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PLANAR NORMAL SECTIONS ON ISOPARAMETRIC

HYPERSURFACES AND THE INFINITY LAPLACIAN

JULIO C. BARROS AND CRISTIÁN U. SÁNCHEZ

Abstract. We present a new characterization of Cartan isoparametric hyper-

surfaces in terms of properties of the polynomial that determines the algebraic
set of planar normal sections on the homogeneous isoparametric hypersurfaces

in spheres. We show that Cartan isoparametric hypersurfaces are the only ho-

mogeneous isoparametric hypersurfaces in spheres for which the infinity Lapla-
cian of the polynomial that defines the algebraic set of planar normal sections

is the polynomial multiplied by the squared norm of the tangent vector.

Since it is required for our work, we also give these polynomials for all
homogeneous isoparametric hypersurfaces in spheres.

1. Introduction and previous results

Let M be a compact connected n-dimensional Riemannian manifold and I :
M −→ Rn+k an isometric embedding into the Euclidean space Rn+k. Let p be a
point in M and consider, in the tangent space Tp (M) to M at p, a unit vector
X. We may associate to X (as in [9] and references therein) an affine subspace
of Rn+k defined by Sec (p,X) = p + Span{X,T⊥p (M)}. If U is a small enough
neighborhood of p in M , then the intersection U ∩ Sec (p,X) can be considered a
C∞ regular curve γ (s), parametrized by arc-length, such that γ (0) = p, γ′ (0) = X.
This curve is called a normal section of M at p in the direction of X. We say
that the normal section γ of M at p in the direction of X is planar at p if its
first three derivatives γ′ (0), γ′′ (0) and γ′′′ (0) are linearly dependent. If M is a
compact spherical submanifold in Rn+k (i.e. contained in a sphere of radius r in

Rn+k), given a point p in M , we shall denote by X̂p [M ] the algebraic set defined

by X̂p [M ] = {X ∈ Tp (M) : ‖X‖ = 1,
(
∇Xα

)
(X,X) = 0} (here

(
∇Xα

)
is the

covariant derivative of the second fundamental form of M in Rn+k). This is called
the algebraic set of unit vectors defining planar normal sections at p on M .

The condition defining the algebraic set X̂p [M ] can be considered ([9]) as given
by certain homogeneous polynomials of degree three defined in the tangent space
Tp (M). For isoparametric hypersurfaces in the sphere the behavior of the normal
sections is governed by a single polynomial and it is the infinity Laplacian of this
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polynomial (cf. Section 2) the tool that we use to obtain a characterization of the
Cartan ones among all homogeneous isoparametric hypersurfaces in the sphere.
Recall that a Cartan isoparametric hypersurface is a homogeneous isoparametric
hypersurface of the sphere with three distinct principal curvatures. The reason for
restricting to the homogeneous case is that, for these hypersurfaces, the algebraic

set X̂p [M ] is, in some clear sense, “independent” of the point p and this is a
desirable property.

It seems to be a strong fact that certain homogeneous isoparametric hypersur-
faces in the sphere can be characterized in terms of properties associated to their
normal sections. In this sense the present work complements the results in [9].

We shall indicate some necessary notation.
We always identify M with its image by the embedding I. A submanifold

of Euclidean space Rn+k is usually called full, if it is not included in any affine
hyperplane. Let 〈∗, ∗〉 denote the inner product in Rn+k. Let ∇E be the Euclidean
covariant derivative in Rn+k and ∇ the Levi-Civita connection in M associated
to the induced metric. We shall say that the submanifold M is spherical if it is
contained in a sphere of radius r in Rn+k, which can be thought centered at the
origin. Let α denote the second fundamental form of the embedding in Rn+k.
We denote by Tp(M) and Tp(M)⊥ the tangent and normal spaces to M at p,
respectively. M will be called extrinsically homogeneous ([3]) if for any two points
p, q ∈M there is an isometry g of Rn+k such that g(M) = M and g(p) = q.

The definition of the set X̂p [M ] is based on the following basic fact ([9]).

Proposition 1. Let M be a spherical compact submanifold. The normal section
γ of M at p in the direction of the unitary vector X ∈ Tp(M), is planar at p if
and only if the covariant derivative of the second fundamental form vanishes on
the vector X = γ′(0). That is, X satisfies the equation:(

∇Xα
)

(X,X) = 0. �

We must also notice that:

Proposition 2. If M is spherical and ω1 is the unitary umbilical vector field on
M then for X,Y, Z ∈ Tp(M) we have〈

ω1,
(
∇Xα

)
(Y, Z)

〉
= 0. �

In order to study the normal sections at p of the compact spherical submanifold
M in Rn+k, it is convenient to consider the polynomials

Pj(X) = 〈ωj , (∇Xα)(X,X)〉 , j = 1, . . . , k,

where ω1, . . . , ωk is a basis of the normal space Tp(M)⊥.
The condition in Proposition 1 may be written then as

Pj(X) = 0, j = 1, . . . , k, ‖X‖ = 1.
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PLANAR NORMAL SECTIONS 109

1.1. The polynomials on isoparametric submanifolds. The embedded sub-
manifold Mn ⊂ Rn+k as above is said to have constant principal curvatures if,
for any parallel normal field ξ(t) along any piecewise differentiable curve in Mn,
the eigenvalues of the shape operator Aξ(t) are constant. It is known that the
submanifolds with constant principal curvatures are either isoparametric or one
of their focal manifolds. For a full isoparametric submanifold Mn of Rn+k the
rank is its codimension, namely k. Let M be a compact rank k isoparametric
submanifold of Rn+k; then M is spherical and we may think that the sphere has
center 0 ∈ Rn+k and radius 1. M is a regular level set of an isoparametric poly-
nomial map f : Rn+k −→ Rk which has components f = (h1, . . . , hk); usually one
takes M = f−1(0). The importance of isoparametric submanifolds for our study
is that the gradients {∇hj : j = 1, . . . , k} provide a ∇⊥-parallel frame of the nor-
mal bundle of M . We shall use this natural basis of the normal bundle instead of
ω1, . . . , ωk.

The following observations ([9]) will be important below.

Proposition 3. For a compact isoparametric submanifold M of Rn+k, the poly-
nomials Pj(X), j = 1, . . . , k, are harmonic in Tp(M) for any p ∈M . �

Let M be a compact rank k isoparametric submanifold of Rn+k. Since the
normal bundle of M is globally flat, all shape operators are simultaneously diag-
onalizable. We have common eigendistributions Hi (i = 1, . . . , g), that is, for any

ξ ∈ Tp (M)
⊥

Aξ (X) = λi (ξ)X, ∀X ∈ Hi(p).

Each Hi is autoparallel, hence integrable with totally geodesic leaves. Then we
have ([9, Corollary 4.3]):

Proposition 4. Let e1, . . . , en be an orthonormal basis for Tp(M) formed by taking
an orthonormal basis in each eigenspace Hi(p), i = 1, . . . , g. Then writing X ∈
Tp(M), ‖X‖ = 1, as X = Σaiei, in the polynomials Pj(X), j = 1, . . . , k, there are
no monomials with two subscripts from the same Hi(p). In particular there are
neither cubes nor squares in the polynomials. �

1.2. Computing the polynomials. In the present section we shall see that they
can be computed, in a more direct fashion, from the polynomials (h1, . . . , hk) defin-
ing M .

Proposition 5. [9, Corollary 4.3] Let X ∈ Tp (M) be a unit vector. If γ(s) is a
normal section of M such that γ(0) = p, γ′(0) = X, then

Pj(X) = −X〈∇Eγ′(s)(∇hj(γ(s))), γ′(s)〉. �

Since we may take as h1 the quadratic polynomial defining the unit sphere in

Rn+k, the algebraic set X̂p(M) is defined only by

Pj(X) = 0, ‖X‖ = 1, j = 2, . . . , k.
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If now M is a compact rank 2 full isoparametric submanifold of Rn+2, then M
is a regular level set of an isoparametric polynomial map f : Rn+2 −→ R2 which
has components f = (h1, h2). Let p be a point in M ; since, as we noticed, we
may think that the first polynomial h1 is the one defining the unit sphere in Rn+2

then we have, in this case, only one polynomial defining the algebraic set X̂p(M),
namely:

P2(X) = 0, ‖X‖ = 1.

The algebraic set of planar normal sections of M at p is then P−1
2 (0).

1.3. Isoparametric hypersurfaces in spheres. We recall now some well known
facts about isoparametric hypersurfaces in spheres.

As we indicated above, an isoparametric hypersurface in the unit sphere Sn+1 ⊂
Rn+2 is a level set of the isoparametric polynomial map f : Rn+2 −→ R2, f =
(h1, h2). It is usual to forget the function h1 defining the sphere and consider only
the restriction h of h2 to the unit sphere, and so consider M defined as a level
set of h : Sn+1 → R. If M has g distinct principal curvatures then the principal
curvatures have two multiplicities m1 and m2 (possibly equal) and the function
h has the following important properties (h is usually called the Cartan–Münzner
polynomial defining M):

(i) h satisfies

‖∇h‖2 = g2 ‖X‖2g−2
,

4h = c ‖X‖g−2
,

where c = g2(m2−m1)
2 .

(ii) h is the restriction to Sn+1 of a homogeneous polynomial of degree g in
Rn+2.

(iii) For the restriction h of each homogeneous polynomial of degree g in Rn+2

which satisfies (i) and (ii) the level hypersurfaces of h form an isoparametric family.
(iv) If M is an isoparametric hypersurface of Sn+1 with g distinct principal

curvatures, then g ∈ {1, 2, 3, 4, 6}.

The number g of distinct principal curvatures for the homogeneous isoparametric
hypersurfaces obtained in [11] is the same that for general isoparametric hypersur-
faces. The homogeneous ones are principal orbits of the isotropy representation of
certain symmetric spaces.

To obtain our results, we need to indicate which are the polynomials P2(X) that

define the set X̂p(M) for each of the homogeneous isoparametric hypersurfaces
in spheres. This computation is long and generally quite involved, so we only
reproduce here the corresponding results, which is what the present work requires;
the full development has been carried out in [8]. The scheme followed in this
computation of P2(X) is the same for all homogeneous isoparametric hypersurfaces.
Namely:

(i) Find a convenient basic point E ∈ M . The set X̂E(M) is then contained in
the unit sphere of Sn−1 ⊂ TE (M).
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(ii) Determine the tangent and normal spaces of M at the point E.
(iii) Compute P2(X) by the formula in the previous proposition.

We identify the hypersurfaces by the degree g.

Case g = 1. Here M is an equator in Sn+1 defined by

M =
{
X ∈ Sn+1 : h (X) = 〈X, v〉 = 0

}
for some fixed v ∈ Sn+1. For E ∈M all normal sections at E are planar so

X̂E(M) = Sn−1 ⊂ TE (M) .

Case g = 2. These are the so called Clifford manifolds. For p, q natural numbers
such that 1 ≤ p, q ≤ n, p+ q = n, they are defined by:

Mp,q =

X ∈ Sn+1 :

p+1∑
i=1

x2
i −

n+2∑
i=p+2

x2
i = 0

 .

Here again all normal sections are planar so

X̂E(M) = Sn−1 ⊂ TE (M) .

Case g = 3. These are called Cartan hypersurfaces. These hypersurfaces denoted
by FR, FC , FH and FO, are the manifolds “complete flags” in the projective planes
RP 2, CP 2, HP 2 and OP 2 (real, complex, quaternionic and Cayley), respectively.
A complete flag in any of the projective planes is a pair (p, l) where p is a point
in the plane and l a line (real, complex, quaternionic or octonionic) containing the
point p. Their homogeneous presentation and relevant data are the following:

Hypersurface dimM g mi

FR = SO(3)/(Z2 × Z2) 3 3 1

FC = SU(3)/T 2 6 3 2

FH = Sp(3)/(Sp(1))3 12 3 4

FO = F4/ Spin(8) 24 3 8

We briefly recall their definition as isoparametric submanifolds. For details see the
presentation in [7] or [9].

Let F = R, C, H, or O. We take as Euclidean ambient space the real vector
space U = {u : tr(u) = 0}, where

u =

 ξ1 x3 x2

x3 ξ2 x1

x2 x1 ξ3

 , ξj ∈ R, xj ∈ F.

x denotes conjugation in F , with the inner product 〈u, v〉 = 1
4 tr (uv + vu). Note

that dimR (U) = 5, 8, 14, 26 for F = R,C,H,O, respectively. Consider now on U
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112 JULIO C. BARROS AND CRISTIÁN U. SÁNCHEZ

the function defined by

f (u) =

(√
3

2

)
t (x1x2x3) =

√
3 Re ((x1x2)x3)

and its restriction to the unit sphere S ⊂ U . This is the Cartan–Münzner polyno-
mial. The trilinear function Re ((x1x2)x3) has the properties:

• Re ((ab) c) = Re (a (bc)),
• Re ((ab) c) is invariant by cyclic permutation.

Then we have our four Cartan hypersurfaces MF (for each F = R,C,H,O)
defined as:

MF = {u ∈ S (U) : f (u) = 0} .
The point E = diag (−1, 0, 1) is a point in MF = f−1 (0), for all F . It belongs

to the subspace a =
{

diag (ξ1, ξ2, ξ3) :
∑
j ξj = 0

}
.

It is not hard to see that the normal space to all MF at E is the same for all F ,

namely TE (MF )
⊥

= a, and the tangent spaces at E satisfy TE (MR) ⊂ TE (MC) ⊂
TE (MH) ⊂ TE (MO) and so the tangent space at E is just the affine subspace

TE (MF ) = E +


 0 x3 x2

x3 0 x1

x2 x1 0

 , xj ∈ F
 .

Computing our polynomial P2 (X) by the method described above, one gets:

P2 (X) = 3
√

3t (x1x2x3) , t (x1x2x3) = 2 Re ((x1x2)x3) .

For reasons of space in the cases g = 4, 6 we limit ourselves to describe the
polynomial P2 with the corresponding notation.

Case g = 4. In this degree there are four spaces where the Cartan–Münzner
polynomial is obtained using Clifford systems as defined by Ferus, Karcher and
Münzner in [5]. This method is also clearly described in [4]. There are also other
two spaces which must be presented differently (see below).

The first three cases can be described in a unified way. They are the principal
orbits of the tangential representation of the compact symmetric spaces indicated
in the table. The notation is that in [6, p. 518].

U G Sym. dimM g mi, i = 1, . . . , g

SO(n+ 2), n ≥ 3 SO (n) · SO (2) BDI 2n− 2 4
m1 = m3 = 1

m2 = m4 = n− 2

SU(n+ 2), n ≥ 2 S (U (n) · U (2)) AIII 4n− 2 4
m1 = m3 = 2

m2 = m4 = 2n− 3

Sp(n+ 2), n ≥ 4 Sp (n) · Sp (2) CII 8n− 2 4
m1 = m3 = 4

m2 = m4 = 4n− 5
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PLANAR NORMAL SECTIONS 113

To distinguish the cases we write MR, MC and MH, associating the field R to
the first case, C to the second one, and H (quaternions) to the third. For each of
them the corresponding ambient Euclidean space is R2n, C2n and H2n. It shall be
convenient to write again F = R,C,H so we may write the elements in the ambient
spaces in a unified manner as

((u1, u2 . . . , un) , (v1, . . . vn−1, vn)) , uj , vj ∈ F.
The vector E will be the same in all cases, namely

E = (Ao, Bo) = ((t1, 0, . . . , 0) , (0, . . . , 0, t2)) ,

t1 = cos θ, t2 = sin θ, θ = π/8,

with uj = 0, 2 ≤ j ≤ n, and vk = 0, 1 ≤ k ≤ n− 1 (u1 and vn are real).
Then the tangent space to MF at E is

TE (MF ) =
{

((α, u2 . . . , un) , (v1, . . . vn−1, δ)) ∈ F 2n−1 : uj , vk ∈ F, α, δ ∈ = (F )
}

(here we write = (F ) = 0 for F = R, = (F ) = iR for F = C, and = (F ) =
{Pure quaternions} for F = H), and the normal space at E is that of all vectors
with first and last components real and zero all the other ones. To be able to write
our polynomials we need to fix a notation that can be used in the three cases.

We may denote X = ((α,B) , (C, δ)) ∈ TE(M) by

B = (u2, . . . , un) , C = (v1, . . . , vn−1) , uj , vj ∈ H,
α = a1i+ a2j + a3k, δ = d1i+ d2j + d3k ∈ = (F ) ,

us = bs,0 + bs,1i+ bs,2j + bs,3k, s = 2, . . . , n,

vr = cr,0 + cr,1i+ cr,2j + cr,3k, r = 1, . . . , n− 1.

With this notation, in the case F = H the polynomial may be written as:

1

96
P (X)

= (t1c1,0 + t2bn,0) (a1c1,1 + a2c1,2 + a3c1,3 + d1bn,1 + d2bn,2 + d3bn,3)

+ (t1c1,0 + t2bn,0)

n−1∑
r=2

(br,0cr,0 + br,1cr,1 + br,2cr,2 + br,3cr,3)

+ (−t1c1,1 + t2bn,1) (a1c1,0 − a2c1,3 + a3c1,2 − d1bn,0 + d2bn,3 − d3bn,2)

+ (−t1c1,1 + t2bn,1)

n−1∑
r=2

(−br,0cr,1 + br,1cr,0 − br,2cr,3 + br,3cr,2)

+ (−t1c1,2 + t2bn,2) (a1c1,3 + a2c1,0 − a3c1,1 − d1bn,3 − d2bn,0 + d3bn,1)

+ (−t1c1,2 + t2bn,2)

n−1∑
r=2

(−br,0cr,2 + br,1cr,3 + br,2cr,0 − br,3cr,1)

+ (−t1c1,3 + t2bn,3) (−a1c1,2 + a2c1,1 + a3c1,0 + d1bn,2 − d2bn,1 − d3bn,0)

+ (−t1c1,3 + t2bn,3)

n−1∑
r=2

(−br,0cr,3 − br,1cr,2 + br,2cr,1 + br,3cr,0) .
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For F = C this reduces to

1

96
P (X) = (t1c1,0 + t2bn,0) (a1c1,1 + d1bn,1)

+ (t1c1,0 + t2bn,0)

n−1∑
r=2

(br,0cr,0 + br,1cr,1)

+ (−t1c1,1 + t2bn,1) (a1c1,0 − d1bn,0)

+ (−t1c1,1 + t2bn,1)

n−1∑
r=2

(−br,0cr,1 + br,1cr,0) ,

and for F = R we get

1

96
P (X) = (t1c1,0 + t2bn,0)

n−1∑
r=2

br,0cr,0 . (1)

Case g = 4, (9, 6). This is an homogeneous submanifold as indicated in [4]. This
space M is a principal orbit of the tangential representation of EIII.

U G sym. dimM g mi, i = 1, . . . , g

E6 (SO (10) · T ) /Z4 EIII 30 4
m1 = m3 = 6

m2 = m4 = 9

The ambient space is here H8 of real dimension 32. We adopt the notation

H8 =

{([
a1 a2

a3 a4

]
,

[
b5 b6
b7 b8

])
: as, br ∈ H

}
.

We take here

E = (A0, B0) =

([
t1 0
0 0

]
,

[
0 t6
0 0

])
,

t1 = cos θ, t6 = sin θ, θ = π/8,

and the tangent space to M at E is

TE (M) =

{([
α a2

a3 a4

]
,

[
b5 β
b7 b8

])
: as, b/s ∈ H; α, β pure quaternions

}
.

Using now the notation

as = us,0 + ius,1 + jus,2 + kus,3, s = 2, 3, 4,

br = vr,0 + ivr,1 + jvr,2 + kvr,3, r = 5, 7, 8,

〈∗, ∗〉 is the scalar product in H,
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the polynomial becomes

1

96
P (X) = (t1v5,0 + t6u2,0) [〈α, b5〉+ 〈a2, β〉+ 〈a3, b7〉+ 〈a4, b8〉]

+ (−t1v5,1 + t6u2,1) [〈α, ib5〉+ 〈a2, iβ〉 − 〈a3, ib7〉 − 〈a4, ib8〉]
+ (−t1v5,2 + t6u2,2) [〈α, jb5〉+ 〈a2, jβ〉 − 〈a3, jb7〉 − 〈a4, jb8〉]
+ (−t1v5,3 + t6u2,3) [〈α, kb5〉+ 〈a2, kβ〉 − 〈a3, kb7〉 − 〈a4, kb8〉]
+ (t1v8,0 − t6u3,0) [〈α, b8〉+ 〈a2, b7〉 − 〈a3, β〉 − 〈a4, b5〉]
+ (−t1v7,1 + t6u4,1) [〈α, b7i〉+ 〈a2, b8i〉+ 〈a3, b5i〉+ 〈a4, βi〉]
+ (−t1v7,2 + t6u4,2) [〈α, b7j〉+ 〈a2, b8j〉+ 〈a3, b5j〉+ 〈a4, βj〉]
+ (−t1v7,3 + t6u4,3) [〈α, b7k〉+ 〈a2, b8k〉+ 〈a3, b5k〉+ 〈a4, βk〉]
+ (−t1v7,0 − t6u4,0) [−〈α, b7〉+ 〈a2, b8〉+ 〈a3, b5〉 − 〈a4, β〉] .

The cases SO(5) and SU(5). As mentioned above, there are two homogeneous
isoparametric hypersurfaces on the sphere which are of degree g = 4 but cannot be
described by Clifford systems.

U G sym dimM g mi, i = 1, . . . , g

SO (10) SU (5) DIII (5) 18 4
m1 = m3 = 4

m2 = m4 = 5

SO (5) · SO (5) SO (5) SO (5) 8 4 mi = 2, ∀i

We may call these isoparametric hypersurfaces M20 and M10. It is clear that
M10 = SO(5)/T 2. The ambient Euclidean spaces are respectively R20 and R10.
We adopt for them the notation

(x1, x2, x3, . . . , x10, y1, . . . , y10) ∈ R20,

(x1, x2, x3, . . . , x10) ∈ R10.

We may identify the basic point E with

E = (t1, t2, 0, . . . , 0, 0, . . . , 0) ∈ R20

E = (t1, t2, 0, . . . , 0) ∈ R10

t1 = cos θ, t2 = sin θ, θ = π/8,

and the tangent spaces at E with

TE (M20) = {(0, 0, x3, . . . , x10, y1, . . . , y10) : xj , yk ∈ R} ,
TE (M10) = {(0, 0, x3, . . . , x10) : xj ∈ R} .
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Let X = (0, 0, x3, . . . , x10, y1, . . . , y10) ∈ TE (M20) be a tangent vector, then

1

96
P20(X) = t1 (−y2x3y6 − y2x6y3 + y2x5y4 + y2x4y5)

+ t2 (−y1x3y6 − y1x6y3 + y1x5y4 + y1x4y5)

+ t1 (x4x7x9 + x4y7y9 + y4x7y9 − y4x9y7)

+ t1 (−x3x8x9 − x3y8y9 − y3x8y9 + y3x9y8)

+ t1 (x6x7x10 + x6y7y10 + y6x7y10 − y6x10y7)

+ t1 (−x5x8x10 − x5y8y10 − y5x8y10 + y5x10y8)

+ t2 (−x5x7x9 − x5y7y9 − y5x9y7 + y5x7y9)

+ t2 (x3x7x10 + x3y7y10 + y3x10y7 − y3x7y10)

+ t2 (−x6x8x9 − x6y8y9 − y6x9y8 + y6x8y9)

+ t2 (x4x8x10 + x4y8y10 + y4x10y8 − y4x8y10) .

Now, if X = (0, 0, x3, . . . , x10) ∈ TE (M10), then

1

96
P10(X) = t1 (x7x9x4 + x7x10x6 − x8x3x9 − x8x5x10)

+ t2 (−x7x9x5 − x8x9x6 + x10x3x7 + x10x4x8) .

It is clear that P20 restricts to P10 if yj = 0 (j = 1, . . . , 10).

Case g = 6. In the case g = 6 there are two types of homogeneous isoparametric
hypersurfaces on the sphere which are of dimension 6 and 12 respectively. They may
be described as follows: Let g2 be the compact simple Lie algebra corresponding
to the compact Lie simple group G2. The non-compact real form of gC2 (which is
split) has a Cartan decomposition g2 = so (4)⊕ p. Following [7] we may identify p
with ip and then identify the split real form and the compact one. With this trick,
a maximal abelian subspace h ⊂ p is a Cartan subalgebra of g2. Let E ∈ h be a
regular element in h. Since the set of restricted roots coincides with the set of roots
of g2 we have that the orbits MB = Ad (G2)E ⊂ g2 and MS = Ad (SO (4))E ⊂ p
are both principal orbits of the corresponding representations and as such they
are isoparametric submanifolds of the spheres S13 ⊂ g2 and S7 ⊂ p. Notice that
dim (MB) = 12 and dim (MS) = 6. We take in g2 the inner product defined by the
opposite of the Killing form and the corresponding inner product in p. Let m be
the orthogonal complement of h in g2 with respect to the inner product in g2.

We may identify

TE (MB) = m, TE (MS) = m ∩ p,

T⊥E (MB) = T⊥E (MS) = h.

It is possible to choose an orthonormal basis {Hj : 3 ≤ j ≤ 14} ⊂ m such that
{Hj : 3 ≤ j ≤ 8} ⊂ so (4) and {Hj : 9 ≤ j ≤ 14} ⊂ m ∩ p. Then we may write any
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tangent vector X to M at E as

X =

14∑
j=3

rjHj .

With this notation, the polynomial defining the algebraic set of planar normal
sections of MB at E takes the form(

1

3

√
2
√

3

)
PB (X)

= r3r5r7 + r3r6r8 + r3r11r13 + r3r12r14 + r4r12r13 + r7r9r11 + r8r9r12

+ (−r4r6r7 − r5r9r13 − r6r10r13 − r6r9r14 − r7r10r12)

+ 3 (r4r5r8 + r5r10r14 + r8r10r11 − r4r11r14)

+

(
2√
3

)
(−r3r6r7 − r3r12r13 − r6r9r13 + r7r9r12) ,

and by taking equal to zero the variables rj (9 ≤ j ≤ 14), we get the polynomial
defining the algebraic set of planar normal sections of MS at E:(

1

3

√
2
√

3

)
PS (X) = r3r5r7 + r3r6r8 + (−r4r6r7) +

(
2√
3

)
(−r3r6r7) + 3 (r4r5r8) .

2. Study of the infinity Laplacian

2.1. Definition and property. Now we show the characterization of hypersur-
faces of Cartan in terms of the infinity Laplacian of the polynomials that define the
set of planar normal sections. Recall that if u : U −→ R is a real smooth function
on an open set U ⊆ Rn, the infinity Laplacian ([1], [2]) of u is defined by:

4∞u =
1

2
〈∇u,∇‖∇u‖2〉.

The following fact is useful for studying the infinity Laplacian of the polynomials
of normal sections.

Observe that the polynomials that define the set of planar normal sections are
defined in the tangent spaces TE (M) and so it makes sense to study their infinity
Laplacian.

Proposition 6. If P (X) is a polynomial that defines the set of planar normal
sections then 4∞P (X) is a homogeneous polynomial of degree 5 which consists of
monomials that are of the following three forms:

m1 = c1x
3
kxixj , m2 = c2x

2
kxhxixj , m3 = c3xkxrxhxixj . � (2)

2.2. Harmonic projection operator. We summarize some facts on the canonical
decomposition of the homogeneous polynomials. Let

Pp = Ppm+1 ⊂ R[x0, x1, . . . , xm]

denote the real vector space of homogeneous polynomials of degree p, in the m+ 1
variables x0, x1, . . . , xm. Let Hp = Hpm ⊂ Pp be the linear subspace of harmonic
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homogeneous polynomials of degree p. We have the orthogonal decomposition of
the vector space of homogeneous polynomials of degree p, ([12, Cap. II, 95–154])

Pp =

[ p
2 ]⊕
j=0

Hp−2jρ2j , (3)

where ρ2 = ‖X‖2 =
m∑
i=0

x2
i . By (3), for ξ ∈ Pp, there exists a unique ξj ∈

Hp−2j , j = 0, . . . ,
[
p
2

]
, such that

ξ =

[ p
2 ]∑
j=0

ξjρ
2j .

This is called the canonical decomposition of ξ with coefficients ξj , j = 0, . . . ,
[
p
2

]
.

The harmonic projection operator H is defined as the orthogonal projection,
H : Pp → Hp (in terms of the powers of the Laplacian) for ξ ∈ Pp, as follows:

H(ξ) = ξ +

[ p
2 ]∑
j=1

(−1)j(p− 1) . . . (p− j)
j!λ2(p−1) . . . λ2(p−j)

4jξρ2j ,

where

λ2(p−1) = 2(p− 1)(2p+m− 3),

λ2(p−j) = 2(p− j)(2p− 2j +m− 1).

Remark. In the case ξ(X) = 4∞P(X) (where P(X) is a polynomial that defines
the set of planar normal sections) we have

P5 =

2⊕
j=0

H5−2jρ2j = H5 ⊕H3ρ2 ⊕H1ρ4,

and the projection operator is

H(ξ) = ξ − 4

λ8
4ξρ2 +

6

λ8λ6
42ξρ4

λ8 = 8(7 +m)

λ6 = 6(5 +m).

The next proposition reduces further the projection operator.

Proposition 7. If ξ(X) = 4∞P(X) is the infinity Laplacian of the polynomial
that defines the set of planar normal sections P(X) then 42ξ = 0.

Proof. Since the infinity Laplacian ξ(X) contains monomials in the variables xk, k =
1, . . . , n, of the form (2), and since

∆2 (ξ) =

n∑
u,v=1

∂2

∂x2
u

(
∂2ξ

∂x2
v

)
,
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we see that for the monomials of type m1 we have

∂2m1

∂x2
h

=

{
0, if h 6= k,

6c1xkxixj , if h = k.

Then
∂2

∂x2
u

(
∂2m1

∂x2
h

)
= 0, ∀u,

and it is now clear that the situation is similar for those of types m2 and m3. Then
42ξ = 0. �

Therefore, the projection operator for ξ = 4∞P(X) results

H(ξ) = ξ − 4

λ8
4ξρ2,

λ8 = 8(7 +m).

2.3. Infinity Laplacian and its projection operator. We consider in this sec-
tion, as an illustration, two examples of infinity Laplacians corresponding to the
cases g = 3 and g = 4.

In the case of Cartan hypersurfaces, the computation of the infinity Laplacian
yields

4∞P (X) = k‖X‖2P (X) , k ∈ R, k 6= 0.

Then 4∞P (X) is, essentially, P (X) multiplied by the square of the norm of X;
and the projection operator is

H(4∞P(X)) = 0.

For the case g = 4 real (1), the infinity Laplacian turns out to be

4∞P (X) = 2 (96)
2
(
‖X‖2 − (t2c1,0 − t1bn,0)

2
)
P (X) ,

and the projection operator results

H(4∞P (X)) = (96)
2

(
1

n+ 2
‖X‖2 − 2 (t2c1,0 − t1bn,0)

2

)
P (X) ;

then, we have

H(4∞P (X)) 6= 0.

Then, in this case,

4∞P(X) ∈ H5 ⊕H3ρ2,

and 4∞P(X) is not the polynomial multiplied by the squared norm of the tangent
vector. The following lemma allows us to decide if the projection operator vanishes.

Lemma 1. If ξ(X) = 4∞P(X) contains monomials with all variables to the first
power (type m3 in Proposition 6), then the projection H(ξ) 6= 0. �
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2.4. Characterization of Cartan hypersurfaces.

Theorem. If P (X) is the polynomial that defines X̂p(M), where M is an ho-
mogeneous isoparametric hypersurface of Sn, with g distinct principal curvatures,
then the infinity Laplacian of P (X) is

4∞P (X) = k‖X‖2P (X) , k ∈ R, k 6= 0,

if and only if g = 3. �

The proof of the preceding theorem consists in the computation of the infin-
ity Laplacians of the polynomial P(X), for the eleven homogeneous isoparametric
hypersurfaces in spheres.

For the cases g = 4 real and g = 6 (MS and MB) (see Section 1.3) a direct
computation shows that the harmonic projection operator does not vanish.

For the remaining cases, Lemma 1 shows (easily) that the projection operator
does not vanish either, because in all these polynomials it is possible to detect the
presence of monomials, of degree five, with all variables to the first power. So, we
have checked that only in the case g = 3 the harmonic projection operator is zero
and the infinity Laplacian is the polynomial multiplied by the squared norm of the
tangent vector.

Conclusion. In this way, we have shown that the Cartan isoparametric hypersur-
faces are the only homogeneous isoparametric hypersurfaces in spheres for which
the infinity Laplacian of the polynomial that defines the algebraic set of planar
normal sections, is the polynomial multiplied by the squared norm of the tangent
vector.
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