eq. (29) can
be written as the average (in y-direction) velocity

⟨vx⟩y =
1
h ∫

h

0
vx dy. (30)

Also, defining the flow rate as Q = ∫Avx dA, the average velocity
can also be calculated as

⟨vx⟩y =
QW

h
, (31)

where QW is the flow rate per unit of the plate width.
An additional expression that can help to calculate the average

velocity is obtained from the kinetic energy balance [Eq. (3)]. Taking
into account Eq. (4), the symmetry of τ, and that the components
and variations in the z-direction are negligible, Eq. (3) yields

Re ε
⎡
⎢
⎢
⎢
⎣

∂( 1
2 ṽ2
)

∂ t̃
+
∂( 1

2 ṽ2ṽx)

∂x̃
+
∂( 1

2 ṽ2ṽy)

∂ỹ

⎤
⎥
⎥
⎥
⎦

= −ε[
∂(p̃ṽx)

∂x̃
+
∂(p̃ṽy)

∂ỹ
] + εp̃(

∂ṽx

∂x̃
+
∂ṽy

∂ỹ
)

− ε2
(
∂τ̃xxṽx

∂x̃
+
∂τ̃xyṽy

∂x̃
) + (

∂τ̃yxṽx

∂ỹ
+ ε2 ∂τ̃yyṽy

∂ỹ
)

+ (ε2τ̃xx
∂ṽx

∂x̃
+ τ̃xy

∂ṽx

∂ỹ
) + ε2

(τ̃yx
∂ṽy

∂x̃
+ τ̃yy

∂ṽy

∂ỹ
) + St ṽx.

(32)

Now, considering that Re ε≪ 1, ε≪ 1, and ε2
≪ 1, the fluid is

incompressible, and Eq. (25), the dimensional form of Eq. (32) is

∂τyxvx

∂y
+ P = ρgxvx. (33)

This result means that the rate of work done by external forces
on the fluid per unit volume transforms into (i) the rate of irre-
versible conversion of kinetic energy into internal energy per unit
volume (i.e., viscous dissipation) and (ii) the rate of work done by
viscous forces on the fluid per unit volume.8 In other words, the
energy is transformed to a form of energy used to change the vol-
ume and the shape of the film, respectively.12,13 Integrating Eq. (33)
with respect to y (between 0 and h), dividing each term by h, and
considering that (τyxvx)h = (τyxvx)0 = 0, Eq. (33) can be combined
with Eq. (31) to yield

⟨P⟩y = ρgx⟨vx⟩y = ρgx
QW

h
, (34)

where
⟨P⟩y =

1
h ∫

h

0
Pdy. (35)

Equation (34) shows a proportional relationship between the
average viscous dissipation, the flow rate, and the average velocity.

G. Local film thickness
A mass balance on an incompressible film with no evaporation

can be written as2

∂h
∂t

+
∂QW

∂h
∂h
∂x
= 0. (36)

Taking into account that h(t, 0) = 0 (the contact line is pinned),
the solution of Eq. (36) is2

x
t
=
∂QW

∂h
=

∂

∂h
(h⟨vx⟩y). (37)

Using Eq. (34) in Eq. (37),

x
t
=

1
ρgx

∂

∂h ∫
h

0
Pdy. (38)

Now, using the Leibniz integral rule and the triple product rule
[applied to Eq. (21)], Eq. (38) can be transformed as

x
t
=

1
ρgx
∫

h

0

∂P
∂h

∂y
∂τyx

∂τyx

∂h
dh =

1
ρgx
∫

Pm

0
dP. (39)

Then, the local film thickness can be estimated by

x
t
=

Pm

ρgx
= −

τmγ̇m

ρgx
= hγ̇m, (40)

where Pm = −τmγ̇m is the viscous dissipation on the substrate surface
(i.e., maximum viscous dissipation).

This result is consistent with the ones found by Pendergrass14

and Keeley et al.15 for apparent viscosities depending on τ and γ̇,
respectively. It is worth mentioning that Eq. (40) was found by con-
sidering only P = f(h, y) and independently of taking into account a
functionality of the apparent viscosity on τ or γ̇. Therefore, Eq. (40)
might be taken as a more general result than the one obtained by
Pendergrass14 and by Keeley et al.15

As ∂QW/∂h = hγ̇m, the term hγ̇m could be regarded as a charac-
teristic velocity at which singularities of the initial or boundary data
propagate inside the domain where the equation is posed.16

The general form of the h profile as a function of the space-
time variable x/t is shown in Fig. 5. The profile starts at x/t = 0
from zero and increases continuously with a concave shape. At x/t
= 0 (i.e., x = 0 or y → ∞), the profile shows an infinite slope.
As x/t progress toward infinity (i.e., x → ∞ or t = 0), the slope
[1 − ∂ ln γ̇m/∂ ln(x/t)]/γ̇m decreases continuously to zero.

Now, taking into account the implicitness of h in Eq. (40),
depending on the complexity of η, the local thickness profile can be

FIG. 5. General representation of the local film profile (h) as a function of y.
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difficult to calculate. The simplest calculation strategy is to find h by
iteration (for example, fixed-point iteration17) using the following
rearrangement of Eq. (40):

h =
√

ηm

ρgx

x
t

. (41)

This form of Eq. (41) has proven to converge quickly to roots
that are real and with physical meaning.3–5

Based on Eqs. (37) and (40), a useful additional and convenient
way to calculate QW is

QW = h⟨vx⟩y =
1
ρgx
∫

h

0
Pm dh = ∫

h

0
hγ̇m dh. (42)

The relative convenience of using Eq. (42) to obtain QW will
depend on the complexity of hγ̇m.

H. Average film thickness
As stated by Peralta et al.,2 the uniformity of the film is one

of the main properties to be evaluated. This quantity can be esti-
mated by the ratio of the average thickness to the local thickness.18

The area-averaged film thickness is defined by

⟨h⟩A =
1
A ∫A

h dA, (43)

where A is the surface area of the plate. Defining dA = dzdx, then A
= Wx, where W is the total width of the plate. So, Eq. (43) yields

⟨h⟩x =
1
x ∫

x

0
h dx, (44)

where ⟨h⟩x is the average film thickness in the x direction (main
flow). Equation (44) can be rearranged by using integration by parts

⟨h⟩x
h
= 1 −

1
xh ∫

h

0
x dh. (45)

Using Eq. (37) into Eq. (45),

⟨h⟩x
h
= 1 −

1
h(∂QW/∂h) ∫

h

0

∂QW

∂h
dh. (46)

Then,
⟨h⟩x

h
= 1 −

QW/h
∂QW/∂h

. (47)

Taking into account Eqs. (37), (38), and (40),

⟨h⟩x
h
= 1 −

⟨P⟩y
Pm

. (48)

This expression indicates that there is a simple and propor-
tional relationship between the ratio of the average viscous dissi-
pation to the maximum viscous dissipation (i.e., on the substrate
surface) and the ratio of the average film thickness to the local film
thickness. That is, the more homogeneously the energy is dissi-
pated through the film thickness (⟨P⟩y is approaching to Pm) the less
homogeneous will be the film (⟨h⟩x/h→ 1/2). Equation (48) is a use-
ful mathematical expression to see that, for a generalized Newtonian
fluid (shear thinning or thickening), the film thickness homogeneity
ranges 1/2 ≤ ⟨h⟩x/h ≤ 1. This result is useful to see that 0 ≤ ⟨P⟩y/Pm
≤ 1/2.

An important expression that relates viscous dissipation, flow
rate, and the characteristic velocity of the system can be obtained by
combining Eqs. (34), (40), (47), and (48),

⟨P⟩y
Pm
=

∂ ln h
∂ ln QW

=
⟨vx⟩y

hγ̇m
= ζ. (49)

This equation states that the homogeneity of energy dissipa-
tion (ζ) is proportional to the rate of variation of ln h with respect
to ln QW . Also, ζ is proportional to the homogeneity of velocities for
a certain x. That is, the higher ζ the higher the energy is dissipated
into the film and the quicker the information is transferred within
the film to produce flow.

Based on Eqs. (48) and (49), the general functionality of a
dimensionless average film thickness ⟨h⟩∗x as a function of ζ is shown
in Fig. 6. The profile is linear with a maximum value of 1 (i.e., ⟨h⟩x
= h) at ζ = 0 and a minimum value of zero at ζ = 1. As h increases
constantly with x (Fig. 5), a value of ⟨h⟩∗x = 1 would mean that the
profile of h is constant. Consequently, the film viscous energy would
be totally dissipated for y > 0. For example, this situation can be
obtained by a solid film.

I. Calculation of parameters
One of the main features of this work can be seen in Fig. 7.

This figure shows the main parameters used to describe the system
schematized in Fig. 1 and how they are connected. Originally, one
could argue that 5 parameters were needed (γ̇, vx, ⟨vx⟩y, h, and ⟨h⟩x).
These parameters were sequentially calculated using a combination
of steps involving integrals and derivatives represented (Fig. 7) by
red sinuous and blue-green arrows, respectively. That is, ⟨h⟩x could
be calculated from h, h from ⟨vx⟩y, and so on. Here, as each step rep-
resents an additional challenge depending on the model complexity,
the overall calculation process could become hard or impossible very
quickly. Pendergrass14 and Keeley et al.15 presented a way to calcu-
late h directly (using an algebraic equation) from γ̇ for η = f (τ) and
η = f (γ̇), respectively. This represented a shortcut in the previous
calculation sequence reducing the number of steps needed to calcu-
late ⟨h⟩x to only one integration. However, there is no reduction in
the calculation complexity for the rest of the parameters.

FIG. 6. General representation of the dimensionless average film profile (⟨h⟩∗x =
⟨h⟩x/h) as a function of ζ.
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FIG. 7. Diagrams of the steps required to
calculate the main quantities of the sys-
tem. Numbers on the arrows correspond
to the respective equations in the text.

This work presents a leap forward in the calculation process and
description capabilities of the system described in Fig. 1 and its main
parameters. The incorporation of P and ⟨P⟩y to the list of quantities
that are related to the flow description gives new expressions and
paths to calculate the main parameters of the system. This increment
in the interconnection and ways of calculation of the main variables
that can be seen from left to right in Fig. 7. Now, h, P, and γ̇ can
be interchangeable by using Eqs. (25) and (40) instead of using com-
plex integrals. The same is valid for the averaged quantities ⟨P⟩y, ⟨h⟩x
and ⟨vx⟩y [Eqs. (48) and (49)]. This significantly reduces the overall
calculation complexity and gives a deeper insight of the described
problem (i.e., how the viscous dissipation is governing the film thick-
ness). For example, at least three independent paths can be taken
simultaneously (through P, h, or vx) to calculate ⟨h⟩x from γ̇.

III. CONCLUSIONS
An improved general and expanded theoretical analysis of a

two-dimensional film draining from a quasivertical plate was pre-
sented, solving rigorous mass, momentum, and energy balances. A
scaling and dimensional analysis was used to simplify the mathe-
matical description. A generalized Newtonian fluid was assumed as
the film material. New analytical expressions for the main param-
eters that describe the flow were found. Also, this work proposes a
new parameter (viscous dissipation) that governs the flow and film
characteristics. The combination of these two features helps us to
simplify the overall calculation complexity, allowing us to find new
analytical expressions using more complex rheological models. As
a result, the ways of calculation and the interconnection between
the main variables is increased, helping us to obtain their analytical
expressions for a given rheological model.
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