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Abstract Optimal and suboptimal strategies are substantiated and illustrated for linear-
quadratic problems with penalized endpoints, when bounds in control values are imposed.
The optimal solution for a given process with restricted controls, starting at a known initial
state, is shown to coincide with the saturated solution to some unrestricted problem that
has the same coefficients, except for the final penalization matrix S, and starts at a generally
different initial state. This result reduces the searching span for the solution: from the infinite-
dimensional set of admissible control trajectories to the finite-dimensional space of symmetric
positive semi-definite symmetric matrices Ŝ and initial states x̂0. An efficient scheme is also
proposed to approximate (and eventually to find) the optimal feedback strategy on-line, based
on the updating of Ŝ at successive sampling times tk, and on the possibility to generate the
corresponding Riccati matrix P(t, T, Ŝ) for tk < t ≤ tk+1 from auxiliary matrices stored in
memory. Numerical simulations are provided, compared, and checked against the analytical
solutions of two classical case-studies.
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1 Introduction

The linear-quadratic regulator (LQR) is probably the most studied and quoted problem in
the state-space optimal control literature. The main line of work in this direction has evolved
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356 V. Costanza, P. S. Rivadeneira

around the algebraic (ARE, for infinite-horizon problems) and differential (DRE, for finite-
horizon ones) Riccati equations, together with their insertion into different Model Predictive
Control (MPC) formulations.

Since the early 1960s, Hamiltonian formalism has been at the core of the development of
modern optimal control theory (see Pontryagin et al. 1962). When the problem concerning
an n-dimensional system and an additive cost objective is regular (Kalman et al. 1969),
i.e. when the Hamiltonian of the problem can be uniquely optimized by a control value
u0 depending continuously on the remaining variables (t, x, λ), then a set of 2n ordinary
differential equations (ODEs) with two-point boundary-value conditions, known as Hamilton
(or Hamiltonian) Canonical Equations (HCEs), has to be solved to obtain the optimal solution.
For the LQR with a finite horizon, there exist well-known methods (see for instance Bernhard
1972; Sontag 1998; Costanza 2008; Costanza and Rivadeneira 2008a; Costanza and Neuman
2009) to transform the boundary-value problem into an initial-value one. In the infinite-
horizon, bilinear-quadratic regulator, and change of set-point servo problems, there also
exists an attempt to find the missing initial condition for the costate variable from the data of
each particular problem, which allows to integrate the equations on-line with the underlying
control process (Costanza and Neuman 2006). For nonlinear systems, this line of work is in
its beginnings (Costanza and Rivadeneira 2011a, 2008b; Costanza et al. 2011).

Optimal control problems with hard restrictions on endpoint values, or with other con-
straints on states or control values, usually lack regularity and they require some version of
the Pontryagin Maximum Principle (PMP) for their solution. PMP is a powerful result that
has been systematized for very few cases. Other than in some types of time-optimal prob-
lems for linear systems with bounded controls (Pontryagin et al. 1962; Athans and Falb 1966;
Agrachev and Sachkov 2004; Jurdjievic 2006), questions concerning general Lagrangians
and control restrictions seem to need individual treatment. The restricted problem for linear
systems with quadratic Lagrangian but with a linear final penalization has been recently dis-
cussed along controllability lines (Speyer and Jacobson 2010). The theoretical approach to
bounded-control flexible-endpoint LQR problems adopted in this paper is, to our knowledge,
original.

The ‘cheapest stop of a train’ problem (Agrachev and Sachkov 2004) is discussed in
detail to show that restrictions appear naturally in applications, and also to illustrate the
effect of such restrictions over the structure of the problem and its solutions. It is found that
the optimal strategy for the problem with a hard restriction on the final state value lacks a
realizable solution when the admissible control values are only the nonnegative numbers. To
overcome this situation, a flexible but penalized end-point condition is posed to replace the
strict limitation for reaching equilibrium. The existence of feasible solutions is recuperated
this way, but regularity of the problem is lost. However, it is found that, in some subsets of
the time-horizon, the optimal solution behaves as the solution to a new regular problem.

The decisive theoretical finding is as follows: the optimal solution to a given restricted LQR
problem can be generated by saturating the solution to another unrestricted LQR problem,
with same dynamics and cost objective as the original one, but starting at a different initial
condition and subject to a quadratic final penalization with a changed matrix coefficient.
Off-line and on-line schemes were developed to detect this new initial condition and final
penalization matrix. The on-line algorithm in this direction is the main contribution of the
manuscript from the practical point of view. The numerical scheme takes advantage of the
availability of Riccati matrices, generated from the solutions to a pair of first order partial
differential equations (Costanza and Rivadeneira 2008a; Costanza et al. 2011), and provides
the suboptimal control in feedback form. For its simplicity and small computational effort,
the on-line algorithm can be considered as a potential tool to be used in combination with
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Optimal laws for LQR problems with bounded controls 357

the receding or shrinking horizon policies, in an enlarged MPC context allowing for strict
finite-horizon problems.

2 Formalism of the bounded-control LQR problem with a flexible endpoint

The finite-horizon, time-constant formulation of the LQR problem with free final states and
unconstrained controls attempts to minimize the (quadratic) cost

J (u) =
T∫

0

[x ′(τ )Qx(τ ) + u′(τ )Ru(τ )]dτ + x ′(T )Sx(T ), (1)

with respect to all the admissible (here piecewise-continuous) control trajectories u :
[0, T ] → R

m of duration T, applied to some fixed, finite-dimensional, deterministic plant.
Then control strategies affect the R

n-valued states x through some initialized, autonomous,
dynamical constraint

ẋ = Ax + Bu, x(0) = x0 �= 0. (2)

This will be called a (A, B, Q, R, S, T, R
m, x0)-problem.

The (real, time-constant) matrices in Eqs. (1, 2) will be assumed to have the following
properties: Q and S are positive-semidefinite n×n matrices, R is m×m and positive definite,
A is n × n, B is n × m, and the pair (A, B) is controllable. The expression under the integral
is usually known as the ‘Lagrangian’ L of the cost, namely

L(x, u) := x ′Qx + u′ Ru. (3)

Under these conditions, the Hamiltonian of the problem, namely the R
n × R

n × R
m → R

function defined by

H(x, λ, u) := L(x, u) + λ′ f (x, u), (4)

is known to be regular, i.e. that H is uniquely minimized with respect to u, and this occurs
when u takes the explicit control value

u0(x, λ) = −1

2
R−1 B ′λ, (5)

(in this case, independently of x), which is usually called ‘the H -minimal control’. The
‘Hamiltonian’ form of the problem (see for instance Sontag 1998) requires then to solve the
two-point boundary-value problem for the HCEs

ẋ = H0
λ (x, λ); x(0) = x0, (6)

λ̇ = −H0
x (x, λ); λ(T ) = 2Sx(T ), (7)

where H0(x, λ), usually called the minimized (or control) Hamiltonian, stands for

H0(x, λ) := H(x, λ, u0(x, λ)), (8)

and H0
λ , H0

x for the column vectors with i-components ∂ H0

∂λi
, ∂ H0

∂xi
respectively, i.e. Eqs.

(6, 7) here take the form {
ẋ = Ax − 1

2 Wλ,

λ̇ = −2Qx − A′λ,
(9)

with W := B R−1 B ′.
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It is well known that the solution to the unrestricted regular problem, as posed above,
relies in turn on the solution P(·) to the Riccati differential equation (DRE)

π̇ = πWπ − π A − A′π − Q; π(T ) = S, (10)

which establishes a useful relationship between the optimal state x∗(·) and the costate λ∗(·)
trajectories, namely

λ∗(t) = 2P(t)x∗(t), (11)

and, based on Eq. (5), leads to the optimal control trajectory

u∗(t) = u0(x∗(t), λ∗(t)) = −R−1 B ′ P(t)x∗(t), (12)

or equivalently to the optimal feedback law

u f (t, x) = −R−1 B ′ P(t)x . (13)

When the control values are restricted, the global regularity of the Hamiltonian can not
be assured, and therefore the search for the optimal control strategy becomes more involved,
as may be observed in the following Sections. Additional relevant objects from the LQR
theory will be used in the sequel, for instance the matrices α(T, S), β(T, S), solutions to the
following pair of first-order, quasilinear partial differential equations (see Costanza 2008;
Costanza and Rivadeneira 2008a, 2011a,b; Costanza and Neuman 2009 for details):

αT − αS M = −αN , α(0, S) = I ; (14)

βT − βS M = −βN , β(0, S) = 2S; (15)

where the matrix coefficients are

M := A′S + S A + Q − SW S, (16)

N := A − W S. (17)

These matrices allow us to calculate, for any unbounded LQR problem, the solution
P(·, T, S) to its DRE through the formula

P(t, T, S) = 1

2
β(T − t, S) [α(T − t, S)]−1 ∀t ∈ [0, T ], (18)

and in such a case the matrices α, β are also related to the boundary conditions by the
following relations (Bernhard 1972; Sontag 1998; Costanza et al. 2011):

x(0) = α(T, S)x(T ), λ(0) = β(T, S)x(T ). (19)

The manipulated variable in most of the control systems appearing in practical applications
can only assume a bounded set of values. The term ‘manipulated’ indicates that a person or
an instrument assigns a value to a signal generated by physical means, and therefore, this
value cannot take more than a physically realizable amount. Commonly, the manipulated
variable can move inside and on the boundary of some bounded subset of a metric space,
then it is natural to assume that the admissible set of control values is a compact subset of
some R

m space.
The qualitative features of optimal control solutions to bounded problems are significantly

different from those of unbounded ones (Pontryagin et al. 1962; Athans and Falb 1966). But
questions about how much they actually differ, which classes of problems lead to bang-
bang controls, and whether their solutions are just saturations of the optimal trajectories of
unbounded problems, are still open. The following section is an attempt to typify the number
and behavior of switching points in the constrained-control LQR case.
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3 Characterizing optimal phase-trajectories

In this section, the main result is proved and its consequences are discussed. It is found
that, if the optimal strategy u∗

x0
for a bounded-control (A, B, Q, R, S, T, U, x0)-problem

(with a set of admissible control values U = [a, b] ⊂ R) exists, then such strategy
can be constructed from the optimal solution u∗

y0
to a related unbounded-control (U =

R)(A, B, Q, R, Ŝ, T, R, x̂0)-problem.

Theorem 3.1 Let us assume that there exists a time τ ∈ (0, T ) where u∗
x0

(τ ) ∈ (a, b). Then
there exists a unique time interval I ⊂ (0, T ) containing τ such that the optimal phase
trajectory

{
x∗

x0
, λ∗

x0

}
of the original (A, B, Q, R, S, T, U, x0)-problem coincides with the

optimal phase trajectory {x̂, λ̂} corresponding to a (A, B, Q, R, Ŝ, T, R, x̂0)-problem.

Proof The PMP standard formulation for the original problem indicates [Agrachev and
Sachkov 2004; Pontryagin et al. 1962; Troutman 1996, and Eq. (9)] that, if there exists such
an optimal control solution u∗

x0
(·), then there should also exist an optimal costate trajectory

λ∗
x0

(·), solution to the following (linear, initial-value, ODE) problem:

λ̇ = −2Qx∗
x0

− A′λ; λ(T ) = 2Sx∗
x0

(T ), (20)

where x∗
x0

(T ) denotes the optimal final state value, i.e. the final value of the solution x∗
x0

(·)
to

ẋ = Ax + Bu∗
x0

; x(0) = x0. (21)

For the Hamiltonian of this problem, namely

H(x, λ, u) := x ′Qx + Ru2 + λ′(Ax + Bu), (22)

the related functions

ht (u) := H
(
x∗

x0
(t), λ∗

x0
(t), u

)
(23)

can be constructed for all t ∈ [0, T ]. Then the PMP also asserts that each ht should take its
minimal value at u = u∗

x0
(t) and, for the class of autonomous problems at hand, that

ht (u
∗
x0

(t)) ≡ h̄x0 , (24)

a constant in the whole optimization interval [0, T ]. But from standard results (Kalman et al.
1969; Sontag 1998), it is immediately deduced that, for each t , the control trajectory denoted
by

ũ(t) := −1

2
R−1 B ′λ∗

x0
(t), (25)

allows to construct the optimal strategy in the following way:

u∗
x0

(t) =
⎧⎨
⎩

a if ũ(t) < a
ũ(t) if a ≤ ũ(t) ≤ b
b if ũ(t) > b.

(26)

It is clear from the assumptions that ũ(τ ) ∈ (a, b). Then by continuity of regular controls,
this situation should extend to a maximal nontrivial interval I := [τ1, τ2] ⊂ [0, T ], where
the optimal state and costate variables {x∗

x0
, λ∗

x0
} verify the following identities
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(i) from Eq. (20):

λ̇ = −2Qx∗
x0

− A′λ; λ(τ) = λ∗
x0

(τ ); (27)

(ii) and by replacing ũ from Eq. (25) into the dynamics:

ẋ = Ax − 1

2
Wλ∗

x0
; x(τ ) = x∗

x0
(τ ). (28)

Therefore, by uniqueness of ODE solutions, in I := [τ1, τ2] the optimal state/costate trajec-
tories {x∗

x0
, λ∗

x0
} coincide with a solution {x̂, λ̂} to the Hamiltonian flow, i.e. with a trajectory

of the system

d

dt

(
x
λ

)
= H

(
x
λ

)
, (29)

where H is the Hamiltonian matrix for the linear-quadratic problem:

H :=
(

A − 1
2 W

−2Q −A′
)

, (30)

which is clearly the optimal solution of the unbounded (A, B, Q, R, Ŝ, T, R, x̂0)-problem.
This proves the existence of the interval I alluded to in the statement.

Now, in such a ‘regular’ interval I , the following identity holds:

H(x̂, λ̂, ũ) = H0(x̂, λ̂) = H(x∗
x0

, λ∗
x0

, u∗
x0

) = h̄x0 . (31)

But if the optimal control u∗
x0

saturates itself (i.e., if there exist time subintervals Ia with

u∗
x0

(t) ≡ a or Ibu∗
x0

(t) ≡ b), then the solution trajectory {x̂, λ̂}, existing and being unique in
the whole interval [0, T ], forces {x∗

x0
, λ∗

x0
} to differ from it in the interior of any subinterval

Ia, Ib. Were another regular interval possible afterwards, the phase trajectories could not
coincide any more, as well as their Hamiltonians. This proves that I is unique in [0, T ]. ��

The following assertions have practical significance in designing off-line control
algorithms:

Corollary 3.2 There exists a unique matrix trajectory P̂(·) defined in [0, T ], solution to the
same DRE of the original problem, namely,

π̇ = πWπ − π A − A′π − Q, (32)

subject to some symmetric positive semidefinite final condition

π(T ) = Ŝ (33)

(where, in general, Ŝ �= S). The Riccati matrix P̂(·) interrelates the state and costate trajec-
tories {x̂, λ̂} in the form

λ̂(t) = 2 P̂(t)x̂(t)∀t ∈ [0, T ] . (34)

Proof It follows from Jurdjievic (2006) that the Hamiltonian flow corresponding to Eq. (29)
must admit the internal relationship expressed in Eq. (34) via some differentiable symmetric
positive semidefinite matrix function P̂(·). But by replacing this relation into ODEs (29), it
follows that P̂(·) must be a solution to the DRE (32). The final condition (33) characterizes
the appropriate Riccati matrix for the subjacent unbounded problem. ��
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From the Theorem 3.1 and its Corollary 3.2, it follows immediately that Ŝ = S if and
only if the control strategies u∗

x0
and ũ coincide in the whole interval [0, T ].

Corollary 3.3 The optimal control of the restricted (A, B, Q, R, S, T, U, x0)-problem
can be expressed in feedback form by saturating the optimal control of the related
(A, B, Q, R, Ŝ, T, R, x̂0)-problem.

Proof From Eqs. (25, 34), it follows that the optimal control û for the (A, B, Q, R, Ŝ, T, R,

x̂0)-problem can be expressed as a feedback law, namely

û(t) = −R−1 B ′ P̂(t)x̂(t); (35)

and then, in the ‘regular’ subinterval [τ1, τ2],

ũ(t) = −1

2
R−1 B ′λ∗

x0
(t) = −1

2
R−1 B ′λ̂(t) = û(t). (36)

In particular, û(τi ) = ũ(τi ) assume the bound values a or b for i = 1, 2; and since both û and
û are differentiable under parameter variations, then their values must remain in the exterior
of (a, b) for some nontrivial time intervals before τ1 and after τ2 (or either reach the endpoints
of [0, T ]). The Hamiltonian Canonical Equations and the Pontryagin Maximum Principle,
valid along the {x̂, λ̂} and {x∗

x0
, λ∗

x0
} trajectories, force û(t) and ũ(t) to remain either both

out from (a, b), or either both inside [a, b] (and in the last case they must simultaneously
coincide).

Since {x̂, λ̂} is the solution to Eq. (29), it verifies(
x̂(0)

λ̂(0)

)
= e−Ht

(
x̂(t)
λ̂(t)

)
∀t ∈ [0, T ] , (37)

with x̂0 := x̂(0) differing in general from x0. Known x̂0 and Ŝ, the control û(·) can be
generated as in any regular LQR problem, and therefore u∗

x0
(·) can be expressed as a feedback

law from Eqs. (26, 36, 35). ��
From now on, a control strategy that has the form of u∗

x0
in Eq. (26) will be denoted with

the superscript sat standing for ‘saturation’, which permits us to write the outcome simply as

u∗
x0

= ûsat. (38)

These results transform the original problem with bounded controls (whose solution must be
looked for in the infinite-dimensional space of admissible control trajectories) into a finite-
dimensional search (for the hidden initial condition x̂0 and final penalization matrix Ŝ).

4 Off-line analytical and numerical approaches

4.1 A one-dimensional example: the exponential function

It is well known (Troutman 1996) that the exponential function x(t) = et is the optimal state
trajectory, and the optimal control strategy at the same time, of the following fixed-endpoint
unbounded-controls problem

ẋ = u, x(0) = 1, x(1) = e, u(t) ∈ R, (39)

J (u) =
1∫

0

[
x2(t) + u2(t)

]
dt. (40)
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As posed, this is not an LQR problem since the desired target is not the state x̄ = 0. But it
is interesting to see that it can be solved through the Euler–Lagrange equation of Variational
Calculus. The solution will then be the same if the set of control values is restricted to
U = [a, b], with a ≤ 1and b ≥ e. But things change when the bounds are in the interior of
[a, b] and/or the final state is free. Here, after the change of variables

z := x − e, (41)

the following related LQR problem will be treated:

ż = u, z(0) = z0 = 1 − e, u(t) ∈ [a, b] , (42)

J (u) =
1∫

0

[
z2(t) + u2(t)

]
dt + [z(T )]2 , (43)

A = 0, B = 1, Q = 1, R = 1.

After some numerical explorations, the following values have been chosen for the control
bounds and final penalization coefficient:

a = 1.44, b = 2, S = 13. (44)

The problem is reduced to solve several nonlinear algebraic equations dictated by the PMP,
which can be handled by standard numerical software. The answer found included two
generalized switching points and an optimal final state

τ1 = 0.0925862, τ2 = 0.61704, z(1) = −0.0997093. (45)

The optimal control and some linked objects result in

u∗(t) =
⎧⎨
⎩

2 ∀t ∈ [0, τ1] ,

û(t) ∀t ∈ [τ1, τ2] ,

1.44 ∀t ∈ [τ2, 0] ,

(46)

û(t) = − λ̂(t)

2
= d1et − d2e−t , (47)

ẑ(t) = d1et + d2e−t ,

d1 = 0.212802, d2 = −1.93792, (48)

Ŝ = 9.6, h̄z0 = −1.64955, J (u∗) = 3.7309, (49)

which are illustrated in Fig. 1.

4.2 A two-dimensional example: the cheapest stop of a train

Here another classical case-study, known in the literature as ‘the cheapest stop of a train’,
will be revisited [see for instance Agrachev and Sachkov (2004) for the control–energy–cost,
fixed-endpoints, unbounded controls version; Howlett et al. (2009) and the references therein
for the numerical determination of switching times in more involved cases].

The dynamics of such a problem in its simplest form is linear:

ẋ1 = x2; ẋ2 = u, (50)
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Fig. 1 Control trajectories for related optimal control problems in one dimension

or, in matrix notation,

ẋ = f (x, u) = Ax + Bu, (51)

A =
(

0 1
0 0

)
, B =

(
0
1

)
, (52)

where the real-valued control u may be interpreted as a braking action over an imaginary
train with position x1 and velocity x2. The pair (A, B) is controllable. Unless indicated, the
nominal initial conditions x(0) = x0 chosen for illustration will be kept fixed at

x1(0) = 1; x2(0) = −1. (53)

The ‘flexible endpoint’ problem is associated with a ‘quadratic final penalty’ K (x(T )) =
x ′(T )Sx(T ) in the cost objective function, as announced in Eq. (1). The values adopted for
the cost parameters are Q = 10I , R = 0.5, S = 100I .

In the literature (see Alt 2003; Bryson and Ho 1969 and the references therein) little
theoretical advances have been made in the treatment of these situations, other than including
extra Lagrange multipliers to take into account the control bounds (a major inconvenience
of such an approach is the appearing of inequalities, which are difficult to solve).

It can be shown (Costanza and Rivadeneira 2012) that the problem has at the most one
nontrivial regular interval [τ1, τ2] ⊂ [0, T ],and that u∗(t) ≡ a in [0, τ1], u∗(t) ≡ b in
[τ2, T ]. By denoting x̄ = x∗(T ), λ̄ = λ∗(0), the exact solution procedure to determine the
unknowns {τ1, τ2, x̄1, x̄2, λ̄1, λ̄2}, amounts to solve the following:

(i) In the interval [τ2, T ] the state obeys

ẋ = Ax + Bb; x(T ) = x̄; (54)

which can be analytically solved, with x̄ as an explicit unknown. By inserting the state
solution into the corresponding dynamics for the costate, as in Eqs. (9), subject to
λ(T ) = 2Sx̄ as required by the PMP, the analytical integration for the costate can be
performed.

(ii) In the regular interval [τ1, τ2] both the state and costate follow the flow of the Hamilton
Canonical Equations, i.e. (

x(t)
λ(t)

)
= eH(t−τ2)

(
x(τ2)

λ(τ2)

)
, (55)
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Fig. 2 State and costate trajectories
{

x∗, λ∗}
for the original constrained optimal control problem, and{

x̂, λ̂
}

for the ‘hidden’ unconstrained problem. Both trajectory pairs have the same value of the Hamiltonian

h̄x0 = −21.962

(iii) In the interval [0, τ1] the equations are

ẋ = Ax + Ba; x(0) = x0; (56)

λ̇ = −2Qx − A′λ; λ(0) = λ̄. (57)

These equations are subject to a number of matching conditions, expressed as equalities
whose solutions must meet, for instance

x(r)(τ2) = x(�)(τ2), x(r)(τ1) = x(�)(τ1),

λ(r)(τ2) = λ(�)(τ2), λ(r)(τ1) = λ(�)(τ1), (58)

where the superscript (r) denotes ‘approaching from the right’ and (�) ‘from the left’. The
number of equations (58) is greater than needed to solve for the unknowns. Choosing an
array of independent equations and solving them through standard mathematical software, the
unknowns are found (reported below) and the optimal trajectories are generated (illustrated
in Fig. 2):

τ1 = 0.575342, τ2 = 0.776409,

x̄1 = 0.158018, x̄2 = −0.0423203 (59)

λ̄1 = 41.962, λ̄2 = 9.9603.
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Additional relevant quantities may be calculated, for instance

h̄x0 = −21.962, J (u∗
x0

) = 15.1632, (60)

x∗(τ1) =
(

0.424658
−1

)
, x∗(τ2) =

(
0.242469

−0.713092

)
, (61)

x̂(0) =
(

0.334096
3.31771

)
, x̂(T ) =

(
0.199617
0.560481

)
, (62)

λ̂(0) =
(

40.267
23.0974

)
, λ̂(T ) =

(
31.5591
−9.2941

)
, (63)

Ŝ =
(

528.3 −160
−160 48.7

)
= P̂(T ), P̂(0) =

(
20.3 4.02
4.02 3.08

)
. (64)

5 The numerical on-line scheme

The purely off-line procedure implied by the PMP, as illustrated in the previous subsection,
is equivalent to find both the hidden state x̂0 and the matrix Ŝ, from which the generalized
switching times τ1, τ2 and the optimal control can be calculated. Besides being a difficult
nonlinear-programming problem, often avoided or overlooked in Engineering practice, the
procedure may be criticized for generating an open-loop recipe, non adaptable under pertur-
bations. To cope with both inconveniences, an on-line scheme is devised below, more in the
line of standard numerical software for Engineering applications. The resulting control will
normally be suboptimal, though always better than the ‘seed’ control, i.e. the straightforward
saturation of the solution to the original problem in its unconstrained version.

It will be assumed that the time horizon is partitioned by two saturation times of the form
0 < τ1 < τ2 < T ; the optimal control resulting saturated in [0, τ1] ∪ [τ2, T ] and regular in
[τ1, τ2].

The only off-line calculations needed are:

(i) the matrices α(t, S), β(t, S), t ∈ [0, T ] , solutions to Eqs. (14–15), in their analytic
or interpolated approximate forms. The Riccati matrices can be obtained from α, β by
using Eq. (18),

(ii) the matrix-valued function

	(t, τ ) :=
t∫

τ

eA(t−σ)dσ = eAt

t∫

τ

e−Aσ dσ, (65)

needed for calculating the state-transition map in the saturation periods, i.e. for
piecewise-constant control trajectories. Notice that 	 depends only on the matrix A,

and when A is invertible 	(t, τ ) = A−1
(
eA(t−τ) − I

)
, so it is relatively simple to have

it solved in closed terms, or to have it numerically stored in memory. For instance, for
the case-study in Sect. 4.2, A is not invertible but its exponential is just eA = I + A
and 	 follows immediately:

	(t, τ ) =
(

t − τ
(t−τ)2

2
0 t − τ

)
, (66)

(iii) a simulation of the dynamics applying the ‘seed’ control, i.e. the feedback form

useed(t, x) = [−R−1 B ′ P(t, T, S)x
]sat

, (67)
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and of its resulting state trajectory xseed, i.e. the solution to

ẋ =
⎧⎨
⎩

Ax + Ba if −R−1 B ′ P(t, T, S)x ≤ a,

Ax + Bb if −R−1 B ′ P(t, T, S)x ≥ b,

[A − W P(t, T, S)] x otherwise
(68)

with x(0) = x0. Then, a first approximation τ1,0 ≤ τ2,0 to the optimal saturation points
τ1, τ2will become available. In the same line of reasoning, the initial estimates are adopted
for the hidden matrix Ŝ, i.e. Ŝ0 := S. Also, a subdivision of the time-horizon of the form
t0 = 0 < t1 < t2 < · · · < tN = T is adopted to make possible intermediate calculations,
updating parameters, and deciding changes in the control strategy. Then, the on-line scheme
proceeds through the following steps:

(i) For t ∈ [0, t1] the control is set to

u1 ≡ useed(0, x0), (69)

as an approximation to
[
−R−1 B ′ P(t, T, Ŝ0)x̂(t)

]sat
during the initial sampling period.

(ii) In the meantime, the relevant parameters are updated via some version of the gradient
method (Pardalos and Pytlak 2008). In treating the example announced in Sect. 4.2, the
following prescriptions are adopted, starting with k = 0 :

Ŝk, j := Ŝk, j−1 − γS
∂ J

∂S
(Ŝk. j−1, τ1,k, τ2,k), j = 1, 2, . . . , (70)

Ŝk+1 ≈ lim
j

Ŝk, j , (71)

and on the same lines,

τi,k+1 ≈ lim
j

(
τi,k − γτi

∂ J

∂τi

)
j
; i = 1, 2, (72)

where γS, γτ1 , γτ2 are appropriate constants and J denotes a new object, representative of
the total cost J (u), constructed from:

J (Ŝ, τ1, τ2) := J[0,τ1] + J[τ1,τ2] + J[τ2,T ] + JT , (73)

J[0,τ1] :=
[
x̃ ′Qx + Ru2

1

]
τ1, (74)

where u1 denotes the saturated (equal to a or b) constant value of the control applied during
[0, τ1],

J[τ1,τ2] := x ′ (τ1) P (τ1) x (τ1) − x ′ (τ2) P (τ2) x (τ2) , (75)

where P(τi ), i = 1, 2 are short notations for P(τi , T, Ŝ), since for the unsaturated periods
the increments in cost can be calculated from the value function V, known to be in this case

V (t, x) = x ′ P(t)x . (76)

For each updating of (Ŝ, τ1, τ2), the special points x (τi ) , i = 1, 2, and x(T ) can be
approximated by using Eqs. (19, 65) in the following form

x (τ1) = eAτ1 x0 + 	(τ1, 0)Bu1, (77)

x (τ2) = α−1(τ2 − τ1, Ŝ)x (τ1) , (78)

x(T ) = eA(T −τ2)x (τ2) + 	(T, τ2)Bu2, (79)
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where u2 denotes the suboptimal saturated constant value of the control to be applied during
the interval [τ2, T ], i.e.

u2 ≡ −R−1 B ′ P(τ2,0, T, Ŝ0)xseed
(
τ2,0

) ≈
[
−R−1 B ′ P(τ2,0, T, Ŝ0)x̂

(
τ2,0

)]sat
.

The remaining terms in Eq. (73) are calculated from

J[τ2,T ] :=
[
x̃ ′Qx + Ru2

2

]
(T − τ2), JT := x ′ (T ) Sx (T ) , (80)

where S is the original final penalization matrix. In Eqs. (74, 80) the term
∫

x ′Qxdt of the
original cost J (u) has been replaced by rectangular approximations

t+�t∫

t

x ′Qxdt ≈ x̃ ′Qx · �t, (81)

and in the numerical trials, the simplest mean-value approximation was used successfully,
namely

x̃ ′Qx = 1

2

[
x ′(t)Qx(t) + x ′(t + �t)Qx(t + �t)

]
. (82)

It can be proved that the partial derivatives ∂ J
∂S and ∂ J

∂τi
exist and are continuous (Jurdjievic

2006; Dhamo and Tröltzsch 2011).

(iii) The duration of each sampling period [tk, tk+1] should be balanced between two con-
flicting objectives: first, tk+1 − tk should be small enough so as to obtain a reliable
updating of the parameters Ŝ, τ1, τ2 through simple approximations of the partial deriv-
atives of J ; but also the time extent must be compatible with the computational effort
needed to reach convergence in Eqs. (71, 72). The procedure of point (ii) is repeated
for the successive k = 1, 2, . . . , as far as tk+1 ≤ τ1,k . The appropriate control should
remain saturated and the prescription should be, simply u(k)(t) ≡ u1.
Notice that the Riccati matrix P corresponds now to a final condition π(T ) = Ŝk, and
that P can be easily recovered from the matrices α, β, available online.
This scheme is continued until reaching the first updated saturation time, i.e. until for
some k, tk ≤ τ1,k < tk+1.
When that happens, the sampling time tk+1 is set equal to τ1,k , and the period [tk, tk+1]
is treated as before in points (ii–iii).

(iv) Now, after reaching the last updated saturation point τ1,k , ideally the feedback laws
should coincide

− R−1 B ′ P(t, T, Ŝk)x(t) = −R−1 B ′ P(t, T, Ŝk)x∗(t) (83)

(here x(t) denotes the actual value of the state of the system at time t). However, since
perturbations are taken into account, then the following feedback, eventually suboptimal
but robust, is adopted:

u(k)(t) =
[
−R−1 B ′ P(t, T, Ŝk)x(t)

]sat
. (84)
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Fig. 3 Results of gradient-method-iterations for unknowns Ŝ, τ1, τ2. The evolution of the modified total
cost J (Ŝ, τ1, τ2) is also shown. The tuned values for iteration parameters were γS = 2.0 × 102, γτ1 =
3.0 × 10−6, γτ2 = 5.5 × 10−4

Parameters Ŝ and τ2 will keep on being updated as before, τ1 remaining equal to its last
corrected value.

(v) After the last updating for τ2, the control should be constant again and equal to u2 till
the end.

In Figs. 3, 4, and 5 and Table 1, the results of applying the proposed online numerical
scheme to the ‘cheapest stop of the train’ example, with same parameters as used in Sect. 4.2,
are illustrated. The gradient-based iteration on the parameters sends the seed Ŝ0 = S = 100
approximately to the limiting matrix

Ŝ350 =
(

64.94 −2.11
−2.1 99.99

)
, (85)

which is a local minimum but differs from the (global) optimal Ŝ calculated offline and
reported in Eq. (64). The simple gradient method seems unable to lead the seed Ŝ0 out from
its local basin, but still the total cost Ĵ = 15.22 is much closer to the optimal J ∗ = 15.16
than the one obtained by saturating the unconstrained solution (Jseed = 17.42).
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Fig. 4 State performance comparison between the online x(.) and the seed xseed(.) trajectories with respect
to the optimal solution x∗(.)
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Fig. 5 Optimal and suboptimal control strategies

Table 1 Values of final state
norms, switching times, and total
costs of the control trajectories

Optimal
trajectory

Seed
trajectory

On-line updated
trajectory

‖x(T )‖2 0.1636 0.2223 0.1710

τ1 0.5753 0.5576 0.5716

τ2 0.7764 0.8662 0.7892

J 15.16 17.42 15.22

6 Concluding remarks

A novel theoretical result and derived numerical procedures to solve bounded-control
flexible-endpoint LQR problems have been substantiated and illustrated through two classical
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examples. The optimal control solution can, in principle, be generated off-line after detect-
ing the initial condition and the final penalization matrix of a related-unbounded problem,
which actually contains all the relevant information. But, even when this is possible, the
result is really an open-loop prescription, since a hidden state variable has to be generated
at all times. A closed-loop control is in general suboptimal, although it may be preferred in
practice, when perturbations are expected to appear. With this objective, an efficient on-line
algorithm is devised and applied to the two-dimensional case-study. The resulting strategies,
either in the open-loop as in the feedback contexts, are quite different from the saturated
form of the optimal control corresponding to the unrestricted problem with same parameters
and initial condition, called here a ‘seed’ strategy. The seed scheme, often naively adopted
in Engineering practice during the whole optimization period, is used here just to initiate
the on-line numerical procedure. It should be acknowledged that, almost always, the new
proposed procedure will be suboptimal. This is because the application of PMP principles
to obtain the optimal solution is essentially an off-line calculation, and if any deviation from
the optimal solution occurs (by mistake or by ignorance), then optimality will immediately
be lost, no matter the subsequent effort. However, when the PMP solution was not previously
found, or when only the ‘seed’ strategy is available, or when state perturbations appear in a
real process-control situation; then no more than a suboptimal performance can be expected.
The on-line updating of the parameter (Ŝ) while the total cost is reduced (via the gradi-
ent method) should be regarded as a means to improve the seed control strategy as time
evolves. This new scheme will result in the optimal strategy only when: (i) the right Ŝ is
reached before the Riccati gain P(Ŝ) has to be applied, and (ii) no state perturbations occur.
As a consequence, the stability of the method is guaranteed since the cost is not allowed
to increase and is bounded from below. Some positive features of the on-line proposed
strategy are:

• The method is based on theoretical results ensuring that the hidden final penalization Ŝ
and the appropriate (two at the most) saturation times τ1, τ2 are the critical objects to be
ascertained.

• It takes advantage of the availability of α, β as functions of (T − t, S), and consequently
on the possibility of generating Riccati matrices P(t, T, Ŝ) online by simple algebraic
manipulations, as Ŝ is updated; i.e. the DRE does not need to be solved for any value of
Ŝ, not even offline.

• The control in Eq. (84) is given in feedback form, and therefore, the algorithm is unaf-
fected by state perturbations due to fluctuations in environmental conditions.

• The updating of parameters (Ŝ, τ1, τ2) is performed via the gradient of the cost of the
process, and this cost is calculated by simple algebraic formula instead of by predicting
state and control trajectories and integrating the Lagrangian, as in most ‘model predictive
control’ (MPC) techniques. This reduces the computational effort and allows for updating
in shorter sampling times.

• Another conceptual difference with currently available MPC approaches is that here
there exists a unique matrix Ŝ to look for in each LQR problem. This allows for further
reduction on the computing effort, since there is no need for updating Riccati equations
through receding horizon schemes.

• It is under exploration the online generation of the matrices α, β involved in the cal-
culation of the optimal feedback gain at each sampling time. This step would improve
the applicability of the algorithm to large-dimensional processes, especially to those
governed by partial differential equations.
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