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1 Introduction

Consider the optimization problem

minimizex f(x)
subject to h(x) = 0, g(x) ≤ 0,

(1.1)

where f : Rn → R, h : Rn → Rl and g : Rn → Rm are twice continuously differentiable.
Let L : Rn ×Rl ×Rm → R,

L(x, λ, µ) = f(x) + 〈λ, h(x)〉+ 〈µ, g(x)〉

be the Lagrangian of problem (1.1), where 〈·, ·〉 stands for the inner product (the space is al-
ways clear from the context). Stationary points of problem (1.1) and the associated Lagrange
multipliers are characterized by the Karush–Kuhn–Tucker (KKT) optimality system

∂L

∂x
(x, λ, µ) = 0, h(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0. (1.2)

We denote byM(x̄) the set of Lagrange multipliers associated with x̄ ∈ Rn, that is, the pairs
(λ, µ) ∈ Rl ×Rm satisfying (1.2) for x = x̄.

The fundamental Newtonian approach to solving (1.1) is the sequential quadratic pro-
gramming (SQP) algorithm [2, 17]. Given the current primal-dual iterate (xk, λk, µk) ∈
Rn × Rl × Rm, an iteration of SQP generates the next iterate (xk+1, λk+1, µk+1) as a
stationary point and associated Lagrange multipliers of the quadratic programming (QP)
subproblem

minimizex 〈f ′(xk), x− xk〉+
1

2

〈
Hk(x− xk), x− xk

〉
subject to h(xk) + h′(xk)(x− xk) = 0,

g(xk) + g′(xk)(x− xk) ≤ 0,

(1.3)

where Hk is a symmetric n× n matrix. The basic Newtonian scheme corresponds to taking

Hk =
∂2L

∂x2
(xk, λk, µk). (1.4)

In fact, if there are no inequality constraints, it can be seen that computing (xk+1, λk+1) by
solving (1.3) with the choice (1.4) is equivalent to the usual Newton iteration from the point
(xk, λk), applied to the equation given by the first two equalities in the KKT system (1.2).

To motivate the stabilized modification of SQP, we start with some comments about
convergence properties of SQP itself. The first relevant observation is that without constraint
qualification (CQ) [37] assumptions, the QP (1.3) can simply be infeasible and thus the
method be not well-defined. Indeed, it can be informally stated that one of the roles of
CQs is precisely to ensure that the first-order approximation of the constraints, like in (1.3),
be consistent (and adequately approximate local structure of the feasible set of the original
problem (1.1) around the given point).

For a point x̄ feasible in (1.1), denote by

A(x̄) = {i = 1, . . . , m | gi(x̄) = 0}
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the set of inequality constraints active at x̄. If x̄ is a stationary point of (1.1) and (λ̄, µ̄) ∈
M(x̄), denote further by

A+(x̄, µ̄) = {i ∈ A(x̄) | µ̄i > 0}, A0(x̄, µ̄) = A(x̄) \A+(x̄, µ̄)

the sets of strongly and weakly active constraints, respectively.
The linear independence constraint qualification (LICQ) is said to hold at x̄ if

rank

(
h′(x̄)

g′A(x̄)(x̄)

)
= l + |A(x̄)|, (1.5)

where from now on, the notation MJ refers to the submatrix of the matrix M comprised
by the rows of M indexed by the set J . In particular, the LICQ condition (1.5) says that
the gradients of all of the equality constraints together with the gradients of all of the active
inequality constraints form a linearly independent set in Rn. The Mangasarian–Fromovitz
constraint qualification (MFCQ) is said to hold at x̄ if

rankh′(x̄) = l and ∃ ξ̄ ∈ kerh′(x̄) such that g′A(x̄)(x̄)ξ̄ < 0, (1.6)

where for a matrix M we denote its null space by kerM = {ξ | Mξ = 0}. Both LICQ and
MFCQ imply that for a local solution x̄ of (1.1) the multiplier set M(x̄) is nonempty (for
this specific property, weaker or different conditions can be used as well; see [37]). Note that
MFCQ is equivalent to the requirement thatM(x̄) be nonempty and bounded. The so-called
strict MFCQ (SMFCQ) consists of saying that, in addition to (1.6), the multiplier associ-
ated to x̄ is unique (M(x̄) is a singleton). In the absence of (active) inequality constraints
MFCQ, SMFCQ and LICQ are all equivalent (to the regularity condition rankh′(x̄) = l), but
otherwise MFCQ is a weaker assumption than SMFCQ which, in turn, is weaker than LICQ.

We say that for a given stationary point x̄ of problem (1.1) and for an associated multiplier
(λ̄, µ̄) ∈M(x̄) the second-order sufficient optimality condition (SOSC) holds if〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C(x̄) \ {0}, (1.7)

where
C(x̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′A(x̄)(x̄)ξ ≤ 0, 〈f ′(x̄), ξ〉 ≤ 0}

is the critical cone of problem (1.1) at x̄. We note that SOSC implies that x̄ is a strict local
minimizer in (1.1).

The sharpest local superlinear convergence result for SQP is provided by the analysis
in [3]. It assumes SMFCQ (uniqueness of the multiplier (λ̄, µ̄) associated to x̄) and SOSC
(1.7). Earlier results all required, in addition to SOSC, the stronger LICQ and the strict
complementarity condition µ̄A(x̄) > 0 (such statements are standard; see, e.g., [1, 33]). In
particular, we emphasize that convergence of SQP requires certain regularity of constraints
(a CQ).

The stabilized version of SQP (sSQP) had been developed with the goal to guarantee
fast convergence rate despite possible degeneracy of constraints (i.e., when usual CQs may
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not hold), and in particular when the Lagrange multipliers associated to a solution are not
unique. The method was introduced in [38] for the case of inequality constraints, in the form
of iteratively solving the min-max subproblems

minimize
x∈Rn

max
µ∈Rm

+

{
〈f ′(xk), x− xk〉+

1

2

〈
∂2L

∂x2
(xk, µk)(x− xk), x− xk

〉
+ 〈µ, g(xk) + g′(xk)(x− xk)〉 − σk

2
‖µ− µk‖2

}
,

where (xk, µk) ∈ Rn ×Rm
+ is the current approximation to a primal-dual solution of (1.2),

and σk > 0 is the dual stabilization parameter. Adding also equality constraints, it can be
seen [28] that the corresponding min-max problem is equivalent to the following QP in the
primal-dual space:

minimize(x, λ, µ)

{
〈f ′(xk), x− xk〉+

1

2

〈
∂2L

∂x2
(xk, λk, µk)(x− xk), x− xk

〉

+
σk
2

(‖λ‖2 + ‖µ‖2)

}
subject to h(xk) + h′(xk)(x− xk)− σk(λ− λk) = 0,

g(xk) + g′(xk)(x− xk)− σk(µ− µk) ≤ 0.

(1.8)

The dual stabilization parameter is usually based on computing the violation of the KKT
optimality conditions (1.2) by the point (xk, λk, µk). For example, for fast local convergence
one chooses in (1.8) σk = σ(xk, λk, µk), where σ : Rn × Rl × Rm → R+ is the natural
residual of the KKT system (1.2), i.e.,

σ(x, λ, µ) =

∥∥∥∥∥∥∥∥


∂L

∂x
(x, λ, µ)

h(x)
min{µ, −g(x)}


∥∥∥∥∥∥∥∥ , (1.9)

with the minimum applied componentwise.
One immediate observation is that for σk > 0, the constraints in (1.8) have the so-called

“elastic mode” feature, and the subproblem is therefore automatically feasible regardless of
any CQs or convexity assumptions. For example, fixing any x ∈ Rn and taking a suitable λ
(uniquely defined for each x by the first constraint in (1.8)) and µ > 0 with all the components
large enough, gives points (x, λ, µ) feasible in (1.8). This is the first major difference from
the standard SQP.

Another consideration is the following. It has been observed (e.g., in [40, Section 6], and
in [21, 22, 24]) that the difficulties with convergence of SQP in degenerate cases are often
not because of degeneracy as such, but are due to some undesirable behaviour of the dual
sequence. The dual regularization/stabilization term in the objective function of (1.8) can
be regarded as an attempt to modify this behaviour. As discussed in Section 2 below, in the
sense of local convergence it indeed does the job. The situation is more complicated in the
global sense; see Section 3.
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2 Local convergence theory

In this section, we first survey the historical accounts on local convergence analyses of sSQP.
Then, we state the current state-of-the-art results, and finally briefly describe the (relatively
recent) variational tools required to establish those properties.

In [38], local superlinear convergence of sSQP is established under MFCQ (1.6), SOSC
(1.7) assumed to hold for all multipliers, the existence of a multiplier µ̄ satisfying the strict
complementarity condition µ̄A(x̄) > 0, and the assumption that the initial dual iterate is close
enough to such a multiplier. Also, [38] gives an analysis in the presence of round-off errors.
In [40], the assumption of strict complementarity has been removed. Also, [39] suggests a
certain inexact SQP framework which includes sSQP as a particular case. The assumptions,
however, still contain MFCQ. In [18], CQs are not used at the expense of employing instead
of the weaker SOSC (1.7) the strong SOSC (SSOSC)〈

∂2L

∂x2
(x̄, λ̄, µ̄)ξ, ξ

〉
> 0 ∀ ξ ∈ C+(x̄, µ̄) \ {0}, (2.1)

where
C+(x̄, µ̄) = {ξ ∈ Rn | h′(x̄)ξ = 0, g′A+(x̄, µ̄)(x̄)ξ = 0},

and assuming that the dual starting point is close to a multiplier satisfying this SSOSC.
(SSOSC (2.1) is stronger than SOSC (1.7) because C(x̄) ⊂ C+(x̄, µ̄).) In [12], the result of
[18] was recovered from more general principles (some details will be discussed below), and
somewhat sharpened. The iterative framework of [12] was further used in [10] to prove local
superliner convergence using SOSC (1.7) only, with no CQs or other assumptions. Moreover,
the method was extended to variational problems (see Section 4 below). Quasi-Newton
versions of sSQP are analyzed under SOSC in [7]. In [25] it was shown that the SOSC cannot
be relaxed when inequality constraints are present, but for equality-constrained problems
the weaker condition of noncriticality of the relevant Lagrange multiplier (see the definition
below) is sufficient for convergence.

A Lagrange multiplier (λ̄, µ̄) ∈M(x̄) is said to be critical if there exists a triple (ξ, η, ζ) ∈
Rn ×Rl ×Rm, with ξ 6= 0, satisfying the system

∂2L

∂x2
(x̄, λ̄, µ̄)ξ + (h′(x̄))Tη + (g′(x̄))Tζ = 0, h′(x̄)ξ = 0, g′A+(x̄, µ̄)(x̄)ξ = 0,

ζA0(x̄, µ̄) ≥ 0, g′A0(x̄, µ̄)(x̄)ξ ≤ 0, ζi〈g′i(x̄), ξ〉 = 0, i ∈ A0(x̄, µ̄),

ζ{1, ...,m}\A(x̄) = 0,

(2.2)

and noncritical otherwise. We refer the reader to [21, 22, 24, 25, 19, 20] for the role this notion
plays in convergence properties of algorithms, stability, error bounds, and other issues. Some
comments will also be given below. When there are no inequality constraints, it can be seen
from (2.2) that a multiplier λ̄ ∈M(x̄) being critical means that

∃ ξ ∈ kerh′(x̄) \ {0} such that
∂2L

∂x2
(x̄, λ̄)ξ ∈ im(h′(x̄))T. (2.3)

It can be easily seen, essentially observing that im(h′(x̄))T = (kerh′(x̄))⊥, that this noncrit-
icality property for equality-constrained problems is implied by the corresponding version of
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SOSC (1.7), but not vice versa. The same conclusion holds for the general case: if (2.2) has
a solution with ξ 6= 0, multiplying the first equality in (2.2) by this ξ and using the other
relations in (2.2), one arrives to a contradiction with SOSC (1.7). It should be emphasized
that SOSC is a much stronger assumption than noncriticality. Noncritical multipliers, if they
exist, form a relatively open and dense subset of the multiplier set M(x̄), which is of course
not so for multipliers satisfying SOSC.

We are now in position to formally state local convergence properties of sSQP [10, 25].
Note that in Theorem 2.1 below, if there are equality constraints only, everything that involves
the multiplier µ disappears from the statement. Note also that in the equality-constrained
case, finding a stationary point of the sSQP subproblem (1.8) is equivalent to solving the
linear system of equations

∂2L

∂x2
(xk, λk)(x− xk) + (h′(xk))T(λ− λk) = −∂L

∂x
(xk, λk),

h′(xk)(x− xk)− σk(λ− λk) = −h(xk),
(2.4)

in the variables (x, λ).

Theorem 2.1 Let f : Rn → R, h : Rn → Rl and g : Rn → Rm be twice differentiable in a
neighborhood of x̄, with their second derivatives being continuous at x̄. Let σk = σ(xk, λk, µk),
where σ is given by (1.9). Let (x̄, λ̄, µ̄) be a solution of the KKT system (1.2), satisfying SOSC
(1.7). If there are equality constraints only, let instead λ̄ be a noncritical multiplier (i.e., the
right-most relation in (2.3) does not hold for any ξ 6= 0).

Then for any c > 0 large enough and any starting point (x0, λ0, µ0) ∈ Rn × Rl × Rm
+

close enough to (x̄, λ̄, µ̄), there exists a sequence {(xk, λk, µk)} ⊂ Rn ×Rl ×Rm such that
for each k = 0, 1, . . ., xk+1 is a stationary point of sSQP subproblem (1.8) with associated
Lagrange multipliers (λk+1, µk+1) which satisfies

‖(xk+1 − xk, λk+1 − λk, µk+1 − µk)‖ ≤ cdist((xk, λk, µk), {x̄} ×M(x̄));

any such sequence converges to (x̄, λ∗, µ∗) with some (λ∗, µ∗) ∈M(x̄), and the rates of con-
vergence of {(xk, λk, µk)} to (x̄, λ∗, µ∗) and of {dist((xk, λk, µk), {x̄}×M(x̄))} to zero are
superlinear. Moreover, the rates of convergence are quadratic provided the second derivatives
of f , h and g are locally Lipschitz-continuous with respect to x̄.

Some comments are in order. Under SSOSC (2.1), solutions of sSQP subproblems (1.8)
can in addition be shown to be unique in some neighbourhood [10]. Furthermore, in the
equality-constrained case, locally and under the noncriticality assumption, the linear system
(2.4) has the unique solution, i.e., the sSQP subproblem has the unique stationary point [25].
For the equality-constrained case, sSQP is the only currently known method that solves a
linear system or a QP per iteration (i.e., an explicitly Newtonian method), and which requires
for convergence something weaker than SOSC (in particular, noncriticality of the multiplier)
and does not need any CQs. In [25] it is shown that when there are inequality constraints,
SOSC cannot be replaced by noncriticality. Whether convergence of the primal (rather than
primal-dual) sequence generated by sSQP is also superlinear is an open question [8]. Recall
that in general, superlinear convergence of primal-dual sequence does not imply any rate
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Table 1: Distance to solution on last 5 iterations

‖x− x̄‖+ dist(µ,M(x̄))

1.5891e-001
1.0599e-002
7.3688e-005
6.3242e-009
8.4865e-017

for the primal (or dual) sequence separately [4, Exercise 14.8]. For SQP, the primal rate
is superlinear [8]. For sSQP, only a kind of “two-step” superlinear estimate for the primal
sequence is available [7].

We illustrate the convergence result in Theorem 2.1 with the following example.

Example 2.1 Consider the optimization problem

min x1x2 − x2
2/2

s.t. x2
2 ≤ 0, −2x1 + x2 ≤ 0, x1 − 2x2 ≤ 0.

(2.5)

It can be seen that x̄ = (0, 0) is the unique solution of this problem, and that the associated
set of Lagrange multipliers is given by

M(x̄) = {(µ1, µ2, µ3) ∈ R3 | µ1 ≥ 0, µ2 = µ3 = 0}.

In particular, MFCQ (1.6) does not hold andM(x̄) is unbounded. Furthermore, SOSC (1.7)
holds at (x̄, µ̄) for any µ̄ ∈ M(x̄) with µ̄1 > 0, but SSOSC (2.1) is not satisfied for any
multiplier.

Experiments were performed with Matlab implementation of sSQP, using the built-in
subroutine quadprog for solving QP subproblems (1.8) and choosing random starting points
x0
i ∈ [−1/2, 1/2], i = 1, 2, and µ0

j ∈ [0, 1], j = 1, 2, 3. The stopping criterion is σ(xk, µk) <
10−15.

In about 10% of the cases, the sequence converged linearly to (x̄, µ̄) with µ̄1 = 0 (SOSC is
not valid at this solution). Such cases appear to correspond to the choices of starting points
that are not close enough to a solution satisfying SOSC (so that Theorem 2.1 does not apply).
About 3% of the starting points produced unsolvable subproblems at the first iteration (for
the same reason as above – starting points not being close enough to a solution). All the
remaining runs converged superlinearly to a primal-dual solution satisfying SOSC. Table 1
shows the average values of ‖xk − x̄‖ + dist(µk,M(x̄)) for the last 5 iterations in the cases
of convergence to a primal-dual solution satisfying SOSC.

The analysis that leads to Theorem 2.1 relies on the variational Newtonian framework for
generalized equations (GEs) with nonisolated solutions, developed in [12] (in our context, in
the absence of CQs dual solutions of the KKT system (1.2) are not isolated). To that end,
consider the generalized equation (GE)

Φ(u) +N(u) 3 0, (2.6)

6



where Φ : Rν → Rν is a smooth (single-valued) mapping, and N(·) is a set-valued mapping
from Rν to the subsets of Rν . As is well known, the KKT system (1.2) corresponds to the
GE (2.6) with ν = n+ l +m, the mapping Φ : Rn ×Rl ×Rm → Rn ×Rl ×Rm given by

Φ(u) =

(
∂L

∂x
(x, λ, µ), h(x), −g(x)

)
, u = (x, λ, µ), (2.7)

and with N beining the normal cone to the set

Q = Rn ×Rl ×Rm
+ , (2.8)

i.e., N(u) = NQ(u) = {v | 〈v, w − u〉 ≤ 0 ∀w ∈ Q} = {0} × {0} ×Rm
− .

Consider the class of methods for solving (2.6) that, given the current iterate uk ∈ Rν ,
generate the next iterate uk+1 as a solution of the subproblem of the form

A(uk, u) +N(u) 3 0, (2.9)

where for ũ ∈ Rν the mapping A(ũ, ·) is some kind of approximation of Φ around ũ. For
example, if

A(ũ, u) = {Φ(ũ) + Φ′(ũ)(u− ũ)}, ũ, u ∈ Rν ,

the iteration subproblem (2.9) becomes that of the Josephy–Newton method for GEs, and
when applied to the KKT system (1.2) (i.e., the special case of GE described above), it
corresponds to the SQP subproblem (1.3). For each ũ ∈ Rν , define the set

U(ũ) = {u ∈ Rν | A(ũ, u) +N(u) 3 0}, (2.10)

so that U(uk) is the solution set of the iteration subproblem (2.9). As is usual and natural in
local convergence considerations, one has to specify which of the solutions of (2.9) are allowed
to be the next iterate (solutions “far away” must clearly be discarded from local analysis;
note that sSQP subproblem (1.8) need not be strongly convex and thus may have such “far
away” solutions). In other words, we have to restrict the distance from the current iterate uk

to the next one, i.e., to an element of U(uk) that can be declared to be uk+1. To that end,
for an arbitrary but fixed c > 0 define the subset of the solution set of the subproblem (2.9)
by

Uc(ũ) = {u ∈ U(ũ) | ‖u− ũ‖ ≤ cdist(ũ, Ū)}, (2.11)

and consider the iterative scheme

uk+1 ∈ Uc(uk), k = 0, 1, . . . . (2.12)

Superlinear convergence of this scheme is established under the following three conditions:

(i) (Upper Lipschitzian behavior of solutions of GE under canonical perturbations)

For every r ∈ Rν close enough to 0, any solution u(r) of the perturbed GE

Φ(u) +N(u) 3 r (2.13)

close enough to ū satisfies the estimate

dist(u(r), Ū) = O(‖r‖) as r → 0.
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(ii) (Precision of approximation of Φ in subproblems)

There exists a function ω : R+ → R+ such that ω(t) = o(t) as t→ 0 and the estimate

sup{‖w‖ | w ∈ Φ(u)−A(ũ, u), ‖u− ũ‖ ≤ cdist(ũ, Ū)} ≤ ω(dist(ũ, Ū)) (2.14)

holds for all ũ ∈ Rν close enough to ū.

(iii) (Solvability of subproblems with the localization condition)

For any ũ ∈ Rν close enough to ū the set Uc(ũ) defined by (2.10), (2.11) is nonempty.

Some comments are in order. For GE corresponding to the KKT system (1.2), the canon-
ically perturbed problem has the form

∂L

∂x
(x, λ, µ) = a, h(x) = b, µ ≥ 0, g(x) ≤ c, 〈µ, g(x)− c〉 = 0,

for r = (a, b, c) ∈ Rn × Rl × Rm. For KKT systems, the upper Lipschitzian behavior of
solutions under canonical perturbations (the first assumption above) is equivalent to noncrit-
icality of the Lagrange multiplier (under the smoothness assumptions in this survey) [19]. In
particular, it is implied by the SOSC (1.7). The second assumption above naturally holds
for Newton-type methods, and in particular for sSQP if the stabilization parameter is prop-
erly chosen (for example, based on the KKT natural residual (1.9)). The third assumption
on solvability of subproblems and localization condition is where the most work is required
[10, 25]. And it is here where noncriticality of the multiplier needs to be strengthened to
SOSC if inequality constraints are present.

We finally note that sSQP can also be interpreted within the perturbed Josephy-Newton
framework of [23]. However, the main convergence result in this framework requires SMFCQ.
If the method is interpreted instead via [12, 10] as outlined above, no CQs are needed to prove
local convergence. It is also interesting to mention that a modification of the Newtonian
framework of [12] is used in [11] to derive local convergence and rate of convergence results
for the augmented Lagrangian algorithm (method of multipliers) under SOSC (1.7) only,
significantly improving on the classical results such as in [1] that assume in addition LICQ
(1.5) and strict complementarity. Moreover, for the equality-constrained case SOSC can be
relaxed to noncriticality [20], as is the case for sSQP (the required analysis is very different
though). It is interesting that even though the augmented Lagrangian method is not of
Newton type, the Newtonian lines of analysis turned to be very fruitful for this context as
well.

3 Globalization issues

As any Newtonian method, sSQP is a local scheme, guaranteed to converge if initialized at
a point close enough to a solution with the properties discussed in Section 2. To obtain
a complete algorithm, some strategy to globalize convergence is needed (so that arbitrary
starting points can be used). This proved to be a rather difficult task. Recall that to globalize
SQP at least three different approaches are known: linesearch [4, Chapter 17] or trust-region
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[5, Chapter 15.4] for a nonsmooth penalty function, and the filter technique [13, 14, 34]. For
example, if a positive definite matrix Hk is employed in the QP (1.3), then the generated
direction xk+1 − xk is that of descent for the penalty function

ϕck(x) = f(x) + ck(‖h(x)‖1 + ‖max{0, g(x)}‖1), (3.1)

provided one takes ck > ‖(λk+1, µk+1)‖∞. One can then perform linesearch in the obtained
direction to guarantee progress towards solving (1.1) via decreasing the penalty function with
respect to its value at the previous iterate xk and then re-defining xk+1 accordingly. To find a
suitable penalty function for which the direction computed by the sSQP subproblem (1.8) is
of descent, proved a challenge. In particular, the penalty function like (3.1), or other “usual”
candidates, do not do the job.

Some numerical results on global behaviour of sSQP, without attempting to globalize
the method itself, are reported in [30], but this experience is rather limited (just a few test
problems are considered). More test problems have been employed in [24] but globalization
used there is a heuristic not supported by a proof.

We next survey the few approaches to globalize sSQP that have been proposed so far.
In [36] the globalization technique is based on a linesearch for the so-called primal-dual

augmented Lagrangian. This work deals with optimization problems in the format

minimizex f(x)
subject to h(x) = 0, x ≥ 0.

(3.2)

(The more general problem (1.1) can be reformulated into this setting adding slack variables.)
For the optimization problem (3.2), taking µ = f ′(x) + (h′(x))Tλ, the natural residual (1.9)
can be written as

σ(x, λ) =

∥∥∥∥∥
(

min{f ′(x) + (h′(x))Tλ, x}
h(x)

)∥∥∥∥∥ .
Also, the simple nonnegativity constraint is excluded from stabilization. Then, instead of
(1.8), the sSQP subproblem in [36] is given by

minimize(x, λ) 〈f ′(xk), x− xk〉+
1

2

〈
Hk(x− xk), x− xk

〉
+
σk
2
‖λ‖2

subject to h(xk) + h′(xk)(x− xk)− σk(λ− λ̃k) = 0, x ≥ 0,
(3.3)

where λ̃k is a reference Lagrange multiplier estimate and Hk is a symmetric matrix such that
Hk + (1/σk)(h

′(xk))Th′(xk) is positive definite. It should be noted that there does not seem
to be any theory to justify that this “partial” (excluding the constraint x ≥ 0) stabiliza-
tion in (3.3) actually inherits local convergence properties of sSQP under some reasonable
assumptions. In terms of local convergence, the idea of [36] is to use in addition identification
of active inequality constraints, so that the overall algorithm eventually becomes sSQP for
the associated equality-constrained problem. From the analysis in [36], if (xk+1, λk+1) is the
(unique) solution of (3.3) then (xk+1−xk, λk+1−λk) is a descent direction at (xk, λk) for the
primal-dual penalty function

ϕ̄c(x, λ; λ̃k, σk) = f(x) + 〈λ̃k, h(x)〉+
1

2σk
‖h(x)‖2 +

c

2σk
‖h(x)− σk(λ− λ̃k)‖2, (3.4)
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where c > 0 is a fixed parameter. This penalty function is minimized using linesearch, thus re-
defining (xk+1, λk+1). The reference Lagrange multiplier λ̃k+1 is updated to λk+1 if either the
weighted natural residual for problem (3.2) is small or if the natural residual for the problem
of minimizing ϕ̄c(x, λ; λ̃k, σk) subject to x ≥ 0 is small. The dual stabilization parameter σk
and other algorithmic parameters are updated by certain rules. According to [36, Theorem
4.2], if the generated sequence {xk} is bounded and the sequence {Hk} is chosen bounded with
{Hk + (1/σk)(h

′(xk))Th′(xk)} being also uniformly positive definite, then either there exists
an index set K such that limK3k→∞ σ(xk, λk) = 0 (accumulation points of this subsequence
solve the KKT system) or there exists an index set S such that limS3k→∞ σk = 0, {λ̃k}k∈S
is bounded and

lim
S3k→∞

(∥∥∥∥min

{
∂ϕ̄c
∂x

(xk+1, λk+1; λ̃k, σk), x
k+1

}∥∥∥∥+

∥∥∥∥∂ϕ̄c∂λ
(xk+1, λk+1; λ̃k, σk)

∥∥∥∥) = 0.

Another globalization strategy is proposed in [9]. It is based on the inexact restoration
ideas [29], and uses linesearch for a primal-dual nondiferentiable penalty function. This work
considers problems in the format

minimizex f(x)
subject to h(x) = 0, a ≤ x ≤ b, (3.5)

where a and b are finite bounds. For this problem, the natural residual (1.9) is given by

σ(x, λ) =

∥∥∥∥∥
(

min{x− a, max{f ′(x) + (h′(x))Tλ, x− b}}
h(x)

)∥∥∥∥∥ .
The corresponding sSQP subproblem again employs only partial stabilization (for the general
equality constraints), and has the form

minimize(x, λ) 〈f ′(xk), x− xk〉+
1

2

〈
Hk(x− xk), x− xk

〉
+
σk
2
‖λ‖2

subject to h(xk) + h′(xk)(x− xk)− σk(λ− λ̃k) = 0, a ≤ x ≤ b,
(3.6)

where λ̃k is a reference Lagrange multiplier approximation and Hk is a symmetric positive
definite matrix. The penalty function used in [9] is

ϕ̌ck(x, λ; λ̃k, σk) = f(x) +
σk
2
‖λ‖2 + ck‖h(x)− σk(λ− λ̃k)‖. (3.7)

Note that this is a penalty function for the problem of minimizing f(x) + (σk/2)‖λ‖2 subject
to h(x)−σk(λ−λ̃k) = 0, and the latter problem is equivalent to minimizing f(x)+〈λ̃k, h(x)〉+
1/(2σk)‖h(x)‖2. Thus, this penalty function is also related to the augmented Lagrangian.

The inexact restoration strategy presented in [9] can be interpreted as two-step linesearch
for the function (3.7), where in the first step the penalty parameter ck is increased in order
to achieve ϕ̌ck(xk, λ̂k; λ̃k, σk) < ϕ̌ck(xk, λk; λ̃k, σk) with λ̂k = λ̃k + (1/σk)h(xk), and in the

second step linesearch is performed along the direction
(
xk+1 − xk, λk+1 − λ̂k

)
to re-define

(xk+1, λk+1) so that ϕ̌ck(xk+1, λk+1; λ̃k, σk) ≤ ϕ̌ck(xk, λk; λ̃k, σk). If the linesearch direction is
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small enough (with respect to the inexact restoration criteria), then (xk+1, λk+1) is accepted
as the new primal-dual iterate and the reference Lagrange multiplier λ̃k+1 is updated to
λk+1. The dual stabilization parameter σk is updated by a suitable rule. According to [9,
Theorem 2], if the sequence of matrices {Hk} is chosen uniformly bounded and uniformly
positive definite, and if x̄ is an accumulation point of the sequence {xk}, then x̄ is a stationary
point of the problem (3.5) if {σk} is bounded away from zero, or it is a stationary point of
the problem of minimizing the infeasibility measure ‖h(x)‖2 subject to a ≤ x ≤ b if {σk}
converges to zero. The algorithm of [9] solves sSQP subproblems, but in a sense they can be
considered as “inner iterations” within the inexact restoration scheme (which drives global
convergence of the method). In particular, it is not known whether locally the algorithm
indeed behaves as sSQP under some assumptions (i.e., solves only one sSQP subproblem per
inexact restoration iteration).

We next comment on some other ideas for sSQP globalization, which led to partial devel-
opments of some promis but did not materialize into complete algorithms so far.

A globalization strategy can be attempted using the principle of the augmented La-
grangian method, i.e., decrease the augmented Lagrangian function in the primal space and
increase it in the dual. Consider the classical augmented Lagrangian for problem (1.1):

L̄(x, λ, µ;σ) = f(x) +
σ

2

(
‖λ+ 1

σh(x)‖2 − ‖λ‖2
)

+
σ

2

(
‖max{0, µ+ 1

σg(x)}‖2 − ‖µ‖2
)
,

σ > 0. It can be seen that if (xk+1, λk+1, µk+1) is a solution of the sSQP subproblem (1.8),
then (xk+1−xk, λk+1−λk, µk+1−µk) is a descent direction at (xk, λk, µk) for the “difference
of two augmented Lagrangians” function

ψσ̂k,σ̃k(x, λ, µ;xk, λk, µk) = L̄(x, λk, µk; σ̃k)− L̄(xk, λ, µ; σ̂k),

for any σ̂k ∈ [σ̃k/2, σ̃k]. Moreover, the directional derivative is less than −∆k, where

∆k = 〈Hk(x
k+1 − xk), xk+1 − xk〉+

σ̃k
2
‖λk+1 − λk‖2 +

σ̃k
2
‖µk+1 − µk‖2

+
σ̃k
2
‖λk + 1

σ̃k
h(xk)− λk+1‖2 +

σ̃k
2
‖max{0, µk + 1

σ̃k
g(xk)} − µk+1‖2.

It can be shown that if {∆k} tends to zero, the sequence of matrices {Hk} is chosen uni-
formly bounded and uniformly positive definite and (x̄, λ̄, µ̄) is a limit point of the sequence
{(xk, λk, µk)}, then x̄ is a stationary point of the problem (1.1) if {σk} is bounded away
from zero, or it is a stationary point of the problem of minimizing the infeasibility measure
‖h(x)‖2 +‖max{0, g(x)}‖2 if {σk} converges to zero. However, so far there are no reasonable
hypotheses to guarantee ∆k → 0 from a standard linesearch. From another point of view,
this strategy is related to finding a solution of an equilibrium problem. If for some σ̂, σ̃ > 0
it holds that (x̄, λ̄, µ̄) is a solution of the optimization problem min(x,λ,µ) ψσ̂, σ̃(x, λ, µ; x̄, λ̄, µ̄),
then (x̄, λ̄, µ̄) solves the KKT system (1.2). Conversely, if (x̄, λ̄, µ̄) is a solution of the KKT
system (1.2) satisfying SOSC (1.7), then (x̄, λ̄, µ̄) is a local minimizer of the latter problem.

Another issue concerned with global convergence of sSQP has to do with possible at-
traction of the iterates to critical Lagrange multipliers, and eventual slow convergence rate
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as a consequence. In [21, 22, 24, 27] this phenomenon was exhibited for various Newtonian
and Newton-related methods, such as SQP and its quasi-Newton implementations, and the
linearly constrained (augmented) Lagrangian methods [35, 31, 15]. Both theoretical con-
siderations and numerical results for SNOPT [16] and MINOS [32] solvers were presented,
which put in evidence that when critical multipliers exist, they serve as attractors of the dual
sequence generated by the type of methods in question. Moreover, the reason for slow conver-
gence in the degenerate cases is precisely attraction to critical multipliers, as convergence to
noncritical ones would have given the primal superlinear rate. Numerical results in [24] show
that the effect of attraction (globally, i.e., from “far away” points) to critical multipliers still
exists for sSQP too (when evaluating the numbers reported therein, it is important to keep in
mind that critical multipliers are typically few; the usual situation is that they form a set of
measure zero within the set of all multipliers), but the attraction is much less persistent for
sSQP than for the other algorithms. The runs clearly split into two groups. Sometimes the
(globalized, heuristically in that reference) process manages to enter the “good” primal-dual
region, where the stabilization term starts working properly (has the needed “size”), and then
it converges superlinearly with the dual limit being noncritical. However, in a considerable
number of cases this does not happen, and then the process still converges slowly to a critical
multiplier. Thus, although sSQP does help when compared to the alternatives, by itself it
does not seem to be a fully reliable tool for avoiding the effect of attraction and its negative
consequences. It would seem that some special modifications would be needed in the “global”
phase of the method to reliably avoid convergence to critical multipliers.

Overall, building really satisfactory globalization techniques for sSQP is a challenging
matter, which (for general problems) should still be considered an open question at this time.

4 Extensions to variational problems

Denote
D = {x ∈ Rn | h(x) = 0, g(x) ≤ 0},

and let ND(x) be the dual cone of the tangent (contingent) cone TD(x) to the set D at
x ∈ Rn, i.e., ND(x) = ∅ for x 6∈ D and otherwise ND(x) = (TD(x))◦ where

TD(x) = {ξ ∈ Rn | ∃ {ξk} → ξ, tk → 0 s.t. x+ tkξ
k ∈ D ∀ k, tk > 0}.

Consider the variational problem (VP)

F (x) +ND(x) 3 0, (4.1)

where F : Rn → Rn. In particular, for the optimization problem (1.1) this VP represents
the first-order necessary optimality condition

x ∈ D, 〈f ′(x), ξ〉 ≥ 0 ∀ ξ ∈ TD(x),

if we take F (x) = f ′(x). If the set D is convex, then (4.1) gives the usual variational inequality
(VI)

x ∈ D, 〈F (x), y − x〉 ≥ 0 ∀ y ∈ D.
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Associated to solving VP (4.1) is the KKT system

F (x) + (h′(x))Tλ+ (g′(x))Tµ = 0, h(x) = 0, µ ≥ 0, g(x) ≤ 0, 〈µ, g(x)〉 = 0. (4.2)

Define the mapping G : Rn ×Rl ×Rm → Rn by

G(x, λ, µ) = F (x) + (h′(x))Tλ+ (g′(x))Tµ.

Let (xk, λk, µk) ∈ Rn × Rl × Rm
+ be the current primal-dual approximation to a solution

of (4.2), and let σk > 0 be the dual stabilization parameter. Define the affine mapping
Φk : Rn ×Rl ×Rm → Rn ×Rl ×Rm by

Φk(u) =

(
F (xk) +

∂G

∂x
(xk, λk, µk)(x− xk), σkλ, σkµ

)
, u = (x, λ, µ),

and consider the affine VI of the form

u ∈ Qk, 〈Φk(u), v − u〉 ≥ 0 ∀ v ∈ Qk, (4.3)

where

Qk =

{
u = (x, λ, µ) ∈ Rn ×Rl ×Rm

∣∣∣∣∣ h(xk) + h′(xk)(x− xk)− σk(λ− λk) = 0,
g(xk) + g′(xk)(x− xk)− σk(µ− µk) ≤ 0

}
.

As can be easily seen, in the optimization case (1.1) the VI (4.3) is precisely the first-
order (primal) necessary optimality condition for the sSQP subproblem (1.8), if one takes
F (x) = f ′(x). Thus this scheme contains sSQP for optimization as a special case. Note that
the method makes good sense also in the variational setting, as solving the fully nonlinear
VP (4.1) is replaced by solving a sequence of affine VIs (4.3) (the mapping Φk is affine and
the set Qk is polyhedral).

Convergence analysis of this stabilized Newton method for variational problems can be
found in [10].

5 Concluding remarks

We presented a survey of literature and some discussion of the stabilized version of the fun-
damental sequential quadratic programming method for constrained optimization. Further
material, in particular comprehensive local convergence analysis, can be found in the forth-
coming book [26].
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