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State estimation in batch processes using a nonlinear observer
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Abstract

This paper deals with the problem of nonlinear states estimation in batch chemical processes. It presents a reduced-order
nonlinear observer approach to perform the estimation. The proposed method allows adjustment of the speed of convergence
towards zero of the estimation error. The stability properties of the model-based observer are analytically treated in order to show
the conditions under which exponential convergence can be achieved. In addition, the performance of the proposed observer is
evaluated on batch processes.
c© 2006 Elsevier Ltd. All rights reserved.
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1. Introduction

In order to control or monitor many technological processes, the problem of states estimation constitutes a strategic
topic. With the goal of process control and optimization, the knowledge of some physical state variables provides
useful information. This is the case of many widely diffused process control strategies. Therefore, the presence of
unknown states becomes a difficulty which can be solved by means of the inclusion of an appropriate state estimator.
For this reason, many researchers have focused their attention on the development of suitable algorithms to perform
the estimation. In this sense, several techniques have been introduced to estimate state variables from the available
measurements, usually related to meaningful physico-chemical variables. From the obtainable information about the
process, there exist many possible kinds of estimators to be used depending on the mathematical structure of the
process model [1–3].

Notwithstanding the fact that theories and applications for linear systems are well developed, the highly nonlinear
essence of many processes has given rise to the development of nonlinear observers. These observers are designed in
such a way that they can cope with the intrinsic nonlinearities. However, the construction of nonlinear observers still
provides an open research field because the advance in this area often faces many typical obstacles. Among others, the
main barriers are the very restrictive conditions to be satisfied, uncertainty in the performance and robustness and/or
poor estimation results in the presence of noisy sensors [4].
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As regards the nonlinear estimation techniques developed up to now, the Extended Kalman Filter (EKF) is one of
the most widely diffused observers among other nonlinear ones based on linearization techniques [5–7]. In the EKF
approach, a Riccati equation must be solved to obtain the estimator gain. Although the EKF could be a good selection
to satisfy the trade-off between the measurement noise and the input uncertainty when the assumptions are satisfied,
in many cases it can fail. Since the noise model is often unknown, it must be assumed. In such a case, wrong noise
assumptions could lead to biased estimates or even diverge.

A method based on extended linearization has also been developed to carry out state estimation [8]. The procedure
is based on linearizing with respect to a fixed operating point, and involves finding a function of the output in order
to keep the system poles invariant in the vicinity of the mentioned point. Hence, the design procedure is subject to
very tight conditions, and even when the output function is found (which is not an easy task) only local performance
is ensured.

Another estimation approach includes the sliding observers [9,3]. The design procedure consists in determining a
switching gain. One restrictive aspect is that the outputs must lie on specified sliding surfaces to achieve the estimation.
Moreover, performance is rarely guaranteed, specially when the outputs are corrupted with noise.

Other procedures for observer construction make use of transformed canonical forms in order to design the
estimator gain. In [10], Gauthier et al. proposed a simple observer for input affine systems, whose design involves
solving a Riccati equation.

A detailed discussion on many of the available state estimation techniques applicable to a broad class of nonlinear
systems, is provided by [2]. Another comprehensive evaluation of various nonlinear observers was presented by Wang
et al. [3].

Other developments on state estimation include the recent works by Sundarapandian [20,21]. In [20], he presented
a geometric study of the local observer design and established a connection between the design for forced and
autonomous systems. In a later contribution [21], he extended the previous results to tackle the problem of global
observer design under some stability assumptions. Both approaches include full-order observers, i.e. the whole state
vector was estimated. Other proposals present nonlinear receding-horizon observers. In this approach, the observer
design is based on the minimization of the distance between the observability map evaluated on the actual states and
their estimates (see for instance, [22–24]).

Taking into account the characteristics of the observers discussed above, the objective of this work is to present
a nonlinear efficient state estimator for later multi-purpose applications related to batch processes. Batch processes
have turned out to be very important during the last decades. One of the main reasons for this is the structural changes
in the industry due to the trend towards producing small amounts of assorted products with a high added value. In
monitoring and controlling this kind of chemical processes, on-line information about the internal state of the system
is very important. Moreover, due to their batch nature, the estimated variables must converge to their actual values in
a relative short time. From this point of view, the proposed observer may be useful for control and optimization, as
well as for efficient and reliable process-monitoring schemes. The estimation approach herein introduced extends to
nonlinear autonomous systems the technique independently developed by Gopinath [11] and Cumming [12] for linear
reduced-order observer design.

The proposed observer guarantees that the estimation error exponentially converges towards zero whenever the
observer gain is adequately chosen. The observer implementation is simple and it requires small computational effort.
Provided observability is achieved, the design approach can be applied for any general type of nonlinear batch-
processes models, because no fixed model structure is required. An advantageous feature of the proposed nonlinear
observer is that it shows robust performance.

The work is organized as follows. In Section 2, the estimation problem is discussed and the observer design
procedure is developed. The evaluation of the observer performance under both model and measurement uncertainties
is presented in Section 3 and in this section the proposed observer behaviour is compared with a full order observer
and an Extended Kalman Filter. Finally, in Section 4 the conclusions are drawn.

2. Nonlinear observer design approach

A lot of batch processes can be modelled as follows:

ẋ = F(x) (1)

y = H(x) (2)
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where x ∈ Rn is the state vector and y ∈ R p is the vector of measured variables. When full order observers are
constructed, all states are estimated from the information provided by the measured variables [10]. In this case, an
n-order dynamical system, named the observer, is used for processing the measured signal so that a vector of order
n, representing the estimated states, is obtained. However, in many cases the order of the observer can be reduced
by using adequately the information provided by the measured variables. In the following, a method to construct a
reduced order observer is developed.

The state vector x is subdivided into two parts, xR and x̄R , so that x =
[
xT

R x̄T
R

]T
, where xR ∈ Rm and x̄R ∈ R p,

with m+p = n. It must be remarked that the partition xR includes all the unmeasured states to be estimated. Therefore,
Eqs. (1) and (2) can be rewritten in the following way:

ẋR = FR(xR, x̄R) (3)

˙̄x R = F̄R(xR, x̄R) (4)

y = H(xR, x̄R). (5)

By assuming that the Implicit Function Theorem is satisfied by (5), there exists a function H̃ so that:

x̄R = H̃(xR, y). (6)

Note that

ẏ =
∂H

∂xR
FR +

∂H

∂ x̄R
F̄R , ψ(xR, x̄R). (7)

Thus, by using Eqs. (3), (6) and (7), the following formulation is achieved:

ẋR = FR(xR, H̃(xR, y)) (8)

ẏ = ψ(xR, H̃(xR, y)). (9)

By denoting f (xR, y) = FR(xR, H̃(xR, y)) and g(xR, y) = ψ(xR, H̃(xR, y)), Eqs. (8) and (9) can be rewritten as:

ẋR = f (xR, y) (10)

ẏ = g(xR, y) (11)

where y and g(.) are equal to [y1 . . . yp]
T and [g1(.) . . . gp(.)]

T, respectively. When a full order observer is used, both
vectors (xR and y) are estimated so that the observer order is m + p [10]. Nevertheless, it must be remarked that since
the vector y is measured, it does not need to be estimated. In this case, an m-order observer can be constructed. This
kind of observer is named the reduced-order observer. In what follows, a method for constructing an estimator for the
vector xR is proposed.

Without loss of generality, it can be assumed that m ≥ p. A nonlinear transformation from xR and y can be
considered. In order to obtain the observer, the following nonlinear transformation is considered:

z = [z1 . . . zm]
T , γ T

= [γ1(xR, y) . . . γm(xR, y)]T
∈ Rm (12)

where z are the state variables in the new coordinates. Therefore, the following transformed system is obtained:

ẏ1 = g1(xR, y) = γ1(xR, y) , z1 (13)

ż1 =
∂γ1

∂xR
f +

∂γ1

∂y
g = γ2(xR, y) , z2 (14)

ż2 =
∂γ2

∂xR
f +

∂γ2

∂y
g = γ3(xR, y) , z3 (15)

...

żl1−1 =
∂γl1−1

∂xR
f +

∂γl1−1

∂y
g = γl1(xR, y) , zl1 (16)
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żl1 =
∂γl1

∂xR
f +

∂γl1

∂y
g , σ1(xR, y) (17)

ẏ2 = g2(xR, y) = γl1+1(xR, y) , zl1+1 (18)

żl1+1 =
∂γl1+1

∂xR
f +

∂γl1+1

∂y
g = γl1+2(xR, y) , zl1+2 (19)

...

żl1+l2−1 =
∂γl1+l2−1

∂xR
f +

∂γl1+l2−1

∂y
g = γl1+l2(xR, y) = zl1+l2 (20)

żl1+l2 =
∂γl1+l2

∂xR
f +

∂γl1+l2

∂y
g , σ2(xR, y) (21)

...

ẏp = gp(xR, y) = γl1+···+lp−1+1(xR, y)

, zl1+···+lp−1+1 (22)

żl1+···+lp−1+1 =
∂γl1+···+lp−1+1

∂xR
f +

∂γl1+···+lp−1+1

∂y
g = γl1+···+lp−1+2(xR, y) =

, zl1+···+lp−1+2 (23)

...

żl1+···+lp−1 =
∂γl1+···+lp−1

∂xR
f +

∂γl1+···+lp−1

∂y
g = γl1+···+lp , zl1+···+lp (24)

żl1+···+lp =
∂γl1+···+lp

∂xR
f +

∂γl1+···+lp

∂y
g , σp(xR, y) (25)

where
∑p

k=1 lk = m. Assuming that ∂γ
∂xR

is not singular in (xR, y) there exists xR = γ̃ (z, y), which means that the
vector xR (i.e. in original coordinates) can be calculated from the knowledge of vectors z and y, using the function γ̃ .
In new coordinates, the model given by (10) and (11) becomes:

ż = Az + ρ(z, y) (26)

ẏ = Cz (27)

where

ρ(z, y) =
[
0 · · · σ1(xR, y) 0 · · · σ2(xR, y) · · · σp(xR, y)

]T
|(xR=γ̃ (z,y)).

From the comparison of (26) and (27) with Eqs. (13) and (25), the following assignment is obtained:

A =


A1 0 0
...

. . .
...

0 Ak 0
...

. . .
...

0 0 Ap

 (28)
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where Ak is a matrix of dimension lk × lk , with k = 1, . . . , p, given by

Ak =


0 1 0 · · · 0
0 0 1 · · · 0
...

. . .
. . .

. . .
...

0 · · · · · · · · · 1
0 · · · · · · · · · 0

 (29)

and C is a matrix of dimension p × m given by

C =



C1
1

C l1+1
2
...

C j
i
...

C
l1+···+lp−1+1
p


(30)

where C j
i , with j = 1, . . . ,

∑( j−1)
k=1 lk + 1, is a row vector with 1 in the position j and zero otherwise. Under this

construction, the pair (C, A) is observable.

Theorem. Considering the nonlinear system given by (26) and (27) and assuming that ρ(z, y) is Lipschitz in z with
a Lipschitz constant L, the following system:

˙̂z = Aẑ + ρ(ẑ, y)+ G(ẏ − Cẑ) (31)

where (ˆ) stands for estimated variables, with G a constant matrix, is an observer with exponential speed of
convergence, if there exist P and Q positive definite matrices satisfying

(A − GC)T P + P(A − GC) = −Q (32)

and

−λmin
Q + 2λmax

P L < 0 (33)

where λmin
Q is the minimum eigenvalue of matrix Q, λmax

P is the maximum eigenvalue of matrix P.

Proof. See Appendix.

Note that the correction term G(ẏ − Cẑ) in Eq. (31) uses the time derivative of the measured variables. Because
the measured variables can be contaminated with noise, it is preferred to avoid differentiating them. For this reason,
the observer equations are modified introducing the change of variables given by:

ν = ẑ − Gy. (34)

In this way, ẑ is calculated as:

ν̇ = Aẑ + ρ(ẑ, y)− GCẑ (35)

ẑ = ν + Gy. (36)

After ẑ has been calculated, the estimated variables in original coordinates (x̂R) are obtained using the function γ̃ :

x̂R = γ̃ (ẑ, y). (37)

Eqs. (35)–(37) are used to obtain estimates of xR variables provided that vector y is measured. When it is possible to
select the P , Q and G matrices in (32) in order to satisfy the constraint given by (33), the estimation error (e = xR−x̂R)
converges to zero in an exponential way.
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Table 1
Parameters of the bioprocess model

Parameter Value

µ0 0.0967
Ks 0.4076
k1 0.2102
K f 1.6717 × 10−5

β1 0.1112
β2 1.6655

3. Application to bioprocesses

3.1. Batch bioreactor

In order to illustrate the observer design when two outputs are measured and two variables are estimated, a batch
bioprocess is dealt with. In the field of bioprocesses, state estimation appears as the backbone in both monitoring and
control. This fact is basically connected with the lack of cheap and reliable instrumentation to measure on-line the
main variables of the process. That is why many researchers have focused their attention on suitable algorithms to
perform the estimation [13–16].

In this section, simulation results on a Thiobacillus ferrooxidans batch culture are presented. The bacterium
T. ferrooxidans is one of the most important biological lixiviants with reference to oxidation of ferrous and sulfide
minerals [17]. Because the measurement of biomass concentration (x) inside the reactor is particularly troublesome,
the estimation of that variable becomes necessary. The reaction performed by the bacteria consists in the oxidation of
Fe+2 into Fe+3, which are referred to as the substrate (s) and the product (p), respectively.

Because the measurements of pH and the concentration rate s/p are provided on-line by standard sensors [16], we
propose to estimate both biomass and substrate concentration in order to know all the state variables of the process.

In [18], Kumar and Gandhi reported a complete mathematical model to describe the dynamics of the bioleaching
process performed by T. ferrooxidans. Under certain culture conditions, the cell death can be neglected and the
following model is valid:

ẋ(t) = µ(t)x(t) (38)

ṡ(t) = −k1µ(t)x(t) (39)

ṗ(t) = −ṡ(t)− K f p(t)10pH(t) (40)

˙pH(t) = −β1ṡ(t)− β2 K f p(t)10pH(t) (41)

where the specific growth rate µ is assumed to be Monod:

µ =
µ0s(t)

Ks + s(t)
. (42)

The process parameters are: µ0, Ks, k1, K f , β1, β2. Their values were reported in [18], and are shown in Table 1. The
measurements are s/p and pH. Defining a new variable r = s/p, the system (38)–(41) is easily modified to obtain
the description given by Eqs. (10) and (11).

ẋ = µx (43)

ṡ = −k1µx (44)

ṙ = −k1µx(r + r2)
1
s

+ K f r10pH (45)

˙pH = β1k1µx − β2 K f
s

r
10pH (46)

with

xR =
[
x s

]T and y =
[
r pH

]T
. (47)
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The nonlinear transformation is given by:

z1 = g1(x, s, r, pH) = −k1µx(r + r2)
1
s

+ K f r10pH (48)

z2 = g2(x, s, r, pH) = β1k1µx − β2 K f

( s

r

)
10pH. (49)

Therefore, biomass (x) and substrate (s) estimates can be obtained by using the following observer:

ν̇1 = σ1(x̂, ŝ, r, pH)− g11
˙̂r − g12

˙̂pH (50)

ν̇2 = σ2(x̂, ŝ, r, pH)− g21
˙̂r − g22

˙̂pH (51)

where g11, g12, g21, g22 are the elements of the observer matrix gain G, and:

˙̂r = −k1µ̂x̂(r + r2)
1
ŝ

+ K f r10pH (52)

˙̂pH = β1k1µ̂x̂ − β2 K f

(
ŝ

r

)
10pH (53)

ẑ1 = ν1 + g11r + g12pH (54)

ẑ2 = ν2 + g21r + g22pH (55)

x̂ =
1
β1

(
ẑ2 + β2 K f

(
ŝ

r

)
10pH

)
Ks + ŝ

k1µm ŝ
(56)

ŝ =
−ẑ2(r + r2)

β1
(
ẑ1 − K f r10pH

)
+ β2(1 + r)K f 10pH

. (57)

Taking into account that r = s/p, the estimated product is calculated as p̂ =
ŝ
r . The observer performance was tested

by simulation. Two different values for G, with:

G =

[
g11 0
0 g22

]
were selected. Both of them satisfy the condition given by (76)

G1 =

[
0.5 0
0 0.5

]
, G2 =

[
1 0
0 1

]
. (58)

In both cases initial conditions of the bioprocess and estimated variables were: x(0) = 3.4 mg/l, p(0) = 0.213 g/l,
s(0) = 8.05 g/l, pH(0) = 1.92, x̂(0) = 4 mg/l and ŝ(0) = 6 g/l. The performance of the observer is illustrated
in Figs. 1–8. Figs. 1–3 show actual state variables and estimated ones (estimated biomass, estimated substrate and
estimated product) when the observer gain is given by G = G1. The estimation results achieved with G = G2 are
depicted in Figs. 5–7. Figs. 4 and 8 show the estimation errors for G = G1 and G = G2, respectively. In both cases,
the results exhibit good convergence properties of the estimated variables to the actual ones. The speed of convergence
can be modified by changing the values of g11 and g22. If g11 and g22 are increased, a higher speed of convergence is
achieved.

3.2. Observer performance under uncertainties

The bioreactor example is continued by analysing the performance under uncertainties. In this way, it will be
possible to establish the main advantages of the proposed reduced order observer.

However, in order to simplify the analysis and to concentrate the attention on the observer properties, it
is assumed that the substrate (s) measurement is provided. Then, the problem of estimating biomass (x) from
substrate measurement under model and measurements uncertainties is tackled. Taking into account the new problem



1016 S. Biagiola, J. Solsona / Mathematical and Computer Modelling 44 (2006) 1009–1024

Fig. 1. Biomass (full line) and estimated biomass (dashed line) (G = G1).

Fig. 2. Substrate (full line) and estimated substrate (dashed line) (G = G1).

Fig. 3. Product (full line) and estimated product (dashed line) (G = G1).

formulation (substrate measurement), the model to be considered for biomass estimation is reduced to:

ẋ(t) = µ(t)x (59)

ṡ(t) = −k1µ(t)x . (60)
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Fig. 4. Estimation errors: biomass (full line), substrate (dashed line), product (dash–dotted line) (G = G1).

Fig. 5. Biomass (full line) and estimated biomass (dashed line) (G = G2).

Fig. 6. Substrate (full line) and estimated substrate (dashed line) (G = G2).

The specific growth rate (µ) will be approximated by a Monod description (see Eq. (42)). k1 is the substrate/biomass
yield and it is constant.
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Fig. 7. Product (full line) and estimated product (dashed line) (G = G2).

Fig. 8. Estimation errors: biomass (full line), substrate (dashed line), product (dash–dotted line) (G = G2).

The performance of the reduced order observer herein proposed will be compared with a nonlinear full order
observer and an EKF. These estimators are chosen for the comparison for two reasons. On one hand, full order
observers are generally used and reduced versions are discarded because only robustness against output noise is
considered. On the other hand, the EKF is a widely diffused technique and consequently, it is a well-known estimation
method for many users.

3.2.1. Extended Kalman filter
In the EKF approach, a Riccati equation must be solved to obtain the estimator gain. This approach assumes the

knowledge of the noise model in order to obtain the optimum estimated value. However, that model is frequently
unknown and it must be assumed. Hence, wrong noise assumptions could lead to biased estimates or even diverge.

For the bioreactor application, the EKF estimator can be written as:[
˙̂x
˙̂s

]
=

[
µ̂x̂

−k1µ̂x̂

]
+ K (s − ŝ) (61)

where µ̂ = µ0ŝ/(Ks + ŝ). The time-varying EKF gain is calculated as:

K = P H ′ R−1 (62)

Ṗ = F P + P F ′
+ Q − K RK ′ (63)
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F =

 µ̂ x̂
∂µ̂

∂ ŝ

−k1µ̂ −k1 x̂
∂µ̂

∂ ŝ

 (64)

H =
[
0 1

]
(65)

with ∂µ̂

∂ ŝ = µ0/(Ks + ŝ)− µ0ŝ/(Ks + ŝ)2.

3.2.2. Full order nonlinear observer (FOO)
In the FOO algorithm, the correction term gain is nonlinear and it is related to the Jacobian of the nonlinear

observability matrix. Its design is based on a nonlinear change of coordinates such that the dynamical algorithm
equations can be expressed in either original coordinates or transformed ones. Then, nonlinear transformation is
inverted for obtaining the estimates in original coordinates.

When the full order nonlinear observer is implemented to the batch bioreactor, the following algorithm is obtained:

˙̂z1 = ẑ2 + G1(s − ẑ1) (66)

˙̂z2 = σ(x̂, ẑ1)+ G2(s − ẑ1) (67)

x̂ = ẑ2/(−k1µ̂) (68)

ŝ = ẑ1 (69)

where

σ(x̂, ẑ1) = −k1

[
∂µ̂

∂ ẑ1
(−k1µ̂x̂2)+ µ̂2 x̂

]
with µ̂ = µ0 ẑ1/(Ks + ẑ1).

3.2.3. Reduced order nonlinear observer (ROO)
As proposed, it is reasonable to think that measured variables do not need to be estimated. For this reason, the

proposed ROO can be used. Then, as the substrate is measured, it does not need to be estimated. Therefore, a reduced
order observer is constructed for estimating biomass exclusively. The ROO algorithm is as follows:

ν̇ = ρ(x̂, s)− Gẑ (70)

ẑ = ν + Gs (71)

x̂ =
ẑ

−k1µ
(72)

where

ρ(x̂, s) = −k1

[
∂µ

∂s
(−k1µx̂2)+ µ2 x̂

]
.

3.2.4. A comparative performance analysis
A comparative performance analysis of the three estimators is accomplished on the basis of the batch process

above. The proposed observer (ROO) behaviour in the presence of uncertainties is compared with a FOO and an EKF.
It must be highlighted that in this comparison the uncertainties are assumed unknown. Generally, the EKF gain is
adjusted by using information on the uncertainties (for instance, noise covariance matrices). However, in our case that
is not possible, since the uncertainties parameters are assumed unknown. For this reason, the EKF gain is set such that
the EKF dynamic performance coincides with the ROO’s in the nominal case (i.e. when uncertainties do not exist). For
this purpose, the EKF parameters (Q and R) are set as follows. Q is chosen equal to zero and R is set to let the EKF
achieve the desired speed of convergence. In this way, the observers perform similarly in absence of uncertainties. It
is important to remark that under the above assumptions observers gains have to be kept fixed for all tests.
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Fig. 9. Estimation for nominal model (case I).

Fig. 10. Estimation for nominal model (case II).

Case I. In a first step, the nominal process is considered to carry on the estimation. The parameters of the
nominal plant are: k1 = 0.21;µ0 = 0.1; Ks = 0.4, and the initial values for biomass and substrate concentration
are x(0) = 2.465 mg/l and s(0) = 8.93 g/l, respectively. The initial estimation conditions are set to x̂(0) =

2.054 mg/l, ŝ(0) = s(0), which are maintained for the three observers, which are tuned as follows. The EKF
parameters are set to Q = 02×2 and R = 0.01; the FOO gains are G1 = G2 = 2 and the ROO gain is G = 0.7. These
parameters are kept for all the simulations herein. The simulation results in Fig. 9 show that all the algorithms have a
similar performance, and good convergence properties under nominal conditions.

Case II. In a second step, the previous simulation is repeated, but now the initial value for substrate is also assumed
uncertain ŝ(0) = 1.02 s(0). Simulation results are shown in Fig. 10. Under these conditions, a typical dynamics
behaviour of the full order observers is exhibited. The peaking phenomenon appears at the estimation beginning.

Case III. Now, parameter uncertainty is considered. A mismatch in the parameter k1 is included, by introducing
the value 1.1k1 in the plant model assumed in the observer design. Initial biomass and substrate values are set as in
Case I (and they are kept invariant from now on). The estimation results are shown in Fig. 11. Under these conditions,
there is an offset in the estimates. All observers evidence an analogous behaviour, and they cannot reject the parameter
uncertainty.

Case IV. Another situation of parameter uncertainty is evaluated. In this case, a mismatch in the parameter µ0 is
considered by introducing the value 1.1µ0 in the plant model used for the observer design. Simulation results are
depicted in Fig. 12. Again, it appears an offset in the estimates. However, for this parameter uncertainty the EKF
performance surpasses the ones of the other observers.
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Fig. 11. Estimation under parameter uncertainty (case III).

Fig. 12. Estimation under parameter uncertainty (case IV).

Case V. A different situation of uncertainty is proposed. In this case, dynamics uncertainty is included by
considering an additional term in the nominal model of the process. A biomass extinction term due to mortality
has been reported in various bioprocess [18], usually generated by the product poisoning effect. However, this
phenomenon is usually unmodelled, and the mismatch between the real process and its model can be significant.
To accomplish the estimation under this situation, a mortality term µd [kp (s(0) − s(t))]2x with µd = 0.01, and
kp = 0.8 is included [18]. The results are shown in Fig. 13. The observers behaviour evidences an offset. However,
the EKF performance is significantly worse than the FOO and the ROO performances. Note that at t = 35 h the EKF
estimation error is approximately 600%.

Case VI. Finally, estimation under both dynamics uncertainty and noisy measurement is evaluated. As in the
previous case, the term due to mortality is considered for the real process. Additionally, the problem of biomass
estimation based on substrate noisy measurement is tackled. For this purpose, an additive noise signal is generated.
A zero mean white noise with variance 0.01 is coloured through a linear dynamics whose time constant is 0.1. The
results are shown in Fig. 14. The observers performance show a trade-off between uncertainty and noise rejection. It
can be noted that the EKF estimator exhibits a significant error.

It should be pointed out that an improvement of the performance of each observer (i.e. EKF, FOO and ROO) would
be expected if the estimated vector were extended. This is the basis of the strategy usually referred to as “dynamics
extension” which has been widely used in many previous works on this matter (see for instance [25–28]). Note that
to accomplish this extension a model for the dynamics is needed (for instance, constant parameters can be assumed).
In such cases the estimation error is subject to the accuracy of the extended dynamics model. However, the spirit of
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Fig. 13. Estimation under dynamics uncertainty (case V).

Fig. 14. Estimation under dynamics uncertainty and noisy measurement (case VI).

the example herein developed is to compare the three observers under the same situation. Therefore, the additional
estimation of unknown parameters and/or dynamics is omitted in all the cases (i.e. for the three observers).

3.2.5. Comments on estimators performance
Roughly speaking, it is possible to remark that when the gain in the correction term is increased, the transient

convergence can be deteriorated if the peaking phenomenon appears in FOO. From this point of view, ROO arises as
a better option. However, the ROO estimator could be noisier than the FOO. In addition, it is possible to note that
EKF is not always the best option, since it is designed by assuming a given noise model. When the uncertainty model
substantially differs from the assumed noise model, EKF performance could be very poor. This is the case of the
unmodelled death phenomenon in the analysed bioreactor.

Then, it is possible to argue that the proposed reduced order observer should be the best choice for improving the
transient performance (peaking phenomenon is reduced) and for rejecting dynamics uncertainties, when their models
do not adjust to the EKF assumptions.

4. Conclusions

A nonlinear reduced order observer for estimating states variables in batch processes has been introduced.
Convergence of the estimated states to the true ones is obtained if there exists the non-singular transformation γ (x, y)
and the condition given by (77) is satisfied. The observer implementation is simple and it requires small computational
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effort. The design approach can be applied for any general type of nonlinear batch processes models, because no fixed
model structure is required. Furthermore, according to the proposed design framework, it is possible to develop a
reduced-order estimation, i.e. only the unmeasured state variables are estimated, using the information provided by
the measured outputs of the process. The potential use of the nonlinear observer was illustrated by state estimation in
a batch bioprocess. Simulation results showed the good performance that can be achieved with the proposed method.
In addition, robustness aspects of the proposed observer were analysed and its performance was compared with a
full-order observer and an EKF.
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Appendix

The proof is based on the Lyapunov method [19]. Let ez be the estimation error (i.e. ez = z − ẑ). Consider the
candidate Lyapunov function V = eT

z Pez , with P a positive definite matrix. Therefore, the V derivative with respect
to time is

V̇ = ėT
z Pez + eT

z Pėz

= eT
z

[
(A − GC)T P + P(A − GC)

]
ez + 2eT

z P[ρ(z, y)− ρ(ẑ, y)]. (73)

Note that the pair (A,C) is observable. As a consequence, there exists a positive definite matrix Q and a matrix G so
that:

(A − GC)T P + P(A − GC) = −Q (74)

can be solved. By using (74), Eq. (73) becomes:

V̇ = −eT
z Qez + 2eT

z P[ρ(z, y)− ρ(ẑ, y)]. (75)

Provided that ρ(z, y) is Lipschitz in z, with constant L (i.e. ‖ρ(z, y)− ρ(ẑ, y)‖ ≤ L‖ez‖), the V̇ can be bounded as
follows:

V̇ ≤ (−λmin
Q + 2λmax

P L)‖ez‖
2 (76)

where λmin
Q is the minimum eigenvalue of Q and λmax

P is the maximum eigenvalue of P . Then, if

−λmin
Q + 2λmax

P L < 0, (77)

the estimation error converges exponentially to zero since:

V̇ ≤
(−λmin

Q + 2λmax
P L)

λmin
P

V (78)

where λmin
P is the minimum eigenvalue of P . Then

V (t) ≤ V (0)e

(−λmin
Q +2λmax

P L)

λmin
P

t
(79)

and the following inequality holds:

λmin
P ‖ez‖

2
≤ λmax

P ‖ez(0)‖2 e

(−λmin
Q +2λmax

P L)

λmin
P

t
(80)



1024 S. Biagiola, J. Solsona / Mathematical and Computer Modelling 44 (2006) 1009–1024

which can be rearranged as follows:

‖ez‖ ≤

√
λmax

P

λmin
P

‖ez(0)‖e

(−λmin
Q +2λmax

P L)

2λmin
P

t
. (81)

Note that

‖z(0)− ẑ(0)‖ ≤ Lγ ‖x(0)− x̂(0)‖ (82)

and

‖x − x̂‖ ≤ L γ̃ ‖z − ẑ‖. (83)

Consequently, a bound for the estimation error in the original coordinates is given by:

‖xR − x̂R‖ ≤ L γ̃ Lγ

√
λmax

P

λmin
P

‖xR(0)− x̂R(0)‖ e

(−λmin
Q +2λmax

P L)

2λmin
P

t
. (84)
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