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Abstract
Fungi—in being responsible for causing diseases in animals and humans as well as environmental contaminations in health and
storage facilities—represent a serious concern to health security. Surfactants are a group of chemical compounds used in a broad
spectrum of applications. The recently considered potential employment of cationic surfactants as antifungal or fungistatic agents
has become a prominent issue in the development of antifungal strategies, especially if such surface-active agents can be
synthesized in an eco-friendly manner. In this review, we describe the antifungal effect and the reported mechanisms of action
of several types of cationic surfactants and also include a discussion of the contribution of these surfactants to the inhibition of
yeast-based-biofilm formation. Furthermore, the putative mechanism of arginine-based tensioactive compounds as antifungal
agents and their applications are also analyzed.
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Introduction

Despite the high incidence of the increasingly diverse ar-
ray of fungal pathogens in our daily lives and the propor-
tionally enhanced risks of opportunistic fungal infections,
the prevention and treatment options are rather limited
(Hanson 2008). Fungi are mainly associated with

surfaces’ contamination and spoilage of pharmaceutical,
cosmetic, and food products (Sandle et al. 2014).
Contaminated environmental surfaces provide an impor-
tant potential source for transmission of not only many
health care-associated fungal pathogens, but also those
found in recreational public facilities, such as swimming
pools and showers. Spores—being able to persist on the
environment for long periods of time—can be identified
as the main structures responsible for the conquest of new
habitats and substrates (Mallo et al. 2017). In this context,
environmental disinfection of surfaces, equipment, and
devices can be identified as a crucial intervention in the
prevention and control of transmission of potentially in-
fectious microorganisms.

Environmental cleaning can reduce contamination on sur-
faces. However, less than 50% of hospital room surfaces are
adequately cleaned and disinfected when chemical germicides
are used (Weber and Rutala 2013). Biocides used in pharma-
ceutical industries and health facilities for the disinfection of
medical devices and surfaces of cleanrooms must have a wide
spectrum of activity. They must also effectively kill the com-
mon types of cleanroom environmental isolates and patho-
gens, including Staphylococcus, Micrococcus, Bacillus,
Penicillium, Cladosporium, and Aspergillus (Sandle et al.
2014). However, among the different microorganisms isolated
from cleanrooms, fungi have received less attention than bac-
teria and the eradication of fungal contaminants in our imme-
diate environment has been found to be an arduous task, and
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many times these practices have been rather a response to an
outbreak than a stand-alone activity (Dancer 2009).

Among the ca. five million species of fungi estimated to
currently exist, approximately 300 have been recorded to
cause disease in humans, but only 20–25 of these do so fre-
quently (Perfect 2017). Within these species, those responsi-
ble for superficial fungal infections—in which the pathogen is
restricted to the stratum corneum, with little or no tissue reac-
tion—belong to five major fungal phyla (Table 1). Cross-
transmission occurrences of these pathogens are mainly indi-
rect through desquamated epidermis or hairs and environmen-
tal surfaces, or direct through bodily contact (Hay 2017). For
treatment, topical agents—formulated as creams, lotions, or
gels—are conventionally preferred, since the side effects are
fewer than their internally taken counterparts (Bseiso et al.
2015). However, growing strain resistance has decreased the
efficacy of many known and commonly used antifungals,
such as fluconazole (Obłąk et al. 2013). To overcome this
situation, a new trend in management of fungal infections
has considered the use of surface-active agents depending
upon their safety—such as the commercial detergent
cetrimide, which has proven to be efficient against fungal
keratitis (Mahmoud 2016).

In this review, we discuss the use of cationic surfactants as
agents for the prevention of fungal colonization and for the
control of fungal environmental contaminations in surfaces
and devices, providing also an insight into the main mecha-
nisms involved in these features. Furthermore, we will illus-
trate the role of model-membrane systems in the study of the
interaction of bioactive compounds with the fungal membrane
as the main target. These kinds of data can become a powerful
tool for medicinal chemistry and pharmaceutical technology
through the design and optimization of the antifungal activity
of novel compounds that exert their activity at surface level.

What do we know about surfactants?

The term surfactant has its origins in the combination of the
words surface-active agent, whereas the suffix -ant refers to
performing a specific action. According to the Encyclopædia
Britannica, surfactants are compounds that, when added to a
liquid, reduce its surface tension. From the historical point of
view, surfactant compounds were originally intended for
cleaning. At the present time, however, these agents possess
a plethora of applications, from being general detergents (as
with sodium lauryl ether sulfate) up to acting as specific bio-
cides that are never used as detergents (such as the fungicide
dodine).

In general, surfactants are ingredients in many products
used in daily life—such as cleaners (soaps and detergents for
industrial, institutional, and home use), pharmaceutical formu-
lations, food, agrochemicals, plastics, personal care, and

cosmetics, among others. Because of their ability to reduce
the surface tension between immiscible systems (liquid/liquid
or solid/liquid), surfactants are mainly used as emulsifiers,
dispersants, solubilizers, and wetting and foaming agents.
These properties are based on their amphiphilic nature: sur-
factant molecules have two main functional moieties, one po-
lar (i.e., water-miscible), the other nonpolar (i.e., oil-miscible).

Owing to their numerous applications, surfactants are
chemicals that experience a great demand worldwide. The
global requirement for these compounds was 15.9million tons
in 2014 and is expected to reach 24 million tons by 2022
(Grand View Research 2016). The world market for surfac-
tants was estimated at 30.7 billion dollars in 2015 and at an
annual growth of around 5%. Consequently, the market fore-
cast is expected to reach 45.0 billion dollars by 2024 (Acmite
Mark 2016). This market boosting is mainly a result of the
rising concerns of people regarding health and personal care
all over the world (6.3% from 2015 to 2022); other influences
include the increasing demand for oil-field chemicals, as well
as other technological innovations (Occams Business
Research & Consulting 2017).

According to the combined hydrophilic and hydrophobic
handles of the molecule, surfactants can be classified as an-
ionic, cationic, zwitterionic (amphoteric), or nonionic
(Florence and Atwood 2006). Among all these classes of sur-
factant, the anionic ones are by far the more widely used, thus
holding the largest market share, mainly for their use as house-
hold cleaners and certain pharmaceutical formulations. In gen-
eral, the anionic surfactants are sulfonates: linear
alkylbenzene, secondary alkane, alpha-olefin, and methyl es-
ter sulfonate, with the first of those being the most commonly
used for detergents and other cleaners for the last 30 years
(Hayes 2009; Gong et al. 2016). Zwitterionic, or amphoteric,
surfactants may develop a positive or negative net charge de-
pending on the pH. This class has low foaming characteristics
and good wetting properties, imparting mildness to personal
care formulations especially. The alkyl betaines as well as the
alkyl amidopropyl betaines are the most representative among
this type of compound (Johansson and Somasundarau 2007).
Nonionic surfactants are mainly represented by alcohol
ethoxylates; this class is used principally for defoaming and
as solubilizing agents in pharmacons (e.g., polysorbates and
sorbitan esters among others; Florence and Atwood 2006;
Johansson and Somasundarau 2007). Finally, among the four
classes of surfactants, the cationic group is expected to be the
faster to grow in the world market in the near future, primarily
owing to the multifunctional role of these surfactants in cos-
metics and pharmaceutical formulations (Occams Business
Research & Consulting 2017).

Among the different parameters that can be taken into con-
sideration to classify these compounds, surfactants can be also
categorized according to their origin into synthetic surfactants
or natural class—also known as biosurfactants—, the latter
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being produced by living organisms, mainly microorganisms
(Tripathy et al. 2018). Biosurfactants consist of glycolipids,
neutral lipids, and lipopeptides, as well as other molecules of
larger molecular mass such as lipoproteins and complexes
formed by lipopolysaccharides and proteins in addition to
complexes of polysaccharides, lipids, and proteins (Hayes
2009). Synthetic equivalents to biosurfactants can be designed
imitating natural amphiphilic structures such as phospho-
lipids, alkyl glucosides, and acyl amino acids. This review
will focus on synthetic cationic surfactants, particularly on
those based on amino acids, and their use as antifungal agents.

Can cationic surfactants help to control fungal
environmental and superficial
contaminations?

We need to remark here that the amino acid-based surfactants
are not commonly used as detergents, since these compounds
exhibit a lower foaming capacity than their anionic counter-
parts (Johansson and Somasundarau 2007). Nevertheless, this
class has many other applications—e.g., a retardation of steel
corrosion in strongly acidic media (Aiad et al. 2014a; Shaban
et al. 2015a, b; Hegazy et al. 2016) and the removal of heavy
metals (chromium and arsenic) that are present in industrial
wastes like oxyanion environmental contaminants (Li et al.
2002; Li et al. 2003; Gecol et al. 2004) along with environ-
mental uses such as functioning as flushing additives for clear-
ing Cs+ and radionuclides from contaminated soils (Mao et al.
2015), assisting in the dewatering of activated sludge (Wang
et al. 2014), and enhancing oil recovery (through a tailor-made
mixture of cationic and anionic surfactants) by reducing crude
oil-water interfacial tension and thus producing a flow of oil,
among others (Li et al. 2014; He and Xu 2017).

Notwithstanding, apart from this compatibility with indus-
trial and environmental applications, the most relevant prop-
erty of cationic surfactants with respect to the enhancement of
human well-being is their biocidal ability against a wide range
ofmicroorganisms. This feature together with their amphiphil-
ic nature makes them powerful additives as well as active
compounds by themselves for use in different pharmaceutical,
medical, and cosmetic products, though up to now cationic
surfactants have been used traditionally as disinfectants
(Florence and Atwood 2006; Johansson and Somasundarau
2007). The most well-known compounds of this kind are the
quaternary ammonium salts (QUATs, also known as QACs)
and esterquats. QACs were introduced in the late 1930s and
are considered as high-production-volume chemicals. For ex-
ample, these kinds of compounds are present in about 36% of
disinfectant formulations. Their chemical structure is
R1R2N’R3R4, (where the Rs are alkyl groups), and they are
used mainly in disinfectants and antiseptic formulations of
household, industrial, and institutional cleaners; in human

and animal health care preparations; and as in agricultural
and industrial facility products. Besides their broad antimicro-
bial spectrum at low concentrations, QACs have many other
advantages, such as no color, low odor, high stability, compat-
ibility with the other ingredients in several formulations, and
relatively low toxicity (Tezel and Pavlostathis 2015). Within
this context, QACs are biodegradable under aerobic condi-
tions and consequently are present in surface waters and sed-
iments in concentrations below their minimum inhibitory con-
centration (MIC), a property that could lead to the emergence
of resistant bacterial strains, including those of certain patho-
genic genera, such as the already documented case of
Staphylococcus aureus (Tezel and Pavlostathis 2015;
Jennings et al. 2015). QACs are also toxic to aquatic organ-
isms including algae, fish, crustaceans, and protozoans plus
other microorganisms (Chen et al. 2014; Lavorgna et al. 2016;
Di Nica et al. 2017). Moreover, though the QACs are exten-
sively used in personal care formulations, those surfactants
can prove to be irritants, occasioning different types of derma-
titis as well as other allergic eruptions (Anderson et al. 2016;
Isaac and Scheinman 2017). For all these reasons, the design
and production of alternative cationic surfactants is a topic of
utmost interest.

The search for novel cationic
surfactants—from those with eco-friendly
characteristics to those with improved
physicochemical and biologic properties

Bio-based surfactants are all those composed either partially
or totally of biologic products (namely, renewable material of
agricultural and/or forestry origin) whose production, usage,
and disposal have low impact to both the users and the envi-
ronment (Hayes 2009). Both the safety and the environmental
and health profiles of these kinds of products make them not
only more attractive to consumers who are concerned about
the urgency of ecological issues, but also imperative to any
potential users who need to meet the more restrictive require-
ments and standards exacted by most of the regulations im-
posed by many governments worldwide (Jessop et al. 2015).
The biosurfactants mentioned earlier fall into this category of
compounds.

Certain biosurfactants can be taken as models for the syn-
thesis of novel structures. This application has been especially
explored in the example of lipoaminoacids and their ana-
logues, all of which compounds can be found in cell mem-
branes. Owing to their structural simplicity, these molecules
are relatively easy to design and to synthesize, even in terms of
green chemistry criteria. Synthons for the production of these
kinds of compounds are proteinogenic and nonproteinogenic
amino acids for the polar moiety of the molecule and fatty
amines or fatty alcohols for the hydrophobic residues
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(Infante et al. 2009). Among the plethora of amino acid-based
surfactants that can be found in the literature (Gerova et al.
2008; Pérez et al. 2009; Pang and Chu 2010; Tripathy et al.
2018), the arginine-based surfactants are among those with the
most striking properties, mainly given by the guanidinium
group present in the side chain of the amino acid, which moi-
ety is positively charged at neutrality but also even at high pH
levels. Comprehensive reviews can be found on the physico-
chemical and biologic features of amino acid- and arginine-
based surfactants in particular (Pinazo et al. 2011; Lozano
et al. 2011; Chandra and Tyagi 2013; Singh and Tyagi 2014;
Bordes and Holmberg 2015; Pinazo et al. 2016; Tripathy et al.
2018). The arginine-based ones are especially promising in
view of their antimicrobial properties, extremely low toxicity,
low irritation potential, and more facile biodegradability than
that of the QACs. In this regard, the ethyl ester ofN-lauroyl-L-
arginine, commercially known as Mirenat®, is an arginine-
based surfactant commonly used as an emulsifier and a pre-
servative in different food products (Terjung et al. 2014; Maier
et al. 2014; Manrique et al. 2017; Gaikwad et al. 2017).
Despite the actual uses as well as other potential applications
that these kinds of compounds may have, such as nanocarriers
for gene therapy (Rosa et al. 2007; Jiang et al. 2016; Peña et al.
2017) and drug delivery systems (Tavano et al. 2014;
Nogueira et al. 2015), their biocidal activity is as yet incom-
pletely studied since their antifungal action was only investi-
gated against certain Candida species and other specific
human-pathogenic fungal strains (Morán et al. 2001; Castillo
2006; Colomer et al. 2011; Fait et al. 2018).

Antifungal activity of cationic surfactants

Table 2 summarizes the biocidal effects of cationic surfactants
on several fungi and oomycota that have been reported up to
the present. Most findings on the antifungal activity of cation-
ic surfactants are with respect to the fungi that belong to the
Ascomycota phylum as well as certain species from the phyla
Basidiomycota (e.g., dodemorph acetate, guazatine, lauric
arginate) and Mucoromycota (e.g., guazatine, lauric arginate)
along with those from the phylum Oomycota (Kingdom
Straminipila; e.g., dodine).

Within the context of biologic infections, the central rele-
vance of biofilms comes from their relationship to infections
associated with devices of hospital use, such as intravenous
and urethral catheters; permanent prostheses, dental or other
types; and mechanical heart valves (Desai et al. 2014). Not
only can these infections arise from the microbial colonization
of the surfaces of the devices and their growth in biofilms, but
the detachment of cells from those biofilms can also cause
even more severe infections and septicaemia (Jabra-Rizk
et al. 2004). So far, only echinocandins and liposomal formu-
lations of amphotericin B have displayed a significant activity

against fungal biofilms (Tsui et al. 2016). In fact, the adher-
ence of pathogenic microorganisms to surfaces and tissues—
the first step in the formation of biofilms—happens to be an
excellent target for antifungal therapies, and a study of the
antiadhesive and inhibitory properties of biofilm formation
exhibited by compounds with antifungal activity is of utmost
relevance.

Dusane et al. (2012) demonstrated that rhamnolipids are
efficient biologic surfactants for disrupting preformed
biofilms by the yeast Yarrowia lipolytica, reducing those
structures by 46% at concentrations below the MIC, with so-
dium dodecyl sulfate and cetrimonium bromide (CTAB) be-
ing less effective at 38 and 25%, respectively. Regarding cell
adhesion, although CTAB was reported to bind to the nega-
tively charged microbial surfaces, alter the surface charge, and
prevent the binding of fungal cells to those surfaces, this sur-
factant was not as effective as rhamnolipids in preventing
Y. lipolytica adhesion, with the antiadhesive effect of
rhamnolipids being significantly higher at an inhibition of
adhesion to microtiter plate wells by 50% at the MIC.

Candida albicans—the predominant causal agent of human
candidiasis—possesses various virulence attributes including
the property of biofilm formation. Candida biofilms have
been reported to be 30–2000 times more resistant to various
antifungal agents than their planktonic counterparts (Hawser
and Douglas 1994). Given the increased resistance of such
pathogenic microorganisms to the currently used antibiotics
and chemotherapeutic agents, natural products such as 4-
hydroxycordoin—it was derived from plants—constitute an
alternative for the prevention and treatment of such infections
(Messier et al. 2011). Farnesol also has been described as
acting as a naturally occurring quorum-sensing molecule that
inhibits biofilm formation, thus indicating the potential of this
natural intermediate in the biosynthesis of cholesterol for fur-
ther development and use as a novel therapeutic agent
(Ramage et al. 2002).

Holtappels et al. (2017) investigated the influence of
oleylphosphocholine (OlPC) on three different developmental
stages of biofilms on catheters—inhibition of cellular adhe-
sion and/or biofilm development, and disruption of preformed
biofilms—of 14 strains and clinical isolates of C. albicans.
This study demonstrated that, although OlPC had no effect
on C. albicans adhesion, the biofilm development was signif-
icantly reduced at low concentrations, thus evidencing also
changes in biofilm architecture, as confirmed by scanning
electron microscopy. The thick layer of hyphal cells embed-
ded in the material present in nontreated wild-type cells was
replaced by a rudimentary biofilm composed of hyphal cells
attached to a substrate, and, in strikingly impressive effective-
ness, higher concentrations of OlPC completely abolished
biofilm development. The authors also investigated the activ-
ity of OlPC on in vivo biofilms of C. albicans developed in a
rat subcutaneous biofilm model, demonstrating that daily oral
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Table 2 Reported effects of cationic surfactants on fungi and oomycota

Surfactant* Fungal taxa and Oomycota tested/susceptibility** Reference

Cetyltrimethylammonium bromide [CTAB] Complete inhibition of A. ochraceusa conidia after 3 days
when exposed at 0.5%. C. kruseia FR 01190 was killed
within 15 min of contact when applied to 0.5%. While a
few cells of C. parapsilosisa FR-01760 survived if the
contact time was less than 60 min, C. albicansa FR-00806
had no effect when applied at 0.5%.

Gupta et al. 2002

A. flavusa (MIC of0.01 mg/mL), F. solania (MIC of
100 μg/mL).

Mahmoud 2016

A. flavusa (MIC90 of 8 μg/mL), A. fumigatusa (MIC90 of
16 μg/mL), A. nigera (MIC90 of 8 μg/mL), Penicilliuma

spp. (MIC90 of 16 μg/mL), Fusariuma spp. (MIC90 of
8 μg/mL), Cladosporiuma spp. (MIC90 of 8 μg/mL),
Curvulariaa spp. (MIC90 of 8 μg/mL), and Alternariaa

spp. (MIC90 of 16 μg/mL)

Sandle et al. 2014

Baker’s yeast, S. cerevisiaea Raicu 1998

Several fungi such as A. nigera, A. ochraceusa, F. solania,
P. minioluteuma, and T. harzianuma were not able to
sporulate in vitro at 0.06%. Except for A. nigera, their
growth rate was also reduced, but all these fungi were
completely inhibited at 0.07%. The B. bassianaa growth
rate was strongly inhibited when applied to 0.06%.

Posadas et al. 2012

50% viability of C. albicansa ATCC 90028 at 0.3 mM. Vieira and
Carmona-Ribeiro
2006

C. gloeosporioidesa (IC50 of the growth: 73.2 μM),
C. lindemuthianuma (IC50 of the growth: 79.1 μM),
F. oxysporuma (IC50 of the growth: 80.8 μM), F. solania

(IC50 of the growth: 67.9 μM), T. rubruma (IC50 of the
growth: 51.48 μM; MIC7: 62.5 μM; MIC21: 125 μM),
and T. mentagrophytesa (IC50 of the growth: 37.19 μM;
MIC7: 62.5 μM; MIC21: 62.5 μM).

Fait et al. 2018

Dodemorph acetate [Meltatox] S. pannosaa var. rosae (recommended dosage for its control,
200 μg/mL), Erysiphea species, and S. flocculosaa ATCC
74320

Benyagoub and
Bélanger 1995

Dodecylguanidinium acetate [dodine] Although the B. bassianaa growth rate was strongly inhibited
when applied at 0.046% (95%), the surfactant inhibits
sporulation of M. anisopliaea.

Posadas et al. 2012

When applied as the commercial funguicide, Efuzin 500FW
at practical field dose (0.8–1 L/ha) caused complete
inhibition of germination of conidia of C. acutatuma, a
causal agent of anthracnose of sour cherry.

Tóth et al. 2012

S. graminicolad, pearl milletdowny mildew Deepak et al. 2006

The surfactant selectively blocked the growth of A. nigera,
A. flavusa, C. cladosporioidesa, C. clavisporusa,
F. roseuma, H. thompsoniia, N. rileyia, and Sporothrix
insectoruma when applied at 50 mg/L.

Luz et al. 2007

Nα, Nx-bis (Nα-lauroylarginine)-a,x-alkylidenediamide
[bis(Args)]

A. nigera (MIC, 0.10 mM for a gemini compound with two
symmetrical C16-long chain groups linked by a spacer
chain of C2 or C4; 0.19 mM for a gemini compound with
two symmetrical C16-long chain groups linked by a spacer
chain of C6; 0.24 mM for a gemini compound with two
symmetrical C12-long chain groups linked by a spacer
chain of C2; 0.16 mM for a gemini compound with two
symmetrical C12-long chain groups linked by a spacer
chain of C4) and C. albicansa.

Pérez et al. 1996; Tyagi
and Tyagi 2014

Sugar-based gemini cationic amphiphiles A. nigera (24.5 mm of IZD by a dodecyl derivative of
glucose-based surfactant at 5 mg/mL; 11 mmof IZD by an
oleate derivative of glucose-based surfactant at 5 mg/mL;
12 mm of IZD by a dodecyl derivative of fructose-based
surfactant at 5 mg/mL; 9 mm of IZD by an oleate

Negm and Mohamed
2008
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Table 2 (continued)

Surfactant* Fungal taxa and Oomycota tested/susceptibility** Reference

derivative of fructose-based surfactant at 5 mg/mL) and
A. flavusa (18 mm of IZD by a dodecyl derivative of
glucose-based surfactant at 5 mg/mL; 25 mm of IZD by an
octadecyl derivative of glucose-based surfactant at
5 mg/mL; 9 mm of IZD by an oleate derivative of
glucose-based surfactant at 5 mg/mL; 12.7 mm of IZD by
a dodecyl derivative of fructose-based surfactant at
5 mg/mL; 12 mm of IZD by an oleate derivative of
fructose-based surfactant at 5 mg/mL)

Octamethylenediamine,
iminodi(octamethylene)diamine,
octamethylenebis(imino-octamethylene)diamine,
and carbamonitrile [guazatine]

Several isolates of P. digitatuma (3.1 ppm producing an
inhibition growth rate of 1.8% to 4.9%), G. citri-aurantiia

(isolate INTA 8 growth inhibited by 4.9% by 3.1 ppm and
by 12.6% by 75 ppm).

Gerez et al. 2010

Several Candidaa strains, including fluconazole-resistant
clinical isolates of C. albicansa, C. kruseia, C. glabrataa,
and C. tropicalisa (MIC50 values ranging between 10 and
80 μM); but C. parapsilosisa ATCC 34136 resistant up to
≥ 80 μM of commercial mixture and each the purified
components

Dreassi et al. 2007

Susceptible fungi at 700 ppm with an inhibition halo of
30 mm or more: A. clavatusa, F. oxysporuma,
F. moniliformea, G. candiduma, and P. digitatuma.
Resistant fungi at 700 ppm with an inhibition halo of
22 mm or less: A. nigera, A. flavusa, Rhizopusc sp., and
Mucorc sp

Maldonado et al. 2005

S. sclerotioruma (growth was inhibited around 85% by
5 μM). A. kikuchianaa (ID50 was 10 ppm for growth).

Yagura et al. 1984;
Maiale et al. 2008

Tilletiab ssp., Helminthosporiuma, Fusariuma ssp., Septoriaa,
Ustilagob, and P. italicuma.

Atanasov et al. 2016

Nα-benzoyl-arginine decylamide [Bz-Arg-NHC10] C. gloeosporioidesa (IC50 of the growth: 61.3 μM),
C. lindemuthianuma (IC50 of the growth: 44.8 μM),
F. oxysporuma (IC50 of the growth: 70.7 μM), F. solania

(IC50 of the growth: 61.6 μM), T. rubruma (IC50 of the
growth: 52.06 μM;MIC7: 125 μM;MIC21: 125 μM), and
T. mentagrophytesa (IC50 of the growth: 58.15 μM;MIC7:
125 μM; MIC21: 125 μM)

Fait et al. 2018

Nα-benzoyl-arginine dodecylamide [Bz-Arg-NHC12] C. gloeosporioidesa (IC50 of the growth: 168.2 μM),
C. lindemuthianuma (IC50 of the growth: 80.3 μM),
F. oxysporuma, F. solania (IC50 of the growth: 21.6 μM),
T. rubruma (IC50 of the growth: 32.39 μM; MIC7:
62.5 μM; MIC21: 125 μM), and T. mentagrophytesa (IC50

of the growth: 57.85 μM; MIC7: 125 μM; MIC21:
125 μM).

Fait et al. 2018

Lauramide of L-arginine ethyl ester
monohydrochloride; ethyl-N″-lauroyl-L-arginate
HCl [Lauric arginate, LAE, Mirenat®]

A. nigera ATCC 14604 (MIC of 32 ppm), A. pullulansa

ATCC 9348 (MIC of 16 ppm); G. virensa ATCC 4645
(MIC of 32 ppm), C. globosuma ATCC 6205 (MIC of
16 ppm), P. chrysogenuma ATCC 9480 (MIC of
128 ppm), P. funiculosuma CECT 2914 (MIC of 16 ppm),
C. albicansa ATCC 10231 (MIC of 16 ppm), R. rubrab

CECT 1158 (MIC of 16 ppm), and S. cerevisiaea ATCC
9763 (MIC of 32 ppm).

Kanazawa et al. 1995

Nα-Lauroyl arginine methylester (LAM) C. albicansa ATCC 10231 (MIC of 64 ppm), A. nigera

ATCC 46604 (MIC of 125 ppm)
Singare and Mhatre

2012

Nα-Nonanoyl L-Arginine ethyl ester [NAE] C. albicansa ATCC 10231 (MIC of 125–250 ppm), A. nigera

ATCC 46604 (MIC of 250/500–1000 ppm)
Singare and Mhatre

2012

Nα-Myristoyl-L-Arginine ethyl ester [MAE] C. albicansa ATCC 10231 (MIC of 3.9 ppm) Singare and Mhatre
2012

Myristamidopropyl dimethylamine [MAPD] A. fumigatusa ATCC 10894 ~ 3.5 log reduction at 50 μg/mL,
C. albicansa ATCC 10231 ~ 2.5 log reduction at
25 μg/mL (starting cell density 107 CFU/mL)

Codling et al. 2003
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administration resulted in a significant inhibition of
C. albicans biofilms after 9 days of treatment.

In another study, Obłąk et al. (2015) conducted similar
experiments testing adhesion, biofilm development, and dis-
ruption of preformed biofilms ofC. albicans and Rhodotorula

mucilaginosa induced by the alanine-derived gemini quater-
nary ammonium bromides TMPAL-10 Br and TMEAL-12 Br.
The deposition of gemini QACs on polystyrene plates
inhibited the adhesion of R. mucilaginosa cells, with, of the
two, TMPAL-10 Br exhibiting a stronger antiadhesive effect

Table 2 (continued)

Surfactant* Fungal taxa and Oomycota tested/susceptibility** Reference

3,3′-(2,7-Dioxaoctane) bis(1-decylpyridinium
bromide) [Gemini-QAC 3DOBP-4,10]

S. cerevisiaea NBRC 10217 (CRIC ≥ 0.4 μM;MFC 6.0 μM) Shirai et al. 2009

N-(3-(butylideneamino)propyl)-N,N-dimethylalk-
y-1-ammonium bromide [C10BT, C12BT, and
C16BT]

C. albicansa 32, 24, and 22 mm/mg of IZD for C10BT,
C12BT, and C16BT, respectively; P. chrysogenuma 23, 19,
and 22 mm/mg of IZD for C10BT, C12BT, and C16BT
respectively (isolates obtained from the operation devel-
opment Center, Egyptian Petroleum Research Institute,
Egypt)

Shaban et al. 2014

N,N′-bis(1-alkyloxy-1-oxopronan-2-yl)-N,N,N′,N
′-tetramethylethane-1,3-diammonium dihalide
[n = alkyl chain length; TMEAL-n X, n = 6, 8, 10,
12, 14, and X =Cl or Br]

S. cerevisiaea MIC > 1200 μM for TMEAL-6 Br, 800 μM
for TMEAL-8 Br, 320 μM for TMEAL-10 Br, 80 μM for
TMEAL-12 Br, 500 μM for TMEAL-12 Cl, and 240 μM
for TMEAL-14 Br

Obłąk et al. 2015

C. albicansa MIC > 1200 μM for TMEAL-6 Br, 240 μM for
TMEAL-8 Br, 160 μM for TMEAL-10 Br, 80 μM for
TMEAL-12 Br, 800 μM for TMEAL-12 Cl, and 500 μM
for TMEAL-14 Br

R. mucilaginosab MIC > 1200 μM for TMEAL-6 Br, 80 μM
for TMEAL-8 Br, 40 μM for TMEAL-10 Br, 40 μM for
TMEAL-12 Br, 10 μM for TMEAL-12 Cl, and 80 μM for
TMEAL-14 Br

N,N′-bis(1-alkylloxy-1-Oxopronan-2-yl) N,N,N′,N
′-tetramethylpropane-1,2-diammonium dihalide
[n = alkyl chain length; TMPAL-n X, n = 10, 12 and
X = Cl or Br]

S. cerevisiaea CIM 40 μM for TMPAL-10 Br, 500 μM for
TMPAL-12 Br, and 500 μM for TMPAL-12 Cl

Obłąk et al. 2015

C. albicansa CIM 80 μM for TMPAL-10 Br, 500 μM for
TMPAL-12 Br, and 800 μM for TMPAL-12 Cl

R. mucilaginosab CIM 10 μM for TMPAL-10 Br, 10 μM for
TMPAL-12 Br, and 10 μM for TMPAL-12 Cl

N-(3-(benzylideneamino)propyl)-N,N-dimethylalk-
yl-1-ammonium bromide [n = alkyl chain length;
n = 10 I, n = 12 II, and n = 16 III]

C. albicansa 25, 31, and 23 mm/mg of IZD for I, II, and III,
respectively; P. chrysogenuma 18, 21, and 17 mm/mg of
IZD for I, II, and III, respectively [II (C12) > I (C10) > III
(C16)] (isolates obtained from the operation development
Center, Egyptian Petroleum Research Institute, Egypt)

Aiad et al. 2014b

Oleylphosphocholine (OlPC) C. albicansaMIC50 from 1to 4 mg/L;MFC from 2 to 4 mg/L
(14 strains and clinical isolates obtained from urinary
catheters, blood culture, and disseminated candidiasis
tested)

Holtappels et al. 2017

Morpholinium chlorides C. albicansa ATTC 10231 and T. menthagrophytesa ATCC
9533 MFC from 10 to 10,000 mg/mL

Brycki et al. 2010

*Abbreviations commonly found in literature are listed between square brackets

**IC50, concentration value that causes 50% inhibition of growth relative to the control cultures; ID50 (50% inhibitory dose), inhibitor concentration that
produces 50% inhibition; MIC (minimal inhibition concentration), the lowest concentration that exhibited a 100% reduction in growth when compared
with the control cultures; MIC7, the lowest surfactant concentration able to completely inhibit fungal growth after 7 days of exposure to the surfactant;
MIC21, the lowest surfactant concentration able to completely inhibit fungal growth after 21 days of exposure to the surfactant; MIC50, the lowest
concentration of an agent resulting in a growth reduction of ≥ 50% compared to the growth of the control; MIC90, an estimate of the concentration that
inhibits 90% of turbidity compared with that of the control cultures; CRIC, critical respiratory inhibition concentration; MFC, minimal fungicide
concentration; IZD, inhibition zone diameter
a Phylum Ascomycota
b Phylum Basidiomycota
c Phylum Mucoromycota
d Phylum Oomycota (Kingdom Straminipila)
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that caused a higher proportion of killed cells, as evidenced by
fluorescence microscopy and a LIVE/DEAD Viability Kit™.
With respect to the disruption of R. mucilaginosa and
C. albicans biofilms on polystyrene microplates, the two gem-
ini QACs tested were efficient, with TMEAL-12 Br manifest-
ing a slightly stronger effect. Finally, both gemini QACs ex-
hibited antiadhesive properties upon investigation of
C. albicans adhesion to silicone catheters. Only TMEAL-12
Br, however, was able to reduce previously formed biofilms
on those surfaces.

Within the same context, several patents have described the
use of cationic surfactants in the removal of biofilms in indus-
trial systems and in lines and tubing through penetration and
dispersal (Hollis et al. 1995; Labib and Lai 2000; Baldridge
and Michalow 2004). In addition to the disinfectant properties
of cationic surfactants, those compounds—and particularly
the quaternary amines—exhibit a strong interaction with cell
wall constituents of the microorganisms present in biofilms
and thus can facilitate the solubilization of the bacterial and
fungal matter in the biofilm. Furthermore, these surfactants
provide a certain minimal foaming action to an aqueous
cleaning solution that helps to provide a turbulent flow in
the tubing to be cleaned as well as aiding in loosening the
biofilm or debris from the tubing surface.

Bullseye: the plasma membrane

In view of the negative net charge of bacterial and fungal
cellular surfaces, that many antimicrobial agents are cationic
and have a high binding affinity to microbial cells is hardly
surprising. In the example of the cationic surfactants, the pres-
ence of a strong positive charge together with a hydrophobic
region is more than enough of a characteristic to enable an
interaction with the cell surface and facilitate an integration
into the cytoplasmic membrane (Gilbert and Moore 2005).
The source of the cationic charge can be variable, but in many
instances, that property can be attributed mainly to the pres-
ence of ammonium—i.e., CTAB or guanidinium groups—as
in the example of Nα-lauroyl-L-arginine and dodine, whose
structures are illustrated in Fig. 1.

Guanidine moieties are known to form complexes with
phospholipid head groups by bidentate hydrogen-bonded ion

pairing. This affinity for phospholipids is thought to be re-
sponsible for the interaction of those residues with cell mem-
branes and the resulting cell penetration ability and conse-
quent antimicrobial activity (Palermo and Kuroda 2010).

Different mechanisms have been found to be involved in
the antifungal activity of the cationic drugs commonly
employed for the treatment of fungal infections. In general,
the main targets are cell wall polymers—e.g., glucans, chitin,
mannoproteins—, the cell membrane, ergosterol, DNA, the
protein synthesis machinery—topoisomerases, nucleases,
elongation factors, and myristoylation—, and the signal trans-
duction pathways—e.g., protein kinases and protein phospha-
tases (Sant et al. 2016). Table 3 summarizes the putative
mechanisms described in the literature for the cationic surfac-
tants commonly used as antifungal agents.

An elucidation of the role of lipids in pathogenesis and
target identification for improved therapeutics was pursued
by researchers mainly during the last few years (Sant et al.
2016). A targeting of the fungal cell membrane, the conven-
tional approach, has been extensively explored for the devel-
opment of antifungal agents. Apart from containing ergoster-
o l , t h e f ung a l c e l l memb r a n e i s a l s o r i c h i n
glycerophospholipids and sphingolipids, which components
play an essential role in cellular functions and signal transduc-
t i on pa thways (Dupon t e t a l . 2012 ) . Whe rea s
glycerophospholipids are composed of glycerol-3-phosphate
containing two fatty-acyl chains along with various polar sub-
stituents—like choline, serine, and ethanolamine—,
s ph ingo l i p i d s have a backbone o f N - a cy l a t ed
phytosphingosine or ceramide. Phospholipids such as phos-
phatidic acid, phosphatidylcholine (PC), phosphatidylethanol-
amine (PE), phosphatidylserine, phosphatidylglycerol, phos-
phatidylinositol, and cardiolipin along with sphingolipids
s u c h a s i n o s i t o l - p h o s p h a t e c e r a m i d e ,
m a n n o s y l i n o s i t o l p h o s p h a t e c e r a m i d e , a n d
mannosyldiinositolphosphate ceramide are reported as cell
membrane constituents in Saccharomyces cerevisiae (van
der Rest et al. 1995). In studies comparing the phospholipid
and sterol composition of the plasma membrane of
fluconazole-resistant clinicalCandida albicans isolates to that
of fluconazole-sensitive ones, Löffler et al. (2000) revealed no
differences in the phospholipid and sterol composition in most
of the strains tested (Löffler et al. 2000), though one resistant

Fig. 1 Chemical structure of a Nα-lauroyl-L-arginine and b dodine. The guanidinium group is indicated in red
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strain manifested a decreased amount of ergosterol and had a
lower PC/PE ratio than that of the sensitive strains. These
authors suggested that those changes in the plasma membrane
lipid and sterol composition might be responsible for an al-
tered uptake of drugs and thus for a reduced intracellular ac-
cumulation of fluconazole, thereby providing a mechanism
for that azole resistance.

Amphiphiles are known to interact with lipid membranes
so as to affect their structure. For example, natural amphi-
philes can be integrated into lipid bilayers or can completely
destroy the bilayer structure to form mixed lipid-surfactant
micelles depending on the amphiphiles’ critical micelle
concentration. In the particular example of CTAB, the

critical phenomenon responsible for the antifungal effect
of that compound was suggested to be the reversal of the
cell surface charge from negative to positive without
disrupting the cell membrane, thus enabling the surfactant
to penetrate the cell wall (Vieira and Carmona-Ribeiro
2006). In this regard, Shirai et al. (2009) described how
another family of cationic surfactants, the gemini QACs,
was able to penetrate the cell wall and membrane of
S. cerevisiae, inhibit respiratory enzymes localized in the
mitochondria, and/or destroy organelle membranes. This
evidence led to the assumption that the gemini QAC surfac-
tants produced changes in the permeability of the cytoplas-
mic membrane in order to reach the interior of the cell.

Table 3 Reported mechanisms of action of antifungal cationic surfactants

Surfactant Putative mechanism of action References

bis(Args) Cell membrane with increased permeability Pérez et al. 1996; Tyagi and Tyagi 2014

Bz-Arg-NHCn Permeabilization and direct damage of the plasma membrane Fait et al. 2018
Induction of oxidative stress

CTAB Membrane solubilization with cell lysis at high concentrations Raicu 1998; Gupta et al. 2002; Vieira and Carmona-Ribeiro
2006; Posadas et al. 2012; Sandle et al. 2014; Mahmoud
2016; Fait et al. 2018

Increase in membrane-surface folding and cell shrinkage, affect-
ing the apparent capacitance of the plasma membrane

Reduction of conductivity in cytoplasm and vacuole interior

Change of cell-surface charge from negative to positive

Protein-function alteration

Dodine Interference of cell functions (multisite activity) Szkolnik and Gilpatrick 1969; Yoder and Klos 1976; Deepak
et al. 2006; Luz et al. 2007; Tóth et al. 2012; Posadas et al.
2012

Inhibition of respiration of glucose and acetate and active
transport of phosphorus and carbon

Sporulation and conidial-germination inhibition

3DOBP-4,10 Alteration of membrane permeability Shirai et al. 2009
Inhibition of respiratory function (inhibition of respiratory

enzymes and/or destruction of organelle membranes)

Guazatine Inhibition of lipid biosynthesis and oxygen uptake Yagura et al. 1984; Maldonado et al. 2005; Dreassi et al.
2007;Maiale et al. 2008; Gerez et al. 2010; Atanasov et al.
2016

Interference with membrane structure

Disturbance of membrane function

Membrane destabilization and increased permeability

LAE Membrane solubilization with cell lysis Kanazawa et al. 1995
Interference with membrane structure

Loss of membrane potential

Cell permeability alteration

Leakage of cellular constituents

Meltatox Inhibition of sterol biosynthesis (inhibition of Δ8→ Δ7
isomerase), causing the accumulation of fecosterol and
ergosta-8-en-3ß-ol in Ustilago maydis and Saccharomyces
cerevisiae and fecosterol and
ergosterol-8,22,24(27)-trien-3ß-ol in Botrytis cinerea and
Penicillium expansum

Benyagoub and Bélanger 1995

MAPD Membrane damage Codling et al. 2003

QACs Alteration of membrane permeability Hegstad et al. 2010
Leakage of cellular constituents

At high concentrations, can solubilize hydrophobic cell
membrane components by forming mixed micellar aggregates

Disruption and denaturation of structural proteins and enzymes
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Model membrane systems for the study
of the antifungal mechanism of amphiphilic
compounds

A study of the interaction of bioactive compounds with
biomembranes—a complex phenomenon from both the
chemical and the physicochemical points of view—may pro-
vide fundamental information about the mechanism involved,
thus expanding our knowledge and offering an opportunity to
identify further potential therapeutic targets. Within this con-
text, and in consideration of the role of the plasma membrane,
experiments involving different types of model membranes—
such as lipid mono- or bilayers or lipid vesicles (liposomes)—
are therefore of paramount necessity in guiding the develop-
ment of new antifungal agents.

Membrane models differ in their complexity (e.g., mono-
layers, supported bilayers, or vesicles) as well as in their lipid-
ic nature (e.g., saturated or unsaturated lipids, zwitterions, or
charged lipids) and their physical state (involving the fluidity
or rigidity of the acyl chains). Nevertheless, a simple lipid
mixture composed of 75 mol% 1-palmitoyl-2-oleoyl-sn-
glycero-3-phosphocholine and 25 mol% 1-palmitoyl-2-
oleoyl-sn-glycero-3-phospho-l-serine has been found to
match the fluidity and charge of the phospholipid composition
in the ascomycete (example in point, C. albicans) cellular
membrane (Stenbæk et al. 2017).

Valuable information about antifungal mechanisms based
on membrane interactions can be obtained through membrane
models along with other biophysical techniques. González-
Jaramillo et al. (2017) have performed a detailed biophysical
study on the interaction of the biosurfactant fengycin C with
model dipalmitoylphosphatidylcholine (DPPC) membranes
(González-Jaramillo et al. 2017). Combining differential scan-
ning calorimetry and fluorescence polarization probe mea-
surements with Fourier transform infrared spectroscopy, those
authors demonstrated that fengycin C alters the thermotropic
phase transitions of DPPC and is laterally segregated in the
fluid bilayer-forming domains, without affecting the hydro-
phobic interior of the membrane. Fengycin-rich domains,
where the surrounding DPPC molecules are highly

dehydrated, may well constitute sites of membrane perme-
abilization leading to a leaky target membrane.

Studies on the plausible mode of action of cationic surfac-
tants support a membranolytic or detergent-like effect similar
to that of many membrane-active antimicrobial peptides that
should make the development of a complete resistance diffi-
cult for the microorganisms (Bahar and Ren 2013).

The example of the Bz-Arg-NHCn family
of arginine-based surfactants

In the particular example of arginine-based surfactants, our
own previous work evidenced that, according to the relation-
ship between the chemical structure and the biologic activity
of the Bz-Arg-NHCn, the shortness of the alkyl chain was
correlated with the strength of the fungistatic activity, where-
as, for the bactericidal and/or bacteriostatic capability, the
length the alkyl chain correlated with the extensiveness of
the antimicrobial potency (Fait et al. 2015; Fait et al. 2018).
Considering the differences between bacterial and fungal
cells, we suggested that the hydrophobic character of the sur-
factant molecules might lead to a less efficient internalization,
probably because of a strong interaction of those amphiphiles
with the fungal lipid membrane. According to Castillo et al.
(2006), the difference observed in the behavior of this kind of
surfactant towards bacteria and fungi could be explained on
the basis of an adequate lipophilic-hydrophilic balance of the
molecule, which causes a disruption of plasma membranes or
affects intracellular processes, which actions are described in
the previous section (Castillo et al. 2006). This hypothesis
could explain the higher fungicidal effect of Bz-Arg-NHC10

than Bz-Arg-NHC12 for almost all the fungal species tested so
far.

The analysis of fungal membrane integrity and the qualita-
tive production of reactive oxygen species (Fig. 2) suggested
both membrane permeabilization and the induction of oxida-
tive stress to be a part of the antifungal mechanism involved in
the interruption of normal conidial development by Bz-Arg-
NHCn (Fait et al. 2018).

Fig. 2 Antifungal mechanism by of Bz-Arg-NHCn. a Control
Colletotrichum spp. conidia. b Membrane permeabilization (evidenced
by propidium iodide uptake) induced in conidia ofC. lindemuthianum by
exposure to 400 μM Bz-Arg-NHC12. c Detection of reactive oxygen

species (evidenced by the uptake of the substrate 3,3-diaminobenzidine)
produced in the conidia of C. gloeosporioides through the exposure to
400 μM Bz-Arg-NHC12. Bars: 30 μm (for more details see Fait et al.
2018)
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On the basis of the internalization of surfactant mole-
cules as part of the antifungal mechanism and the pres-
ence of the arginine moiety in these surfactant species,
different models can be proposed to explain their translo-
cation into the cytoplasm through the membrane: (i) direct
uptake, which internalization would involve destabiliza-
tion of the membrane in an energy- and temperature-
independent manner; (ii) inverted micelle formation; (iii)
pore formation; and/or (iv) electroporation-like perme-
abilization (Bechara and Sagan 2013). In view of the mo-
lecular structure of Bz-Arg-NHCn, the truncated conical
shape of these molecules supports the hypothesis that
deals with the formation of transient pores as the main
mechanism. In general, facilitation of pore formation by
molecules with a positive spontaneous curvature (such as
lysophospholipids) is explained by a decrease in the free
energy per unit length—i.e., the line tension—that is re-
quired to form the edges of a pore whose overall geomet-
ric monolayer curvature is positive. In contrast,
nonlamellar lipids with a negative intrinsic curvature
(such as PE) increase that free energy of pore creation.
In a toroid, a positive curvature is found perpendicular to
the plane of the membrane, whereas a negative curvature
is present in that plane all around the pore. Considering
that (i) PE—with an inverted conical shape—may adopt
different structures in the membrane, i.e., lamellar or
inverted micelles, (ii) strong head group interactions will
be established through the formation of H bonds, and that
(iii) fungal membranes are rich in PE, a transient pore
formation—through which the surfactant molecules can
translocate and/or diffuse and reach the cytoplasm—

would be the most appropriate mechanistic model for
explaining the antifungal effect of these surfactants
(Fig. 3). Nevertheless, in order to confirm our hypothesis,
further trials with model membrane systems still are
needed.

Uses of cationic surfactants as antifungal
agents

Cationic surfactants as antifungal agents can be considered as
multisite-active compounds since those amphipaths can exert
their antifungal activity through different modes of action.
Indeed, such detergents can accordingly be used as fungicides

Table 4 Common uses of
cationic surfactants for fungal
control

Surfactant Uses

CTAB Chemical agent with fungicide or fungistatic activity

Potential use in treatment of mycotic corneal ulcers

Meltatox Systemic fungicide used in agriculture

Dodine Fungicide with preventive action and curative effect especially indicated for the control of
scabies in apple and pear. The surfactant also has an eradicating effect when applied 30 to
36 h after the infection was produced. It is used to control scabies in pecan nuts; leaf spot on
cherries, olive, redcurrants, celery, and other crops as well as leaf diseases in strawberry and
can be used for other fruit plants, ornamental or otherwise. The cationic tenside type
dodemorph isomers and dodine as well as the phosphonic acid salts were also well tolerated
by pearl millet germlings. Multisite contact activity

Guazatine The surfactant is widely used in agriculture to control a wide range of seed-borne diseases of
cereals. On citrus fruit, it is used as a bulk dip after harvest and in the packing line as a spray.
A commercial product, it is a nonsystemic-contact fungicide with potent anti-Candida
activity, superior to that of the commercial fluconazole, and is a polyamine-oxidase inhibitor
in plants with a Ki ~ 10−8 M.

Iminoctadine Protectant. Control of fungal pathogens on citrus, ornamental and fruit trees, lawns and turf.
Usually formulated as a seed dressing

LAE Preservative for the food industry. Commercialized as Mirenat™

MAPD Contact lens multipurpose disinfecting solution, commercial nameOpti-Free Express™ (Alcon)

Fig. 3 Transient pore formation as the proposed model for the effect of Bz-
Arg-NHCn surfactants on fungal membranes. On the basis of fungal
membrane’s composition—rich in phosphatidylethanolamine—and
because strong head group interactions could be established through the
formation of H bonds between the surfactant head group and the
hydrophilic portion of phospholipids, transient pore formation could
facilitate the translocation and/or diffusion of surfactant molecules into the
cell cytoplasm. PC phosphatidylcholine, PE phosphatidylethanolamine, S
Bz-Arg-NHCn
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and/or as fungistatic agents. Depending on where in the dis-
ease cycle or deterioration process those cationic surfactants
act (Balba 2007), they can play a role as (i) protectants
(through contact) or preventive fungicides that are effective
before colonization, such as in the example of dodine and
iminoctadine; (ii) curative agents that are effective against
the fungus growing in the host tissue or the fungal product
deposited after the occurrence of the infecting spores’ germi-
nation and therefore have curative properties; and (iii)
eradicants or antisporulant fungicides that are capable of stop-
ping sporulation by the organism, as reported for dodine.
These compounds can furthermore be used in the field of
agriculture to control postharvest diseases as well as in human
and veterinary medicine as antifungal agents in topical formu-
lations against opportunistic mycoses in addition to being dis-
infectants. Table 4 summarizes common uses of cationic sur-
factants as antifungal agents.

Perspectives

At the present, amino acid-based cationic surfactants are rec-
ognized not only as potential antifungal agents, but also as
promising enhancers and solubilizers of the already existing
antifungal drugs, by that means contributing to a widening of
the therapeutic window of those pharmacons. Likewise, the
use of these compounds for the pretreatment of surfaces rep-
resents a promising alternative to the quaternary ammonium
salts as biocidal agents with biomedical applications, focusing
on the control of the colonization of those sites by pathogenic
microorganisms and the subsequent formation of biofilms.
Because of all the advantages cited in this review, the
arginine-based cationic surfactants deserve the attention of
future research in the field of biochemistry and the biomedical
sciences as well as in the realm of agriculture and the pharma-
ceutical and food industries.
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