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A frequency domain method is used to estimate the harmonic contents of a smooth oscillation
arising from the Hopf bifurcation mechanism. The harmonic contents up to the eighth-order are
well estimated, which agree with the results obtained from a completely different approach that
measures the frequency content of a signal by using digital signal processing techniques such as
the Fast Fourier Transform (FFT). The accuracy of the approximation is evaluated by computing
the Floquet multipliers of the variational system based on the fact that for periodic solutions one
multiplier must be +1. The separation from this theoretical value is proportional to the error of
the approximation. A limitation of the frequency domain method is encountered when being used
for continuing the secondary branch of limit cycle bifurcations, such as pitchfork and period-
doubling bifurcations. Two examples are shown to illustrate the main results: Colpitts’ oscillator
with a pitchfork bifurcation of cycles, and Chua’s circuit with a period-doubling bifurcation of
cycles.

Keywords : Harmonic distortion; electronic oscillator; harmonic balance; Chua’s circuit; Colpitts’
oscillator.

1. Introduction

Since the middle of the 20th century, the approxi-
mation of oscillatory solutions has been a challeng-
ing subject for mathematicians who have explored
and refined various elaborated techniques for deal-
ing with expressions in great accuracy not only
for nearly sinusoidal but also for relaxatory orbits.
Since the appearance of the intriguing results of the
now well-known van der Pol oscillator, researchers

have been trying to compute accurately the peri-
odic solutions of oscillations by using different
methods. In particular, frequency domain meth-
ods have a long tradition in analyzing oscillations
in both autonomous and nonautonomous nonlin-
ear systems. Starting with the simplest form, a
harmonic balance method based on the classical
describing function [Atherton, 1975; Mees, 1981]
has been used, which is capable of showing even
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the edge of chaos in some simple autonomous cir-
cuits [Genesio & Tesi, 1992]. This method uses a
simple harmonic, the fundamental one, to capture
the essence of an oscillation, providing some impor-
tant insights for control engineers. Improvements
over this approach by using subharmonic pertur-
bations or monitoring the Floquet multipliers have
been proposed [Basso et al., 1997; Torrini et al.,
1998], which dealt with some bifurcations of limit
cycles but still simply utilizing only one harmonic
(plus some bias or a DC component). More elabo-
rated expansions can be found in [Qiu & Filanovsky,
1987; Buonomo, 1998a, 1998b], and in their biblio-
graphic lists.

With the only exception of relaxatory oscilla-
tors, such as the classical van der Pol oscillator
working in the limit of large values of its bifur-
cation parameter, many electronic oscillators with
a nearly pure sinusoidal waveform can satisfy the
Hopf bifurcation theorem. This result requires that
a single pair of complex eigenvalues of the lineariza-
tion around an equilibrium point cross the imagi-
nary axis when a distinguished parameter varies, at
the moment of changing the stability of the singular
point. Consequently, a branch of a periodic solution
starts from this critical point with a characteristic
root-square law of the amplitude of the oscillation.
The computation of this amplitude is not a trivial
task for a general system, for which some analytic
methods such as multiple scales or harmonic bal-
ance based on series expansions are often used. An
introduction to these techniques can be found in
[Jordan & Smith, 1994] and [Strogatz, 1994], where
some of the main contributions on this topic were
judiciously selected. More recently, Maggio et al.
[1999, 2004] and Robbio et al. [2004b] have sug-
gested an application of the Hopf bifurcation theo-
rem to approximating the harmonic contents in the
Colpitts oscillator. In this approach, since the tech-
nique is local, the approximation is quite good when
the harmonic distortion is low, which is precisely the
required condition in a good oscillator where the
total harmonic distortion should be below 1%. Par-
ticularly, approximation of limit cycles using the
Hopf bifurcation theorem, in conjunction with the
center manifold theory and normal forms, has been
introduced by Maggio et al. [2004]. Although it has
shown a good approximation of periodic solutions
for a wide range of parameters, the computation of
the harmonic contents is quite involved.

Limit cycle bifurcation requires the determina-
tion of parameter values at which other secondary

oscillations such as those emerging from fold, flip
and Neimark–Sacker bifurcations occur smoothly.
Fold bifurcation involves two branches of periodic
solutions coalescing in a typical turning point. Flip
bifurcation is a subharmonic oscillation (of nearly
half of the fundamental frequency), which gives
rise to a period-2 limit cycle while the period-1
limit cycle loses its stability (supercritical flip bifur-
cation). Neimark–Sacker bifurcation refers to the
birth of quasi-periodic motions from a single period-
1 oscillation. Flip and fold bifurcations, in the realm
of nonautonomous systems, have been detected
lately by using the harmonic balance method, incor-
porating more harmonics, in order to improve the
precision of the approximation in detecting those
bifurcations [Piccardi, 1994, 1996].

A dramatic improvement of the precision in
detecting oscillations has been obtained recently
[Bonani & Gilli, 1999] by computing up to 21 har-
monics in the primary periodic branches of Chua’s
circuit with a smooth nonlinear term [Khibnik et al.,
1993]. The harmonic balance method was applied to
an autonomous system by carrying out efficient com-
putations of the Floquet multipliers, so as to deter-
mine limit cycle bifurcations, mainly folds and flips.

Other frequency-based methods have also been
proposed [Buonomo & Di Bello, 1996; Buonomo,
1998a; Berns et al., 2001] for computing oscillations.
Buonomo and Di Bello applied classical perturbation
theory to determine both frequencies and amplitudes
of the harmonics based on some recurrence formulas.
On the other hand, Berns et al. computed higher-
order harmonic balance formulas from a feedback
system approach, approximating the periodic branch
emerging from Hopf bifurcation, and then computed
the Floquet multipliers for stability analysis. The
same method has been tested up to eight harmon-
ics by Robbio et al. [2004a], to detect saddle-node
(pitchfork), flip and Neimark–Sacker bifurcations in
three-dimensional systems. The computation of the
periodic branch emerging from Hopf bifurcation has
been revived in Colpitts’ oscillator with an exponen-
tial nonlinear term [Maggioet al., 2004]. In this case, a
projection technique was used for the computation of
the center manifold in order to approximate the cor-
responding oscillation. These accurate results can be
of importance in detailed harmonic distortion analy-
sis of global and complex dynamics, which certainly
add a lot to harmonic distortions but are not present
in the region where local methods are useful (see the
complex and global behaviors discussed by Maggio
et al. [1999]).
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In the present paper, a local expansion up to
eight harmonics will be computed. The methodol-
ogy can also track small deviations of the frequen-
cies of oscillations due to parameter variation. A
comparison between the predicted harmonic con-
tents and the ones obtained by applying a digital
signal processing method for calculating the dis-
crete Fourier transform is included. In this case, the
fast Fourier transform (FFT) technique has been
chosen for comparison. In this way, a second, com-
plementary and independent measure of the preci-
sion of the harmonic contents follows the traditional
accuracy test provided by the separation from +1
of the trivial Floquet multiplier [Pad́ın et al., 2005].
Furthermore, the harmonic contents of oscillations
arising from Hopf bifurcation in Chua’s circuit and
in a model of Colpitts’ oscillator, both with poly-
nomial nonlinearities, will be computed. One con-
tribution is in pointing out some limitations of the
frequency domain method in recovering secondary
oscillations, i.e. those arising from limit cycle bifur-
cations of the primary branch. More precisely, it will
be shown that the approximation of the primary
branch of a periodic solution and the determination
of the limit cycle bifurcations are in good agree-
ment with the results provided by numerical simula-
tions. On the other hand, it will be pointed out that
this method is not able to characterize the harmonic
contents of the bifurcated limit cycle (secondary
oscillation) despite its accurate localization in the
bifurcation parameter range. Furthermore, the har-
monic contents of the primary branch is contrasted
with the one obtained from numerical simulation
based on the FFT. A comparison will be provided for
the modification of the amplitude of the oscillation
from Colpitts’ circuit, by using Buonomo’s method,
harmonic balance method, and numerical simula-
tion, respectively. These results are complementary
to those on harmonic distortions studied before [Qiu
& Filanovsky, 1987; Buonomo, 1998a; Pad́ın et al.,
2005], where the van der Pol oscillator was used with
small values of the damping parameter.

2. Smooth Oscillations

Consider the general nonlinear system

ẋ = Ax + BDy + B[g(y;µ) − Dy],
(1)

y = Cx,

where x ∈ R
n, y ∈ R

m, A, B, C and D are
n × n, n × l, m × n and l × m matrices, respec-
tively, µ ∈ R is the bifurcation parameter, y is the

output, g :Rm×R→R
l is at least a C2q+1-function

in x and µ, in which 2q is the order of the harmonic
balance, and the matrix D can be rather arbitrarily
chosen.

The system may be represented in feedback
form with a linear transfer matrix G(s;µ) in the
direct path and a memoryless nonlinear part f(·;µ)
in the feedback path, i.e.

G(s;µ) = C[sI − (A + BDC)]−1B,

u = f(e;µ) := g(y;µ) − Dy,

where e = −y and s is the complex variable of the
Laplace transform (Fig. 1). Equilibrium points of
system (1) correspond to the solutions ê of

G(0;µ)f(ê;µ) + ê = 0.

The open-loop linearization matrix associated with
the feedback realization is G(s;µ)J(µ) where

J =
∂f(e;µ)

∂e

∣∣∣∣
e=ê

= Def(ê;µ),

and the corresponding eigenvalues are given by the
roots of the following equation:

h(λ, s;µ) = det[λI − GJ]
= λp + ap−1(·)λp−1 + · · · + a0(·) = 0, (2)

where p = m and ai(s;µ) are rational functions of
s. Assuming a single root of h(·) at λ = −1 and
replacing s = iω in Eq. (2), a necessary condition for
computing a bifurcation point (ω0, µ0) is obtained
by solving

h(−1, iω;µ) = (−1)p +
p−1∑
k=0

(−1)k ak (iω;µ) = 0,

for ω and µ.
If ω0 = 0, then the bifurcation condition is

called static, and it is related to the multiplicity
of the equilibrium solutions. On the other hand,
if ω0 �= 0, the bifurcation condition is known as
dynamic or Hopf, provided that some additional
conditions are fulfilled, and it is related to the exis-
tence of periodic solutions.

Fig. 1. Block diagram of the feedback system.
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2.1. Hopf bifurcation

In order to analyze the Hopf bifurcation, let us split
Eq. (2) with λ = −1 in real and imaginary parts, i.e.

F1(ω;µ) = Re{h(−1, iω;µ)}

= (−1)p +
p−1∑
k=0

(−1)kRe{ak(iω;µ)} = 0,

(3)
F2(ω;µ) = Im{h(−1, iω;µ)}

=
p−1∑
k=0

(−1)kIm{ak(iω;µ)} = 0. (4)

Then, the three basic statements of the Hopf bifurca-
tion theorem in the frequency domain setting are:

(H1) There is only one eigenvalue of G(s;µ)J(µ),
denoted λ̂, passing through the critical point
−1+ i0 when ω varies in [0,∞), reflecting the
change in the stability of the equilibrium solu-
tion. In addition, there is only one frequency
ω0 �= 0 satisfying Eqs. (3) and (4) for a given
µ = µ0 (avoiding a resonance condition), and
(∂F1/∂ω)(ω0;µ0), (∂F2/∂ω)(ω0;µ0) are not
simultaneously zero.

(H2) The following determinant is nonzero:

det




∂F1

∂µ

∂F2

∂µ

∂F1

∂ω

∂F2

∂ω




(ω0,µ0)

�= 0.

(H3) The expression

σ1 = −Re
{

w�G(iω0;µ)p1(ω0;µ)
w�G′(iω0;µ)Jv

}
, (5)

called the curvature coefficient, does not
change its sign when µ varies near µ0.

In Eq. (5), w� and v are respectively the
left and right eigenvectors of the open-loop
transfer matrix G(iω;µ)J(µ) associated with λ̂,
G′(iω0;µ) = (dG/ds)|s=iω0 , and

p1(ω;µ) = QV02 +
1
2
Q̄V22 +

1
8
Lv̄, (6)

where

V02 = −1
4
H(0;µ)Qv̄, (7)

V22 = −1
4
H(i2ω;µ)Qv, (8)

with

H(s;µ) = [G(s;µ)J(µ) + I]−1G(s;µ), (9)

in which “ · ” denotes the complex conjugate; Q
and L are n × l and l × m matrices, respectively,
which contain the information of the second and
third derivatives of f(e;µ) evaluated at ê [Mees &
Chua, 1979], defined as

Q = [Qjk] =
m∑

p=1

∂2fj(e)
∂ep∂ek

∣∣∣∣
ê

vp,

L = [Ljk] =
m∑

p=1

m∑
q=1

∂3fj(e)
∂ep∂eq∂ek

∣∣∣∣
ê

vpvq,

where j = 1, 2, . . . , l; k = 1, 2, . . . ,m.
It is worth mentioning that Eq. (5) shows the

stability of the emerging periodic solution at criti-
cality : if σ1 is negative (positive) the limit cycle is
stable (unstable).

When the above conditions are fulfilled, the
theorem assures the existence of oscillations in a
neighborhood of the critical value of the bifurcation
parameter µ0 and allows a graphical procedure to
calculate the frequency of the oscillation ω0 and a
measurement of the amplitude, noted as θ̂ (θ̂ ∈ R),
by varying the parameter µ. Once the birth of a
limit cycle due to a Hopf bifurcation is detected,
a second-order [Mees & Chua, 1979], fourth-order
[Mees, 1981], sixth- and eighth-order [Moiola &
Chen, 1996], and generally a 2q-order harmonic bal-
ance approximation (HBA) (of the periodic solu-
tion in the neighborhood of the criticality) can be
obtained by using some available explicit formulas.
To this end, one must solve the general equation

λ̂(iω̂q) = −1 +
q∑

k=1

ξk(ω̂q)θ̂2k
q , (10)

where λ̂ is the eigenvalue associated with GJ, whose
eigenlocus crosses the real axis closest to the crit-
ical point −1 + i0, and θ̂ and ω̂ are approxima-
tions of the amplitude and frequency, respectively,
and ξk are complex numbers (see the corresponding
expressions in [Robbio et al., 2004a] for simple 3D
systems). The pair (ω̂q, θ̂q) are obtained by means
of an iterative procedure starting with ωR, at which
the frequency locus of λ̂ crosses the real axis near
the point −1 + i0, indicated as PR in Fig. 2, in a
second-order balance approximation.
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Fig. 2. Intersection between the eigenlocus λ̂ and the ampli-
tude locus −1 + ξ1θ2.

Finally, the approximation formulas for the 2q-
order HBA are

e(t) = ê + Re

{
2q∑

k=0

Ek exp(ikω̂t)

}
, (11)

where E0 = θ̂2V02 + θ̂4V04 + θ̂6V06 + · · ·+ θ̂2qV0,2q,
E1 = θ̂V11 + θ̂3V13 + θ̂5V15 + · · · + θ̂2q+1V1,2q+1,

E2 = θ̂2V22 + θ̂4V24 + θ̂6V26 + · · · + θ̂2qV2,2q and
Ek = θ̂kVkk + θ̂k+2Vk,k+2+ · · · , are given explicitly
in [Mees, 1981] and [Moiola & Chen, 1996], up to
the order 2q = 8.

To study the stability of the periodic solution,
one needs to analyze the behavior of the trajectories
in the neighborhood of the periodic solution. This
can be done by computing the monodromy matrix
M, for which one needs to solve the variational

Table 1. Multiplier crossings and cycle bifurcations.

Crossing Point Cycle Bifurcation

−1 + i0 Period-doubling
1 + i0 SN, TC or PF

α ± iβ (α2 + β2 = 1) Neimark–Sacker or torus

equation

Ẏ(t) = Jvar(t)Y(t), Y(0) = I, (12)

M = Y
(

2π
ω̂q

)
, (13)

where Jvar is the Jacobian matrix of system (1) eval-
uated at the periodic solution.

In the general case, M has n eigenval-
ues, m1(µ),m2(µ), . . . ,mn(µ), which are known as
characteristic (or Floquet) multipliers. For periodic
solutions, one of them is always equal to +1, say
m1(µ), and the remaining n−1 determine the local
stability of the limit cycle. Then, the periodic solu-
tion is stable if all Floquet multipliers, except the
one at +1, are located inside the unit circle. If one or
more Floquet multipliers are crossing the unit cir-
cle after a parameter variation, the periodic solu-
tion changes its stability. Generally, this situation
gives rise to a bifurcation of cycles. The multiplier
that crosses the unit circle is known as the critical
multiplier, and three distinguished ways of crossing
the unit circle determine three associate types of
branching as shown in Table 1 and Fig. 3. The cross-
ing of the critical multiplier at the negative real axis
[Fig. 3(a)] leads to a period-doubling or flip bifur-
cation. When the eigenvalue crosses the unit circle
at the point +1 + 0i [Fig. 3(b)], it may indicate a
saddle-node (SN), transcritical (TC), or pitchfork
(PF) bifurcation, depending on the nonlinear terms
and the symmetry of the system. The third type of

(a) (b) (c)

Fig. 3. Multiplier crossing conditions for bifurcations of cycles: (a) flip or period-doubling, (b) fold, transcritical or pitchfork,
(c) Neimark–Sacker.
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bifurcation, Neimark–Sacker or torus bifurcation, is
characterized by a pair of complex-conjugate multi-
pliers crossing the unit circle as shown in Fig. 3(c).

If the periodic solution is replaced by the 2q-
order HBA of the limit cycle [Eq. (11)], an approx-
imate monodromy matrix Mq is obtained and the
Jacobian Jvar(T ) is a periodic matrix resulting from
the approximation of the limit cycle e(t).

It is important to mention the role that the
trivial multiplier m1(µ) plays in the measure-
ment of the precision of the approximate solu-
tion [Guckenheimer & Meloon, 2000]: the error
between the numerically computed (not real) and
the approximate solution diminishes as the multi-
plier approaches +1.

2.2. Harmonic distortion

Harmonic distortion is an important measure of the
quality of the output waveform of an oscillator since
it allows to compare the amplitude of the fundamen-
tal frequency with its harmonics. In a general case,
different types of distortion in elementary electric
circuits can be defined by considering the nonlinear
characteristic curves of the transistors. An excellent
review of this topic is given by Sansen [1999].

The harmonic distortion index quantifies the
departure of the actual solution from the ideal one.
The output of an ideal oscillator is given by the
component of the fundamental frequency:

y1(t) = −Re{E1 exp(iω̂t)}.
The nonlinear terms cause variation in the opera-
tional point, y0(t) = −ê − E0 = −ê − (θ̂2V02 +
θ̂4V04 + · · · + θ̂2qV0,2q), and in the higher-order
harmonics,

yk(t) = −Re{Ek exp(ikω̂t)}, k = 2, 3, . . .

The magnitude of the harmonic influence is evalu-
ated by the harmonic distortion indexes, where the
kth harmonic distortion index (HDk) is defined as
the ratio of the component of frequency kω to the
one at the fundamental ω:

HDk(%) = 100
|Ek |
|E1| , k > 1.

From the approximate solution (11), considering up
to eight harmonics results in

HD2 =
100 × θ̂|V22+θ̂2V24+ θ̂4V26+θ̂6V28|
|V11+θ̂2V13+θ̂4V15+ θ̂6V17+ θ̂8V19|

,

HD3 =
100 × θ̂2|V33+θ̂2V35+θ̂4V37|

|V11+θ̂2V13+θ̂4V15+ θ̂6V17+ θ̂8V19|
.

For small signal amplitudes, HD2 is proportional to
θ, and HD3 to θ2; for larger amplitudes, in general,
the index loses this proportionality.

Another measure is the total harmonic distor-
tion (THD), which is defined as the ratio of the
higher harmonics to the one at the fundamental fre-
quency, i.e.

THD(%) = 100

(∑
k=2

|Ek|2
)1/2

|E1|
=
√

HD2
2 + HD2

3 + · · ·.
It is worth mentioning that the THD is not very
useful since it does not give a clear dependence on
the input signal level.

3. Application Examples

In this section, the presented methodology is
applied to simple flows. In all the cases, a Single-
Input-Single-Output (SISO) realization is obtained
since the nonlinearity involves only one variable,
which results in w� = v = 1. Furthermore, a simpli-
fication of the higher-order corrections in the direc-
tion of the eigenvector v is attained.

3.1. Colpitts’ circuit

Consider a model of the Colpitts’ type of circuit
described in [Buonomo & Di Bello, 1996]:



ẋ1 =
1
C2

x2,

ẋ2 =
1
L

(−x1 + x3),

ẋ3 = −f(x1) − 1
C1

[
x2 +

1
R

x3

]
,

(14)

where f(x1) = 1/C1[x1 + µ(3x1 + c3x
3
1)] and µ is

the control parameter.
It is possible to obtain an SISO feedback real-

ization since the nonlinearity involves only one state
variable, x1. The corresponding realization of (14) is

A =




0
1
C2

0

− 1
L

0
1
L

0 − 1
C1

− 1
C1R




, B =




0
0
1


 ,
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C =
[
1 0 0

]
, D = 0,

g(x) = − 1
C1

[x1 + µ(3x1 + c3x
3
1)].

The linear transfer function G(s;µ) is G(s;µ) =
C1R/∆(s), where ∆(s) = C1C2RLs3 + C2Ls2 +
(C1+C2)Rs+1, and the nonlinear function in terms
of the output e1 = −x1 is

f(e1) =
1
C1

[
e1 + µ(3e1 + c3e

3
1)
]
.

The equilibrium solutions are

P 0 = ê0
1 = 0, P± = ê±1 = ±

√√√√−
1
R

+ 1 + 3µ

c3µ
.

Consider only the equilibrium point P 0. Since the
system is SISO, there is only one eigenlocus, and
for the values L = 1, C1 = C2 = 2, R = 1/(1 − 2µ),

λ̂(s) = G(s)J =
1 + 3µ

4s3 + 2(1 − 2µ)s2 + 4s + (1 − 2µ)
,

where J = [(1 + 3µ) + 3µc3e
2
1]/C1

∣∣
P 0 = (1+3µ)/2.

For the Hopf bifurcation (ω0 �= 0), the neces-
sary condition λ̂(iω) = −1 + i0 gives ω0 = 1, and
µHopf = µ0 = 0. The frequency ωR at which λ̂(iω)
crosses the real axis satisfies

Im λ̂(iωR) =
−4ωR(1 − ω2

R)(1 + 3µ)i
X(ωR)

= 0,

where X(ωR) = (1−2µ)2(1−2ω2
R)2+16ω2

R(1−ω2
R)2.

It can be shown that ωR = 1. On the other hand,

Re λ̂(iωR) =
−1 − 3µ
1 − 2µ

.

The normalized right and left eigenvectors v, w�
of the transfer function G(iωR)J corresponding to
λ̂ are v = w� = 1, and the closed-loop transfer

function is H(s) = 2/∆1(s), where ∆1(s) =
4s3 + 2(1 − 2µ)s2 + 4s + 2 + µ. The complex
number p1 = (1/8)D3v

2v̄ = (3/8)c3µ yields ξ1 =
−w�G(iωR)p1 = (3/4)c3µ/(1 − 2µ). The solution
of λ̂(iωR) = −1 + ξ1θ

2 gives

−1 − 3µ
(1 − 2µ)

= −1 +
3
4

c3µθ2

(1 − 2µ)
.

Solving for θ yields θ =
√−20/(3c3) ≈ 1.666 for

c3 = −2.4. It is important to notice that ξ1 = 0 in
the bifurcation condition since µ0 = 0, but this sin-
gularity disappears when µ is varied and then the
method can be applied.

Computations for the fourth-, sixth- and
eighth-order HBA have been implemented in a com-
puter program. Following the Hopf bifurcation at
µ0 = 0 and increasing the value of µ, a pitchfork
bifurcation of cycles is detected with a continua-
tion procedure at µPB = 0.2239449. By using this
method with eight harmonics, the bifurcation point
is detected at the same place (µPBM4 ≈ µPB). As
mentioned before, the deviation of the characteristic
multiplier from +1 is a measure of the approxima-
tion error. In the present case (with M4 approxi-
mation), this deviation amounts to 3.28 × 10−6.

Due to the nonlinearity and the equilibrium
point considered, the harmonic distortion index
HD2 = 0. However, HD3 is not zero, and it can
be computed in terms of the parameter µ in the
range 2.5 × 10−3 < µ < 0.2235 (the range where
the periodic oscillations occur). This index is con-
trasted with a similar one computed by numerical
simulation via the FFT (Fig. 4). Also, the ampli-
tude of the oscillation as a function of the parameter
µ can be calculated by other techniques, as shown
in Fig. 5, where Buonomo’s formula for the output
is also plotted. The results show a good agreement
between the different methods.

Fig. 4. Harmonic distortion index HD3 for x1 and c3 = −2.4.
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Fig. 5. Amplitude of output x1 versus parameter µ.

Using the frequency domain method, the out-
put is computed until the pitchfork bifurcation of
the cycles is obtained with a high accuracy. Before
the pitchfork bifurcation, Fig. 6(a) shows the ampli-
tude spectrum obtained by the FFT at µ = 0.2,
and Fig. 6(b) depicts the similar one obtained by
the proposed method. With the FFT, it is pos-
sible to obtain the spectrum after the pitchfork
bifurcation, as shown in Fig. 6(c) for µ = 0.225.
The harmonics obtained at modes 2, 4, 6 are due
to the appearance of the new stable limit cycles
(they are symmetric) after the pitchfork bifurca-
tion of cycles, but they cannot be recovered by our
method, which shows a limitation of the proposed
methodology.

3.2. Chua’s circuit

Chua’s circuit is an appropriate prototype for exem-
plifying various phenomena of complex dynamics,
from the appearance of oscillations to the creation
of bifurcations and chaotic attractors. In contrast
to the Lorenz system that involves nonlinear func-
tions in two variables, Chua’s circuit has only one
nonlinear term in a single variable. It is also proved
that the generalized version of Chua’s circuit has
dynamic phenomena that include the route to chaos
through the cascade of period-doubling process as
well as to the breaking of a torus.

Chua’s circuit is modeled by


ẋ = µ(y−ϕ(x)) ,

ẏ = x − y + z,

ż = −βy.

(15)

After changing coordinates x → x1, y → x3,
z → −x2 to simplify the structure of the linear part,

system (15) is recast as


ẋ1 = µ(x3−ϕ(x1)) ,

ẋ2 = βx3,

ẋ3 = x1 − x2 − x3,

(16)

where µ and β are control parameters, both real
and positive, and ϕ(·) is a nonlinear function. In
the electronic implementation, ϕ(·) is a piecewise
linear function. We replace ϕ(·) by a cubic polyno-
mial proposed by Khibnik et al. [1993]:

ϕ(x1) = c1x
3
1 + c2x

2
1 + c3x1 + c4,

where c1 = 1/16, c2 = 0, c3 = −1/6, c4 = 0. In this
setting, the dynamic behavior of the circuit looks
quite similar to the original one (with a piecewise
linear function).

As in Colpitts’ circuit, an SISO realization is
first obtained since the nonlinearity depends only
on the state variable x1. The feedback realization is

A =



−µc3

2
0 µ

0 0 β

1 −1 −1


 , B =




1
0
0


 ,

C =
[
1 0 0

]
, D = 0,

g(x) = −µ
c3

2
x1 − µc1x

3
1.

The transfer function is

G(s;µ) =
2
(
s2 + s + β

)
∆(s)

,

where ∆(s) = 2s3 +(2+µc3)s2 +(2β +µc3−2µ)s+
µβc3, and the feedback function is

f(e1) = µ
c3

2
e1 + µc1e

3
1.

The equilibrium points (output) are given by P 0 =
ê0
1 = 0, P± = ê±1 = ±√−c3/c1.
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(a)

(b)

(c)

Fig. 6. Spectra of x1 for c3 = −2.4. (a) FFT method, µ = 0.2. (b) Frequency method, µ = 0.2. (c) FFT method (after
pitchfork bifurcation), µ = 0.225.

In order to study the Hopf bifurcation, the
equilibrium point P+ is considered in the following.
The corresponding eigenlocus is given by

λ̂(s) = G(s)J =
−5µc3

(
s2 + s + β

)
∆(s)

,

where J = µc3/2 + 3µc1ê
2
1

∣∣
P+ = −(5/2)µc3.

For the Hopf bifurcation (ω �= 0), the necessary
condition λ̂ = −1 + i0 requires that ω0 satisfies

ω2
0 = −2µ2c3(1 + 2c3).

The right and left eigenvectors result in
v = w� = 1, and the closed-loop transfer function is

H(s) =
(s2 + s + β)

∆1(s)
,
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where ∆1(s) = s3 +(1−2µc3)s2 +(β−2µc3−µ)s−
2µβc3.

By varying the parameters β and µ and using
the frequency domain method, a period-doubling
(PD) bifurcation curve is detected. In the partic-
ular case where β = 9.00, the Hopf condition is
obtained for µ0 = 5.083 and the period-doubling
bifurcation occurs at µPD = 6.011684. With the
proposed method and an eighth-order harmonic
balance approximation, this value is obtained as
µPDM4 = 6.0161719. The multipliers of the approx-
imate monodromy matrix M4 are obtained as

λ1 = 1.005827242,
λ2 = −0.9995279563,
λ3 = −0.1414704283 × 10−2.

As mentioned before, one of the multipliers
must be +1.000, since it is a requirement for the
technical construction of the Poincaré section. In
this case, the error of the approximation of M4 is
seen proportional to eM4 = 5.827 × 10−3.

Figure 7 shows the cycle and the frequency
spectrum of the system before the PD bifurcation.

(a)

(b)

Fig. 7. (a) Limit cycle, and (b) frequency spectrum before
PD bifurcation at µ = 5.50.

(a)

(b)

Fig. 8. (a) Limit cycle of period 2, and (b) frequency spec-
trum after the PD bifurcation at µ = 6.05.

In this region, the frequency method is capable of
determining the cycle and its power spectrum with
high accuracy, which compares favorably with the
FFT method.

After the PD bifurcation (µ = 6.05), the cycle
and the spectrum are depicted, as shown in Fig. 8,
but now using only the FFT method. The spec-
trum shows new frequencies or modes required for
a period-2 cycle. This cycle cannot be well approxi-
mated by the frequency domain method, due to the
new harmonic contents and the local validity of the
approximation through the Hopf bifurcation.

In order to study the harmonic distortion
present in the region of period-1 cycles, comparisons
of the power spectra for two values of the parameter
µ were made, one near the Hopf condition (µ = 5.1)
and the other close to the period-doubling condition
(µ = 6). The oscillation frequency and the harmon-
ics amplitude obtained with the method are com-
pared with the ones calculated by using the FFT
on the output signal obtained by simulation. The
fundamental frequency of oscillation obtained with
the proposed method and the one detected by the
FFT are indistinguishable (Fig. 9); for that reason
the power spectrum is shown versus the number of



Harmonic Distortion via Hopf Bifurcation and FFT 1633

Fig. 9. Variation of the fundamental frequency versus the amplitude θ.

(a)

(b)

Fig. 10. Power spectrum of x1 for β = 9. (a) µ = 5.1 (close to Hopf bifurcation); (b) µ = 6.0 (before the period-doubling
bifurcation).

harmonics. Figure 10(a) shows that for µ = 5.1 the
amplitude of the harmonics obtained with the FFT
is practically the same as the one obtained with the
proposed eighth-order approximation; in this case
the error of approximation of the Floquet multiplier
is eM4 = 1.12 × 10−7. In Fig. 10(b) the amplitudes
of the harmonics are observed when µ = 6 by notic-
ing the differences in the amplitudes beyond the
fourth harmonic. The error of the approach grows

to eM4 = 5.52× 10−3. These results reveal that the
proposed approach is very good in the neighbor-
hood of the Hopf bifurcation, when the limit cycles
are of small amplitude, and the harmonic distor-
tions are low.

Finally, for 5.1 ≤ µ ≤ 6.0, the harmonic distor-
tion indexes HD2 and HD3 are calculated in terms
of the amplitude θ and compared with the ones
obtained by using the FFT. These results are shown
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(a)

(b)

Fig. 11. Harmonic distortion of x1 for β = 9. (a) Harmonic distortion indexes HD2 and HD3. (b) Total harmonic distortion
(THD) by using the proposed method.

in Fig. 11(a), in which good concordance between
both techniques can be observed. In Fig. 11(b), the
total harmonic distortion index (THD) is shown
for the same variation of µ by using the proposed
approach.

4. Conclusions

It was seen that the frequency domain method is
capable of estimating the oscillatory branch start-
ing from Hopf bifurcation as well as the first bifurca-
tion of cycles in its vicinity. The harmonic contents
can be well estimated, which agree with the results
obtained from a completely different approach such
as using the FFT, for the primary branch of a peri-
odic solution. The proposed method cannot han-
dle the secondary branch of periodic solutions, such
as the pitchfork, saddle-node, and period-doubling
bifurcations, for which a further modification of the
approach will be needed (see, for instance, [Itovich
& Moiola, 2006]). In this regard, the main obstacle
is the large number of harmonics involved in the
secondary bifurcations, which increases the com-
putational complexity in determining the harmonic
contents.
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