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In this paper we perform a quantification of the uncertainty propagation of the dynamics of slender
initially curved structures constructed with fiber reinforced composite materials. Depending on the
manufacturing process, composite materials may have deviations with respect to the expected response,
often called nominal response in a deterministic sense. The manufacturing aspects lead to uncertainty in
the structural response associated with constituent proportions, material and/or geometric parameters
among others. Another aspect of uncertainty that can be sensitive in composite structures is the
mathematical model that represents the mechanics of the structural member, that is: the assumptions
and type of hypotheses invoked reflect the most relevant aspects of the physics of a structure, however
in some circumstances these hypotheses are not enough, and cannot represent properly the mechanics
of the structure. Uncertainties should be considered in a structural system in order to improve the
predictability of a given modeling scheme. There are two approaches to evaluate the propagation of
uncertainties in structural models: the parametric probabilistic approach and the non-parametric
probabilistic approach. In the parametric, one quantifies the uncertainty of given parameters (such as
variation of the angles of fiber reinforcement and material constituents) by associating random variables
to them. In the non-parametric, the propagation of uncertainty is quantified by considering uncertain
the matrices of the whole system. In this study a shear deformable model of composite curved thin-
walled beams is employed as the mean or expected model. The probabilistic model is constructed by
adopting random variables for the uncertain entities (parameters or matrices) of the model. The
probability density functions of the random entities are derived appealing to the maximum entropy
principle under given constraints. Once the probabilistic model is discretized in the context of the finite
element method, the Monte Carlo method is employed to perform the simulations. Then the statistics of
the simulations is evaluated and the parametric and non-parametric approaches are compared.

© 2014 Elsevier Ltd. All rights reserved.
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1. Introduction

Composite materials have such a number of interesting features
that impel their use in different industrial devices. Examples of
these features are high strength and stiffness properties together
with a low weight, good corrosion resistance, enhanced fatigue
life, low thermal expansion properties among others [1]. The
very low machining cost for complex structures is the other
important feature of composite materials [2]. Slender composite
structures that can be analyzed by means of curved beam models
are present in many applications such as bridge segments,
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machine parts: such as leaf springs of sport cars or blades of
turbo-propellers, among others.

The development of theoretical and computational methods for
dynamic and static analysis of slender thin-walled composite
structures is growing continuously since the early eighties. Thus,
one of the first consistent studies about thin-walled composite-
beams was introduced by Baud and Tzeng [3], who developed a
beam theory to analyze fiber-reinforced members featuring open
cross-sections with symmetric laminates invoking Vlasov's
hypotheses. Afterwards, Bauchau [4] incorporated some aspects
of shear flexibility in the analysis of thin-walled composite beams.
Models of fiber reinforced composite beams that are based on
Vlasov or Bauld and Tzeng's ideas [3] normally over-predict the
values of natural frequencies and consequently the dynamic
patterns, specially in the case of shorter beams. In the 1990s,
many new models of composite beams were introduced, in which
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shear-flexibility as well as warping effects due to non-uniform
twisting were incorporated. These models were based on new
theories for micro/macrostructures of composite materials, new
modeling schemes including selective warping and second-order
displacements, etc. The research of Wu and Sun [5], Librescu and
coworkers [6,7], Kim et al. [8] and Cesnik et al. [9] are just a few
examples of the most representative works in the modeling of
composite beams with thin or thick walled cross-sections; however
most of them were devoted to closed cross-sections as basic
approaches for the analysis of helicopter blades. More recently
Cortinez and Piovan [10] developed a theory of thin walled compo-
site beams accounting for full shear flexibility (i.e. shear deformation
due to bending as well as due to warping related to non-uniform
twisting). The scopes and limits of the previous full shear flexible
modeling conception were extended [11] by incorporating elastic
couplings and the evaluation of general dynamic problems for
straight beams and for curved thin-walled composite beams [12].
The model employed in this study was conceived in order to take
into account the effects of shear deformability that are mandatory in
the mechanics of thin-walled structures specially if they are con-
structed with fiber reinforced composite materials [6,8,10,12].

The behavior of composite structures under typical service in civil,
aeronautical, aero-spatial or mechanical devices, is constrained to a
number of factors that are stochastic in essence [13,14]. Many
researchers have focused their attention in the evaluation of the
stochastic response of composite structures since the middle 1990s
[15,16]. Moreover, there is an increasing interest to quantify the
propagation of uncertainty in the mechanics of composite materials
at the microscale level [13] or for failure analysis [17]. The uncertainty
involved in the material properties of the composites can be con-
sidered as random fields [18,19] among others. However, there are
other ways for studying the dynamic response due to uncertainties in
composite structures, for example by associating random variables to
given entities that define a structural dynamic model. Effectively,
when the parameters, such as material properties or reinforcement
angles, are considered uncertain, the methodology for studying the
uncertainty is called parametric probabilistic approach (PPA). However
if the model as a whole is uncertain, the class of uncertainty is called
systemic uncertainty. In order to analyze this type of uncertainty there
are various approaches, one of them is the so-called non-parametric
probabilistic approach (NPPA). The NPPA implies the introduction of
random matrix variables. This approach was formulated by Soize [20]
and employed in a variety of structural problems [21-23].

In this paper, the PPA and NPPA are applied in order to evaluate
the uncertainty propagation in the dynamic response of naturally
curved composite thin-walled beams. The theory for curved
composite structures introduced by Piovan and Cortinez [12] is
briefly revisited and employed as the nominal response or deter-
ministic model in order to compare and quantify the uncertainty
propagation of the stochastic approach. The solution of the
dynamics equations is approximated in the context of the finite
element method. For the PPA case, the parameters corresponding
to elastic properties are considered uncertain. For the NPPA the
stiffness matrix and the damping matrix are considered uncertain.
This is due to the evidence gathered in other work of the authors
[23] in which the elastic properties, and hence the stiffness matrix,
are the main focus of uncertainty propagation in dynamics of
composite thin-walled straight beams. To construct the probabil-
istic models, the probability density functions associated with the
random variables are constructed appealing to the maximum
entropy principle [24,25]. This principle uses the available infor-
mation of the random entities to construct their probability
density functions such that the entropy, in the sense of Shannon
[26], is maximum. The use of this scheme allows the maximum
possible propagation of the uncertainty according to the available
information about the random variables.

The paper is organized as follows: after the introductory
section where the state-of-the-art in modeling curved thin-
walled composite beams is summarized, the deterministic/mean
model and its finite element discretization are briefly described,
then the probabilistic approach is constructed. The parametric and
the non-parametric approaches are described for this problem and
the subsequent section contains the computational studies, the
analysis of the uncertainty propagation in the dynamics of thin-
walled composite curved beams and finally concluding remarks
are outlined.

2. Deterministic model
2.1. Brief description of the curved beam model

Fig. 1 shows a basic sketch of the structural component, in
which it is possible to see the basic dimensions and the reference
points C and A. The principal reference point C is located at the
geometric center of the cross-section, the x-direction is tangent to
the curved axis of the beam, and y and z are the axes of the cross
section, but not necessarily the principal axes of inertia. The
secondary reference system, located at A, is used to describe shell
stresses and strains. The curved axis of the beam, that has constant
radius R, is contained in the plane =. The curved beam has an
opening angle f and a circumferential length L = Rf. The determi-
nistic model of the present study is based on the following
assumptions [11,12]:

1. The cross-section contour is rigid in its own plane (i.e. plane
YZ).

2. The radius of curvature at any point of the shell is neglected.

3. The warping function is normalized with respect to the
principal reference point C.

4. A general laminate stacking sequence for a composite material
is considered.

5. The material density is considered constant along the curved
axis beam.

6. Stress and strain components are defined according to the
secondary reference system located in A.

7. The most representative stresses are oyx, oxs and oy,; and the
most representative strain and curvature components are €y,
Vxs» Vnr Kxx and Kxs-

8. The model is derived in the framework of linear elasticity.

Employing assumptions (1)-(7) one can derive the displace-
ment field of the point B [12], which can be presented as follows:

Uy Uye — 0Dy, 0 -P; Dy 0
f]B =< Uy » = Uyc +| D3 0 -y Yoo (D
u, Uz — @2 @] 0 z

where @&,,, @, @, and @3 are defined in terms of rotational and

juncture
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Reference
System

Secondary
Reference
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Fig. 1. Sketch of the thin-walled curved beam with the reference systems.
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warping parameters as follows:

u
b, = ,ﬁ,
3 z R

B, =0+ @

(p1 = gx, R

D, =0,
and uy, Uy, and u, are the displacements of the reference center
in x-, y-, and z-directions, respectively. 8, and 6, are bending
rotational parameters. 6y is the twisting angle and 6, is a
warping-intensity parameter. R is the radius of curvature of the
beam. In Eq. (1) the cross-sectional variables y(s) and z(s) of a
generic point are related to the ones of the wall middle line Y(s)
and Z(s) by means of Eq. (3) is the warping function normalized
with respect to the reference center. It is defined in Eq. (4)

dz dy
YO =Y —nge,  28)=Z(S)+n 3)

(S, N) = wp(S)+ws(s, n). (4)

In Eq. (4), wp(s) is the primary or contour warping function
whereas ws(s,n) is the secondary or thickness warping. These
entities are given by

Wp(s) = / [r(s)+w(s)] ds—D¢, ws(s,n)= —nl(s), (5)

where the functions r(s), I(s), w(s) and D¢ are defined in the
following form (see Fig. 2):

dy dz dy dz
r(s)= Z(S)E - Y(S)d_s’ lis)= Y(S)§+Z(S)E,

1 Jsr(s) ds

= : ,
oot y%Kea(s) ds

The functions Aq; and Agg are normal and tangential elastic
coefficient of the composite laminates [11] which can vary along
the section middle line. y(s) is a function related to the torsional
shear flow and D¢ is a constant to normalize the warping function
with respect to the reference system C [10,12]. The warping
function is valid for both open and closed sections (since
w(s)=0 in the case of open sections). Moreover the warping
function described in Eq. (4) is conceptually analogous to the
homonym warping function employed by Song and Librescu [7]
but for composite straight beams.

The displacement-strain relations can be deduced by substi-
tuting Eq. (1) in the well-known expressions of linear strain
components [1]. As it was shown by [12] the shell strains can be
written as

b BIO+v© A ds o
%SA 11(8) ds

w(s)

Er= R b, (7)

Fig. 2. Cross-section of the curved beam with the reference systems.

where

~T
EP = {exx; Vxs> ¥V xn» Kxx» sz}>

L7
D' = {éep1, €2, €D3, D4, €D5, D6 €D7, €08} (8)
1z Y —w, 0 0 0 0
0 0 0 0 dY/ds dZ/ds r(s)+w(s) —w(s)
G=|0 o0 0 0 —dz/ds dy/ds ) 0
0 —dy/ds dz/ds —Is) O 0 0 0
0 0 0 0 0 0 1 -2
)]

In Eq. (8), €xx, ¥xs and y,, are the strain components and x, and
kxs are the curvatures of the shell that conforms the wall of the
cross-section. These strain components are measured according to
the wall reference system in A. The entities &p;, i=1,...,8 may be
regarded as generalized deformations. In this context &p; is the
axial deformation, ep, and ep3 are bending deformations, €p4 is the
deformation due to non-uniform warping, €ps and &pg are the
bending shear deformations, &p7 is the warping shear deformation
and finally epg is the pure torsion shear deformation. These
generalized deformations, which are collected in vector D, are
defined in the following form:

D =GpyU, (10)

where Gpy is a matrix operator and U is the vector of kinematic
variables which are defined in the following forms, in which dx(¢)
is the spatial derivative operator

Ke) 1R 0 0 0 0o o0
0 0 0 0 o) -1/R 0
—o0)/R 0 o) O 0 0o 0
0 0 0 0 —a@)/R 0 o)
Gou=1 o 450 -1 0 0 o o |
0 0 0 o) 1 0o 0
0 o 0 o0 0 o) -1
0 o 0 o0 1R ode) O
(11)
U = (e, tye, 02, U, 6y, 6x, Oy . (12)

The principle of virtual works can be condensed in the follow-
ing form:

T~ N E ~ T~ T~ =L
Wi = / (5DTSR) dx+ / 50" M0 dx— / 50" Py dx+ 60" By =0,
L L L x=0
(13)

where the vector of internal forces or, in other terms, generalized
stress-resultants Sy is defined as follows:

=T
SR: {Qx,My»Mz,B,Qy,QpTw, Tsv}, (14)

whereas for the sake of fluid and clear reading, the matrix of mass
coefficients M,,, the vector of external forces Py and the vector of
natural boundaries conditions By are detailed in Appendix A. Q,
M,, M., and B identify the axial force, the bending moment in the
y-direction, the bending moment in the z-direction, and the bi-
moment, respectively; whereas Q,, Q;, T, and Ty, correspond to
the shear force in the y-direction, the shear force in the z-
direction, the twisting moment due to warping and the twisting
moment due to pure torsion, respectively. These internal/general-
ized forces can be written in terms of the shell-forces as [11]

SR = /GICNP ds, (15)
S
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where Np is the vector of shell stress resultants or shell forces and
moments defined according to [1,2]

T
Np = /{Gxx, Oxs, Oxn, NOxx, NOxs} dn. (16)
S

The differential equations of motion and corresponding bound-
ary conditions are derived by applying variational procedures in
Eq. (13). The differential equations of motion can be useful for
some numerical methods, e.g. power series method or differential
quadrature. While in the present paper the finite element method
is employed, the derivation of differential equations is not neces-
sary. The interested readers may follow in the technical literature
authors' articles [12,27] devoted to evaluate the differential equa-
tions of the thin-walled curved beam model applied to a number
of specific structural problems.

2.2. Constitutive equations in terms of internal forces and
generalized strains

In order to obtain the relationship between beam stress resul-
tants and generalized deformations ¢p, i=1,...,8, one has to
select the constitutive laws for a composite shell and use appro-
priate constitutive hypotheses [12] of the shell stress resultants in
terms of the shell strains. The shell stress resultants can be
expressed in terms of the generalized deformations defined in
Eq. (10) according to the following matrix form:

Np =McEp, a7

where M¢ is the matrix of modified shell stiffness, which depends
on the type of constitutive hypotheses involved [12,23,27] and can
be expressed in the following form:

A]] E]G 0 El] EIG
Ass 0 By Bes

M = Ass 0 0 | (18)
sym Dy élG
Des

The elastic stiffness coefficients A;;, B11, D1;, etc., are not
described in the present paper, however the interested readers
can find their definition and “in-extenso” expressions in the
authors’ previous works [12,27].

Substituting Eq. (17) into Eq. (15) the curved beam stress
resultants can be represented in terms of generalized strains as

Sk =MD, (19)

where

M, — / GIMcGy ds. 20)
JS

The matrix M; of cross-sectional stiffness coefficients leads to
constitutive elastic coupling or not, depending on the stacking
sequence of the laminates in a given cross-section. The interested
reader can follow an extended explanation about elastic constitutive
coupling in the books of Barbero [1] and Jones [2]. Moreover for beam
applications the explanation of the constitutive coupling can be
followed in the works of Piovan and Cortinez [12] and Kim et al. [8],
among others.

2.3. Finite element approach

In order to perform the calculations, the curved beam model is
discretized with iso-parametric elements of five nodes per ele-
ment, seven degrees-of-freedom per node and shape functions of
quartic order. The formulation of the finite element approach for
this type of curved structural member has been introduced in

previous works [12] in which the interested readers can find
detailed explanations. The assembled finite element equation can
be written in the conventional form as

KW + CW + MW —F, 1)

where K and M are the global matrices of elastic stiffness and
mass, respectively; whereas W, W and F are the global vectors of
nodal displacements, nodal accelerations and nodal forces, respec-
tively. The damping in Eq. (21) is incorporated as an “a posteriori”
procedure after the discretization of the functional given in Eq.
(13). Then C identifies the global matrix of structural damping,
calculated according to Rayleigh's definition as

C=nM+7,K. 22)

The coefficients 7, and 7, in Eq. (22) are computed by using the
damping coefficients, &, and &,, according to the common meth-
odology presented in the bibliography related to finite element
procedures [28].

The response in the frequency domain of the linear dynamic
system given by Eq. (21) can be written as

W(@) = [~ @M +ioC+K]| '), (23)

where W and F are the Fourier transform of the displacement
vector and force vector, respectively; whereas @ is the circular
frequency measured in (rad/s).

2.4. Reduced order model

The calculation of the responses in the frequency domain is
normally quite demanding in terms of computational cost. Then,
in order to have a speedup in the calculation process, it is
mandatory to construct a reduced model by defining an appro-
priate projection basis. Thus, taking advantage of the linearity of
the present formulation, the projection basis for the reduced
model can be extracted from the following eigenvalue problem:

0?MV; = Kv,, (24)

where w? and v; are the square of the ith natural frequency and its
corresponding eigenvector.

Now, defining the global vector of kinematic variables W in
terms of the projection basis V and the modal coordinates Q :

W=VQ, (25)

and using it in Eq. (21) according to the common procedure of model
reduction [29] it is possible to write the following expression:

K.Q+CQ+MQ =F, (26)
and finally
W(®) = VQ (@) = [~ @M, +iwC +K;] ~ 'Fr(w). 27)

In the previous expressions the following definitions have been
used:

M, =V MV
C.=V'cv
K, = V'KV
F.=V'F. (28)
Notice that V is a (n x m) matrix whose columns correspond to
the m eigenvectors selected to reduce the model.
Models of 12 finite elements (i.e. 343 degrees of freedom) are
employed to do the calculations. This number of elements is
enough to reach approximation errors less than 1% up to the 8-

th frequency. Moreover with 24 normal modes one reaches a
mean error less than 0.1% in the frequency response functions. This
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implies a reduction of about 92% in size that was reflected in a
calculation procedure, at least, 150 times faster.

3. Description of the probabilistic model

The probabilistic model is constructed by selecting parameters
or matrices as uncertain entities and then deducing the appro-
priate and corresponding random variables based on the available
information. Whether it is employed the PPA or the NPPA, the
probabilistic approach is constructed from the finite element
equation of the deterministic model which is assumed as the
mean model. The construction of the probabilistic model is quite
sensitive in the analysis of uncertainty propagation. This involves
the deduction of the probability density functions of the random
entities (parameters or matrices depending on the selected
approach) taking into account the scarce information about the
random entities. According to the authors’ opinion, the use of the
maximum entropy principle (MEP) allows the construction of a
probabilistic model despite the lack of information about the
random variables. In this context, the probability density functions
of the random variables can be derived guaranteeing consistence
with the available information and the physics of the problem.

In order to derive the probability density functions of the
random variables, the maximum entropy principle is proposed in
the following form:
pWPY = arg maés (pv) (29)
where p{P" is the optimal probability density function such that
S(p\P") = S(py), Vpy € B, and S is the measure of entropy whereas
B is a set of admissible probability density functions satisfying the
known data of the random variables and the physical constraints.
The measure of the entropy S is defined as [26]

S(py) =~ /;pvln(pv) dv (30)

where & is the support of the probability distributions of the ran-
dom variables taken into account in the optimization procedure.

Once the random variables are appropriately defined then the
stochastic finite element equation can be written, through Eq. (23),
in the following form:

W(w) = V(@) = [~ M, +i0C, +K,] ' Fo). 31)

Notice that in Eq. (31) the math-blackboard typeface indicates
stochastic entities, thus the stiffness matrix K, is stochastic
because random variables (scalars or matrices) are employed in
its construction, and the damping matrix C, is stochastic through
the stochastic nature of I, in Eq. (22), hence W is stochastic.

The Monte Carlo method is used for the simulation of the
stochastic dynamics. This strategy leads to the calculation of a
deterministic system for each realization of the random variables
employed. The convergence of the stochastic response W can be
calculated with the following function:

Nus
/ HW](a)) W(a))H2 dw, 32)
]7 1

COHV(NMS) = \j

where Ny is the number of Monte Carlo samplings and £2 is the
frequency band of analysis. Clearly, W is the response of the
stochastic model and W is the response of the mean model or
deterministic model.

3.1. Parametric approach

The stochastic model according to the PPA is constructed
selecting two sets of uncertain parameters and associating random

variables to them. One set for the orientation angles of the fiber
reinforcement in the layers of each panel and other set for basic
elastic properties of the material. In the present problem random
variables V;,i=1,2...Npand V;,i=Np+1,...,Np+6 are introduced
such that they represent the angles of Np different plies in a cross-
sectional laminate and the basic elastic properties of the material
(i.e. elastic moduli: Ey;, Ez; =Es3, Gi2=Gy3 and Gy3, Poisson
coefficients: v, =v13 and v,3), respectively.

The available information to deduce the probability density
functions is associated with some information that can be found in
the technical literature [13]. The following conditions are proposed
in order to construct the probability density functions with the
maximum entropy principle:

® The random variables associated with material properties are
positive and have bounded supports.

® The random variables associated with the reinforcement angles
have bounded supports whose upper and lower limits are
distant A, from the expected value V.

® The expected values are &{Vy} =V, 1:1,...Np+6, i.e. those
corresponding to the deterministic model.

® The variance of the random variable has to be kept finite in
order to satisfy the physical consistence of the problem.

® There is no information about the correlation between random
variables.

Consequently, according to the aforementioned background,
the probability density functions of the random variables V; can be
written as

i=1,..,Np (33)

1
py(vi)=6 (v, 2t (W)E,

pvl(vi):g[l:v.,b{v.](vl) i=Np+],...,Np+6 (34)

1

2«/§Z.5vi’
where & (vl) is the generic support function, whereas Ly,
and Uy, aie ’tﬁé lower and upper bounds of the random variable V;.
A, is a gap measured in angular units (radians or degrees),
whereas Jy, is the coefficient of variation. The Matlab [30] function
unifrnd (V —A4,V,+A4,) can be used to generate realizations of
the random varlables V;,i=1,2...Np. The Matlab function unifrnd
(V (1 oy, J3), V,(1+06v, V3 g can be used to generate realiza-
tions of the random variables V;, i=Np+1,...,Np+6.

3.2. Non-parametric approach

Under this conception, the matrices of the system are consid-
ered uncertain. In particular, there is evidence [23] that the
uncertainty in the elastic properties is more sensitive than the
uncertainty in the mass properties in the dynamics of beams
constructed with composite materials. Consequently, the construc-
tion of the probability density function of the random stiffness
matrix K is performed in this section. The procedure explained in
the subsequent lines follows the concepts and ideas elaborated in
the works [31,20,32].

In order to construct the random matrix [, it is necessary that
the mean value (or the deterministic one) of the positive-definite
matrix K to be written according to the Cholesky-decomposition,
thatis K= L «Lk, where L is an upper triangular matrix. Hence the
random matrix K can be written as follows:

K =L} GLg (35)

where G is a random matrix that has the following constraints:

® Positive-definiteness.
® The mean value is the identity matrix: £{G} =L
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© The mean square value of its inverse is finite, i.e £{ IIG ! H%}
< +oo; this assures that the response of the system is a
second-order random variable.

Then using the maximum entropy principle the probability
density function of G can be written as [31]

Pe(G) = S+ 1) (G)Ce det(G) "D~ 63‘)/253‘)6)(13{ - 1;;21 tr(G) }
K

(36)

where &+ )(G) is the support of the random variable, n is the
dimension of the random matrix G, the dispersion parameter &y
and Cg are given as follows:
2
20y

1
8 =1/ E{16 -1} },Co = _
n . F<n+1 +l—]>
" 1=
J 205 2

The dispersion parameter is such that 0 < i < \/(n+1)/(n+5),
where n is the number of degrees of freedom.

Thus, for each realization of the random matrix [, the matrix G
is built by means of a Cholesky decomposition, i.e. G = LTL, where
[ is an upper triangular positive-definite random matrix subjected
to the following constraints:

@2y (n=r)/a <n +1 ) (ne)/ (267)

(37

® The random variables {Ly,j <k} are independent.

® For j <k, the real-valued random variable Ly = oV}, in which
0 =0x~/n+1 and Vj; is a real-valued random variable with zero
mean and unit variance.

® For j=k the real-valued random variable Ly, = ¢/2Vj}, in which
V; is a real-valued gamma random variable with probability
density function:

<n+1 1—J>
w\25; 2

Py,(V) = g+ (V)———————<-€xp(V) (38)
(5 )

n+1 1—j

25@+ 2

As it is possible to infer, the random variables Vj,j+#k and
Vii.j=k can be generated by a normal distribution and a gamma
distribution respectively. In fact they can be generated in the
Monte Carlo simulation procedure by means of the Matlab func-
tions normrnd(0,1) and gamrnd(a, ), with a= (((n+1)/252)+
(1-j)/2)) and f=1.

4. Computational studies
4.1. Definitions and convergence checks

In this section a study is carried out related to the propagation of
uncertainties due to material properties and/or constructive aspects of
composite laminates, in the dynamic response of curved thin-walled
composite beams. For this study a curved beam (length L=6.0 m,
radius R=6.0 m) with rectangular cross-section is employed. The
following Fig. 3 shows the rectangular cross-section with the second-
ary reference systems associated to each panel. Moreover it is possible
to see the excitation due to an impulsive unitary force located at
Up={x,y,z} = {x,b/2,h/2} and oriented with y =45° where
xg=L in a clamped-free boundary condition or xg=L/2 if the
boundary condition is doubly-clamped. The web height and flange
width are h=0.6 m and b = 0.3 m, respectively, whereas the thick-
ness of all laminates is e = 0.03 m. Each laminate is composed by eight
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Fig. 3. Rectangular cross-section with reference systems.

Table 1
Lamination schemes for the cross-sections.

Cross- Laminate Angle
section name orientation
= CUS(a) Left and right panels: {(a, a)4}

Upper and lower panels: {(a, a)4}

CAS(a) Upper and right panels: {(a, @)}
Lower and left panels: {(—a, —a),}

CUS(0|a) Left and right panels: {(0,a),}
Upper and lower panels: {(0, a),}

CAS(0|a) Upper and right panels: {(0, a),}

Lower and left panels: {(0, —a),}

laminas of equal thickness. The material of the beams is graphite-
epoxy (AS4/3501-6) whose properties are E1; = 144 GPa, Ey, = E33 =
9.68 GPa, G =G13=4.14GPa, Gy3=345GPa, v1=r13=0.3,
123 =0.5, and the density p = 1389 kg/m?>. Although the damping
coefficients could be uncertain, in this study they assume fixed values
£, =0.05 and &, =0.05 in order to facilitate the analysis of uncer-
tainty connected with elastic properties and the modeling itself.

The stacking sequences to be used are described in Table 1, in
which the acronyms CUS and CAS stand for “circumferen-
tial uniform stiffness” and ‘circumferential asymmetric stiffness”.
These acronyms were introduced by [33] to identify a particular
type of lamination scheme, and hence elastic coupling, for rectan-
gular cross-sections. The CUS laminate corresponds to elastic
constitutive coupling between twisting moments and axial force
as well as both shear forces and both bending moments; whereas
the CAS laminate leads to elastic constitutive coupling between
bending moments and twisting moments together with coupling
of the axial force with both shear forces [8,11,33].

The cases CAS(0) and CUS(0) are the same or imply the same
coupling as well as the cases CAS(90|0) and CUS(90|0). In these last
cases there is no constitutive elastic coupling between all the
kinematic variables. In these circumstances the system of seven
equations can be decoupled into two subsets of equations [12]:
namely for in-plane motions (uy, Uy, ¢;) and for out-of-plane
motions (u,, 6y, Ok, Ow).

It is interesting, for further comparative purposes, to recall not
only the type of constitutive elastic coupling but also the ratio
between effective longitudinal stiffness (A7) and shear membra-
nal (Ags) and transverse shear stiffness (Dgg). Thus, for the
material and laminations selected, in Table 2 the ratio of some
elastic properties is shown. As it may be observed, the ratios
decrease as the laminate contains more layers with angle of
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reinforcement away of the orthotropic directions (i.e. at @ = 0° and
a=90°). Although the ratios A1 /Ass and A, /Dgs have the same
value for CAS and CUS configurations, it is important to recall that
the global elastic behavior in the structure is quite different as it is
mentioned above.

The stochastic analysis of the present study is mainly con-
cerned with the evaluation of the uncertainty propagation in the
frequency response function of the composite curved beam sub-
jected to a unit force F that perturbs the structure. The response is
observed at the location of the forcing point and evaluated by
means of the following frequency response function:

1 Up(@)|

Hp(w) Fo)

(39)

In Eq. (39), IUg |l is the norm of the Fourier transform of the
displacement vector of the point in which the force is applied (see
Fig 3) and F is the Fourier transform of the force applied at the
beam's end. Moreover, the following frequency response functions
are introduced for specific comparative purposes:

_ ax (@)

i\iyc (@) _Y :
Tx(w)

y(@)

Hi@) =2 Hyw) =%(—2}“’; Hs ()

(40)

where Uy, U, and éx are the Fourier transforms of lateral
displacement, vertical displacement and twisting angle, respec-
tively, whereas F v F , and Tx = TW+TSV are the Fourier transforms
of the components of force F and the associated twisting moment.
For this problem, the displacements are calculated at the free end.

In the PPA, four random variables are selected to identify the
orientation angles of the fiber reinforcement according to the
common stacking sequences employed in the construction of
composite structures. These random variables have the following

Table 2
Ratios A1 /Ags and A1, /Deg for different stacking sequences.

Laminate name Aq1/Ass A11/Dgs
CUS(0) or CAS(0) 34.78 41739
CUS(0/90) or CAS(0]90) 18.64 223.74
CUS(0]15) or CAS(0[15) 16.20 194.42
CUS(15) or CAS(15) 9.82 117.92
CUS(0]45) or CAS(045) 8.02 96.33
CUS(45) or CAS(45) 1.31 15.79
a
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expected values: &{V{}=0° ¢&{V,}=15° &{V3}=45° and
E{V4} =90°, with A, e[2°,4°]. On the other hand the expected
values of random variables V;, i=5,...,10 correspond to the
nominal values of the elastic properties indicated above. The
elastic random variables can have dispersion parameters con-
tained in 6; €[0.04,0.12],i=5,...,10 [13,23].

Recall that the discrete models contain 12 finite elements, and
it should be noted that a clamped end restricts the motion of the
seven kinematic variables. This implies that depending on the case
of clamped-free or double clamped beam, n=336 or n=329
should be used in Eq. (37). In the case of the NPPA it is important
to identify the limits of the dispersion parameter that accor-
ding to Section 3.2 it should be, for example: 0<dyk <
1/(336+1)/(336+5) = 0.9941 in the case of a clamped-free beam
(and 0< K <0.9939 in the case of a double-clamped beam).
The uncertainty dispersion parameter in the NPPA can take the
following values: oy [0.20,0.50,0.65,0.80,0.95]. In fact the lower
value implies a model with a slight global uncertainty and the
higher value indicates a model with strong uncertainty.

Fig. 4 shows two examples of the convergence in the Monte
Carlo simulations performed according to the PPA and NPPA of a
clamped-free beam. In both cases the evolutions of the function
conv(Ny;s) is evaluated with respect to the number of simulations.
The cross-section has a stacking sequence CAS(15) with the
following parameters: A, =4° and 6;=0.1,i=1,...,Np+6 for the
PPA and 6y = 0.9 for the NPPA. It can be seen that with nearly 300
simulations, the conv(Nys) function reaches an acceptable level of
convergence. The convergence has been controlled for each
simulation performed in the subsequent studies of uncertainty
propagation.

4.2. A brief discussion on the uncertainty in the formulation of shear
flexibility

The appropriate way to model the shear flexibility and its effect
in the mechanics of slender composite structures was an interest-
ing problem that attracted the attention of many researchers
[1,7,10,34,35]. The discussion has been focused in the appropriate
way of incorporating the thickness shear deformation, i.e. y,, of
Eq. (7). In some models (Bauchau [4] and Wu and Sun [5] for
example), y,, has been neglected and in other contemporary
models it was included (Librescu and Song [6], as the remarkable

b
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Fig. 4. Convergence of the Monte Carlo simulations for CAS(15). (a) PPA with A, =4° and §; = 0.1, (b) NPPA with &, =0.9.
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case). The controversy has been discussed [10,34,36] by comparing
the responses of the conventional 1D models with a number of
advanced models (finite element 2D and 3D formulations or even
enhanced 1D formulations). From these studies, it was clear that,
for static problems, the incorporation of thickness shear deforma-
tion does not affect the sensitivity of the response. However, for
dynamic problems, the response can be seriously affected depend-
ing on the case of stacking sequence, ratio thickness to flanges
width, among others; and the incorporation of the thickness shear
is discouraged.

Nevertheless, these aspects may be also evaluated and quanti-
fied in the frame of the uncertainty of the model. Thus as a first
comparative study two classes of stacking sequences are taken into
account; one corresponds to an extreme orthotropic laminate, e.g.
CAS(0), and the other to a more balanced laminate, but certainly not
isotropic, e.g. CAS(45) or CUS(45). The deterministic FRFs of the
models taking into account y,, =0 and y,, # 0 are calculated and
contrasted with the bounds of the Monte Carlo simulation per-
formed with modeling uncertainty 6y, based in a deterministic
model where thickness shear deformation is neglected.

In Fig. 5(a) the FRFs of the clamped-free beams with CAS(45) and
CUS(45) with ok =0.4 are shown. The bounds of the Monte Carlo
simulation are also depicted. Now in Fig. 5(b) the FRFs of a clamped-
clamped beams with &y = 0.99 are depicted. Notice that, in the case of
a lamination CAS(45) or CUS(45), the FRFs of the deterministic models
accounting or not for thickness shear deformation are contained inside
the bounds of the stochastic model with the corresponding level of
uncertainty. However in the case of the stacking sequence CUS
(0) neither with the maximum level of uncertainty in the stochastic
model (i.e. 6x =0.99) both the deterministic approaches can be
contained inside the bounds of the Monte Carlo simulations of the
probabilistic model. Moreover the cases of CAS(45) or CUS(45) can be
considered within the modeling uncertainty of i =0.4 until the
fourth frequency, and the case of CUS(0)/CAS(0) even in the allowable
maximum level of uncertainty of 6, = 0.99 the first frequency can be
clearly attainted.

In order to identify bounds of uncertainty in the model due to the
thickness shear deformability the following Table 3 is presented. In
this table it is summarized the value of &) in the NPA whose
realization bounds can cover the 100% of the FRFs of both the
deterministic models (with and without thickness shear deformabil-
ity); moreover it is included in the order of the frequency where the

T T
—ug (1,,=0) CUS(45)[1

—ug (7,,%0) CUS(45)

- - U (1,,,=0) CAS(45)

- - Ug (1,,,#0) CAS(45)| |

-34 I I I I I I I
0 10 20 30 40 50 60 70 80

Frequency [Hz]

FRFs fall out the simulation bounds. In some cases, e.g. CUS(0)/CAS
(0) with double clamped boundary conditions, where there is extreme
uncertainty, reaching nearly the maximum level of uncertainty allow-
able for the model of finite elements, as it is seen in Fig. 5(b).

As one can see in Table 3 the structures with more orthotropic
laminates and more rigid boundary conditions are more sensitive
to the modeling uncertainty, and the laminates with the lower
values in the ratios: Aq;/Ass and Ajy/Dgs are less sensitive to
uncertainties. In general the stiffness criteria of incorporating the
thickness shear deformability leads to a stiffening of the dynamic
responses, shifting the FRFs to the right.

4.3. Uncertainty propagation in the dynamics of curved composite
beams

In this section the propagation of uncertainty in the dynamics
of curved thin-walled composite beams is evaluated in different
cases of stacking sequences and boundary conditions and the
parametric and non-parametric approaches are compared as well.
Taking into account the conclusions of the previous paragraph and
in view of the discussion about the disadvantages in incorporating
the thickness shear deformation in the transient dynamic analysis
of composite structures [34,35], in the subsequent calculations the
thickness shear deformation (y,,) is neglected in the constitutive
formulation.

Thus as a first study, a clamped-free curved beam with the
lamination scheme CAS(15) is selected. Now, Fig. 6 shows the
frequency response functions of the simulation in which the PPA has
been employed. In Fig. 6(a) the dispersion parameter of the elastic

Table 3
Quantification of the level of uncertainty &y due to thickness shear deformation of
some stacking sequences and boundary conditions.

Laminate Clamped-free Clamped-clamped
name Sic Order freq. Sk Order freq.
CUS(0)/CAS(0) 0.80 1 0.99 0
CUS(0]90)/CAS(0]90) 0.62 1 0.95 1
CUS(0115) 0.60 2 0.85 1
CUS(0145) 0.45 2 0.70 1
CUS(45)/CAS(45) 0.40 4 0.48 3

-30

— Ug (1,,=0)
-40 == ug (7,,20) 7
-42 L L L L

0 50 100 150 200 250

Frequency [Hz]

Fig. 5. Responses with and without thickness shear deformation y,,. (a) Clamped-free beam with CAS(45) and CUS(45) and i = 0.3. (b) Clamped-clamped beam with CUS

(0) and &k =0.99.
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Fig. 6. FRFs simulated with the PPA for the lamination CAS(15). (a) with §; = 0.04 and (b) with 4, =2°.
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Fig. 7. FRFs simulated with the NPPA for the lamination CAS(15). (a) Mean responses. (b) Confidence intervals.

properties has been fixed in its lower value (6; =0.04, i=5,...,10,
and the angular dispersion of reinforcement is prescribed, in turns, in
the minimum (4, =2°) and maximum (4, = 4°) limits, whereas in
the case of Fig. 6(b) the angular dispersion parameter is settled in
A, =2° and the dispersion parameters of the elastic properties can
have, in turns, the minimum (6; =0.04, i =5, ...,10) and maximum
(6;=0.12,i=5,...,10) values.

Fig. 7 exemplifies the FRFs calculated from the Monte Carlo
simulations in which the NPPA was employed. Effectively in Fig. 7
(a) one can see the responses of the deterministic model and the mean
responses for given values of the non-parametric dispersion parameter
Ok. On the other hand, in Fig. 7(b) one can see the deterministic
response and the bounds of the 98% confidence intervals for the same
values of dy. It can be observed that there are some intervals where
the uncertainty of the model does not affect the sensitivity the
dynamic response, for example in the frequency range of [22,48]
Hz. On the other hand, in the proximities of the peaks there is a strong
influence of the uncertainty in the model as well as it is observed in
the studies carried out with the PPA.

Fig. 8(a) and (b) presents the histograms of the realizations
performed at frequencies f = 15.5 Hz and f = 25.0 Hz, respectively.
Fig. 8(a) corresponds to an excitation frequency between the first and
second natural frequencies of the beam, whereas Fig. 8(b) corresponds
to an excitation frequency between the second and third natural
frequencies. It could be observed that the dispersion is larger as the
excitation frequency is near to the peaks of the FRF which is in
consonance with the behavior observed in Figs. 6 and 7 where there is
evidence of no strong influence of uncertainty, in both properties or
models, in the intervals of frequency [22,48] Hz and [105, 120] Hz.

In the subsequent figures, an evaluation of the uncertainty
propagation, for different types of laminates and boundary condi-
tions, is shown. All these cases are simulated with the NPA, in which
the uncertainty measure is settled in di = 0.6. In Fig. 9 the FRFs for
different boundary conditions of the case of lamination CUS(45) are
shown. In both cases the deterministic response, the mean stochastic
response and the 98% confidence interval are depicted. As it is
possible to see, there are some intervals where the response is not
that sensitive to the variability despite the higher value of the
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Fig. 9. FRFs for a CUS(45) lamination. (a) Clamped-free. (b) Clamped-clamped.

uncertainty assumed in the model. The same information is shown in
Fig. 10 but for the case of lamination CAS(45).

A way to identify the frames where the FRFs manifest the lowest
sensibility to the uncertainty of input (properties or modeling) is by
means of the calculation of the coefficient of variation (CV) defined
as the ratio of standard deviation to the mean. A suitable a limit to
the CV can be imposed and then the frequency bands in which the
FRFs have a limit of variability can be found. In Table 4 the
frequency bands, where CV < 0.1, are presented for different cases
of stacking sequences and boundary conditions.

It is possible to see in Table 4, for the case of the clamped-
clamped boundary condition, that the band of frequencies in
which the CV <0.1 (or in other words: of lower sensitivity to
uncertainties) is normally narrow or an empty set. Clearly if a
higher CV is accepted, e.g. CV < 0.2, the frequency-bounds of lower
sensibility to uncertainty will increase. Stacking sequences with
full or partial reinforcement of @ =45° are the exception, i.e.
the laminates with the lower values of coefficients A;/Ags and
A11/Des. On the other hand, for the case of clamped-free boundary

condition, there is evidence of a band of frequencies that has low
sensitivity to uncertainties for the stacking sequences evaluated.

5. Conclusions

In this paper a study about the quantification of uncertainty and
its propagation in the dynamics of thin-walled composite-curved
beams has been carried out. The parametric probabilistic approach
(PPA) and the non-parametric probabilistic approach (NPPA) have
been employed. The later approach allows the analysis of uncer-
tainties in the conception of the model as a whole entity. The effect
of shear deformation has been revisited and its influence in the
context of an uncertain model has been evaluated. Both approaches
have been compared and employed and despite the common
procedural differences, the following remarks can be made:

® The propagation of uncertainty in the dynamic response of
composite thin-walled curved beams is more sensitive to the
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Fig. 10. FRFs for a CAS(45) lamination. (a) Clamped-free. (b) Clamped-clamped.

Table 4
Frequency-bands where CV <0.1.

Laminate type Clamped-free Clamped-clamped

CUS(45) [15.2,26.5] [0.0,18.2]J[104.5,133.2]
CAS(45) [14.4,25.8] [0.0,17.5]J[110.6, 137.8]
CUS(0}45) [28.4,54.9]J[107.1,141.2] [0.0,15.3]

CAS(0[45) [28.2,57.6]J[109.5, 145.7] [0.0,18.5]

CUS(15) [22.9,47.3]J[79.7,106.7] o

CAS(15) [21.6,49.8]J[104.1,127.9] @

CUS(0[15) [27.1,55.9]J[94.5,118.6] @

CAS(0[15) [23.6,57.5]J(101.2,132.1] @

CUS(0[90) [20.6,47.1]J[79.1,104.8] @

CUS(0|0) [25.1,51.1]U[85.7.110.7] 2

variability of the elastic properties that to the variability of
angular reinforcement.

® The variability of the dynamic response is strongly influenced
by the type of elastic coupling inherent to the lamination
schemes.

® The non-parametric probabilistic approach can face uncertain-
ties in the modeling theories for example the type of shear
flexibility theory employed.

® From the viewpoint of the high variability observed in the FRFs
of composite curved beams, the incorporation of y,, in the
constitutive equations, as a sum of stiffness, does not offer an
enhancement in the mechanics of composite curved beams.

® Although the conclusions of the previous item are known fact,
the effects of thickness shear deformation (i.e. y,,) as a part of
model uncertainty have been evaluated and, for some cases,
quantified.

® There is evidence of the presence of regions that have a lower
sensitivity to the uncertainty of the model and/or parameters.
Although the width and the location of the frequency-bands
are case dependent on the boundary conditions and dimen-
sions of the beam.

Nevertheless, there are other concerns related to the uncer-
tainty of the beam model and the parameters themselves that
have not been analyzed, for example, the correlation among elastic
properties as well as other random variables, other types of cross
section, etc. In order to characterize the dynamics of composite
beams with uncertainties, their influence should be quantified.

However these studies are addressed for further extensions to the
present investigations.
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Appendix A. Definition in-extenso of matrices and vectors
employed in the principle of virtual works

The vector of external forces Py and the matrix of mass
coefficients M;, can be calculated in the following form:

N - - Rdy dz
Px= [ X Xy X:JGur g A1)
' Rdy dz
Mu= [ 026G 0 (A2)
where Xy, Xy and X are general volume forces, whereas
1+y/R 0 -y 0 z—w/R 0 -w
G,=| 0 1 0 0 0 -z 0|, (A3)

0 0 0 1 0 'y 0

The vector of natural boundary conditions By can be written in
the following subsequent form:

—ax‘f‘MZ/R‘FQx—MZ/R
-Q,+Qy
—M,+M,
-Q:+Q; ,

—M,+B/R+M,—B/R

~Tsy—Tw+Tew+Tw
-B+B

(A4)

where Qy, Qy, Q,, My, M, Ty, and Ty, are prescribed forces and
moments applied at the boundaries.
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