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a b s t r a c t

A novel method is presented for controlling the amplitudes and stability of orbits generated from
Neimark–Sacker bifurcations in discrete-time systems. The technique is rooted in the frequency-domain
approach for the study of bifurcations in maps.
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1. Introduction

Oscillations appear frequently in many dynamical systems.
For that reason, scientists have been developing methods and
algorithms for analyzing and even controlling them. It has
been demonstrated that one of the most common causes of
this phenomenon is the existence of certain bifurcations [1].
In continuous-time systems, oscillations appear mainly due to
Hopf bifurcations. In discrete-time systems, however, the essential
cause is Neimark–Sacker (N–S) bifurcation or period-doubling
bifurcation.
Since bifurcations are related to the presence of nonlinearities

in the system, linear control methods are inadequate for changing
their characteristics. A proper way of obtaining some desirable
dynamical behaviors is to use bifurcation control techniques
[2–4]. Typical control objectives concerning oscillations are to
relocate the birth of a bifurcation to other parameter values, to
enlarge/reduce their amplitudes or to modify their stability. When
applying bifurcation control, it is usually required to preserve the
location and/or stability of the fixed points, so as to continue the
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original operation modes. This requirement can be met by using
homogeneous polynomials [5,6], highpass (‘‘washout’’) filters [7,8],
and some other techniques.
Bifurcation control research has evolved progressively and

systematically since the pioneering work of [9,10]. In particular,
several effective methods have been developed for discrete-time
systems. For example, stabilization of period-doubling bifurcations
is examined in [11], where both static and dynamic controllers are
discussed. A technique to deal with N–S bifurcations is presented
in [12]. These results complement those given in [13], in which
stabilization is accomplished by using quadratic functions. Other
methods related to the control or even anti-control of bifurcations
in maps can be found in [5,14–18].
Most of these results are derived by applying the center

manifold theorem and the normal form theory, using a state-space
representation of the system. An alternative method for analyzing
N–S bifurcations from a frequency-domain (FD) viewpoint is
proposed in [19,20]. Unlike the classical absolute stability criteria
for input–output systems presented in [21–23], this method not
only determines the critical condition for the existence of the
bifurcation but also provides approximations of the emerging
orbits via the Nyquist stability criterion, the harmonic balance
method and Fourier series analysis.
The aim of this paper is to show the potential of the FD

approach in the design of nonlinear control laws which modify
the characteristics of the oscillations but preserve the location and
stability of the fixed points. Two alternatives are shown: a dynamic
controller using washout filters to dissociate the control from the
equilibria, and a static controller using ad-hoc nonlinear functions.

0167-6911/$ – see front matter© 2009 Elsevier B.V. All rights reserved.
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Fig. 1. Nonlinear discrete-time input–output system.

Fig. 2. Block diagram of the dynamic feedback controller.

A first attempt to control aN–Sbifurcationusing the FDmethodhas
been reported in [24] but the present article enhances the scope
and applications.
The paper is organized as follows. In Section 2, the FD approach

for the analysis of N–S bifurcations is reviewed. In Section 3,
two methods for controlling N–S bifurcations are presented. An
example is developed in Section 4. Some concluding remarks are
given in Section 5.

2. Preliminaries

Consider the input–output discrete-time multivariable system
S shown in Fig. 1 consisting of a closed-loop connection between a
linear block defined by anm× ` rational transfer matrix G (·), and
a memoryless nonlinear block given by a smooth (C r with r ≥ 3)
function f : Rm × Rs → R`. In the figure, µ ∈ Rs is the parameter
vector, z is the complex variable of the z-transform, vk ∈ R` is the
input (assumed to be 0) and yk ∈ Rm is the output.

Theorem 1. Let ŷ be a fixed point of S given by ŷ = −G(1;µ)f(̂y;µ).
The dynamical behavior of S in a neighborhood of ŷ is character-
ized as follows. Let λ̂(eiω;µ) be one eigenvalue of G(z;µ)J(µ) with
J(µ) = Dyf(̂y;µ)1 for z = eiω whose Nyquist diagram crosses the
critical point −1 + i0 at µ = µo and ω = ωo, with einωo 6= 1 for
n = 1, 2, 3, 4. If −1 + ξ(ω;µ)θ2, with ξ(ω;µ) 6= 0 (see Table 1)
intersects λ̂(eiω;µ) at a single point for µR 6= µo, then system S
presents a emerging orbit around ŷ for µR. The stability of the resulting
N–S bifurcation is given by index σ (see Table 1).

Proof. See References [19,20]. The proof is based on the technique
first proposed in [25], and extended in [26] for the analysis of Hopf
bifurcations in multivariable continuous-time systems. �

The FD technique is not restricted to systems of the form of
Fig. 1. A map xk+1 = Axk + Bg(xk;µ) with xk ∈ Rn, A ∈ Rn×n
(which may be 0), B ∈ Rn×` and g : Rm × Rs → R` can always
be transformed in a system S by choosing G(z;µ) = C[zI − (A +
BDC)]−1B and f(yk;µ) = Dyk − g(yk;µ) where yk = Cxk and
C ∈ Rm×n,D ∈ R`×m are arbitrary. The representation is not unique
and with the proper selection of C and D, the dimensions m of the
input space and ` of the output space of the equivalent system can

1 For the sake of simplicity, Dyf(̂y;µ)ij =
{
∂ fi(y;µ)/∂yj

}∣∣
y=̂y with f(·) =

[f1(·) . . . f`(·)]T and y = [y1 . . . ym]T; similar expressions will be used for higher-
order derivatives.

Table 1
Frequency-domain analysis of the orbits emerging from a N–S bifurcation.

Step 0 G(·), f(·), ŷ, J(·) and λ̂(·) such that λ̂(eiωo ;µo) = −1+ i0 are known.
Step 1 Calculate the left and right eigenvectors associated with λ̂(eiω;µ),

uTG(eiω;µ)J(µ) = uTλ̂(eiω;µ), G(eiω;µ)J(µ)v = λ̂(eiω;µ)v.
Step 2 Evaluate matrix H(z;µ) = [I+ G(z;µ)J(µ)]−1G(z;µ).
Step 3 Build matrices Q = D2y f(̂y;µ)v and L = D

3
y f(̂y;µ)v⊗ v as

qij =
∑m
p=1 D

2
ypyj fi (̂y;µ)v

p, lij =
∑m
p=1

∑m
q=1 D

3
ypyqyj fi (̂y;µ)v

pvq,

where i = 1, . . . , `, j = 1, . . . ,m, and vp, vq, fi(·) are the
components of v and f(·), respectively. Symbol ‘‘⊗ ’’ is the tensor
product operator.

Step 4 Find vectors v0 = −H(1;µ)Qv/4, v2 = −H(ei2ω;µ)Qv/4 and
p(ω;µ) = Qv+ Qv2/2+ Lv/8. Symbol ‘‘ · ’’ is the complex
conjugate operator.

Step 5 Obtain ξ(ω;µ) = −uTG(eiω;µ)p(ω;µ)/(uTv).
Step 6 Find ωR and θR from λ̂(eiω;µ) = −1+ ξ(ω;µ)θ2 for µR 6= µo.

If the solution exists, go to Step 7; otherwise, end the procedure.
Step 7 Evaluate Y0 = θ2R v0, Y1 = θRv and Y2 = θ2R v2 , and approximate the

orbit as yk = ŷ+ Re{Y0 + Y1eiωRk + Y2ei2ωRk}.
Step 8 Calculate σ = Re{γ p(ω;µ)},

γ = uTG(eiω;µ)/[eiωuTDzG(eiω;µ)J(µ)v]
at µ = µo and ω = ωo . If σ > 0 (σ < 0), the orbit is stable
(unstable) and the bifurcation is said to be supercritical (subcritical).
If σ vanishes, the bifurcation degenerates and the global behavior
will be more complex [20].

generally be made smaller than n. If such reduction is achieved,
bifurcation analysis in the frequency-domain could be easier to
perform than that in time-domain (in spite of the cumbersome
expressions of Table 1). The implications of controllability and/or
observability in the transformation and analysis of the map in the
FD can be found in [26,27].

3. Bifurcation control in the frequency-domain

Suppose system S experiments a N–S bifurcation. The emerging
orbits, while preserving the location and stability of the fixed
points, can be modified by using a nonlinear dynamic feedback
controller or even a nonlinear static feedback controller. In the
first case, the implementation of some highpass filters dissociates
the control action from the equilibria. In the second case, the
design of the control law is more demanding because it requires
exact knowledge of all the equilibrium points to preserve their
characteristics.

3.1. Dynamic controller

An outer loop is connected to the original system as shown in
Fig. 2. The following results are a formalization of those previously
reported in [24].

Assumption DC1. The dynamic block Gw(z; d) of Fig. 2 is a m ×
m diagonal matrix where the nonzero elements are scalar stable
highpass filters of the form gii(z; di) = (z − 1)/(z − 1 + di) with
i = 1, . . . ,m, and di ∈ (0, 2).

In general, di is chosen such that the cut-off frequency of the
highpass filter is smaller than the frequency of oscillation of S.

Assumption DC2. The static function fn(ywk ;K) : R
m
×Rv → R` of

Fig. 2 satisfies: (i) it is at leastC3 in its first argument; (ii) fn(0;K) =
0; (iii) Dyfn(0;K) = 0.

For instance, if ywk = [ yw,1k yw,2k ]
T, fn(·) could be a

homogeneous polynomial (with the linear and independent
coefficients equal to zero) of the form fn(ywk ;K) = κ1(y

w,1
k )2 +

κ2(y
w,2
k )2 + κ3y

w,1
k y

w,2
k with K as the gain vector K =

[ κ1 κ2 κ3]
T, or any other polynomial containing higher-order

terms.
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Theorem 2. The dynamic feedback controller in Fig. 2, with Gw(z; d)
and fn(·) satisfying Assumptions DC1 and DC2, modifies the
characteristics of the N–S bifurcation exhibited by S preserving the
location and stability of the fixed points. The stability of the emerging
orbits is given by σc = σ +σn, where σ is the stability index of S and
σn depends on fn(·), K and d.

Proof. Considering a unique vector yck = [ y
T
k (ywk )

T
]
T
∈ R2m, the

controlled system in Fig. 2 can be recast as that shown in Fig. 1,
where now

Gc(z;µ; d) =
[

Im
Gw(z; d)

]
G(z;µ), (1)

fc(yck;µ;K) = f(yk;µ)+ fn(ywk ;K), (2)

with Im being the m × m identity matrix. Hence, the discrete-
time system (1)–(2) can be analyzed by using the FD approach of
Section 2.
Since ywk = 0 under steady state conditions (z = 1) and

fn(0;K) = 0, the fixed points of S do not change so that ŷc =
[ ŷ 0 ]T. Due to the composition of f(·) and fn(·), the Jacobian
of fc(·) in a neighborhood of ŷc can be written as Jc(µ;K) =
[J(µ) Jn(K)]. By Assumption DC2, Jn(K) = Dyfn(0;K) = 0 and
then Jc(µ) = [J(µ) 0]. Therefore,

Gc(z;µ; d)Jc(µ) =
[

G(z;µ)J(µ) 0
Gw(z; d)G(z;µ)J(µ) 0

]
, (3)

and its characteristic polynomial is given by

Pco (λ; z;µ; d) = det[λI2m − Gc(z;µ; d)Jc(µ)]
= λm det[λIm − G(z;µ)J(µ)] = 0.

Thus, m eigenvalues are zero and the rest are the roots of the
original characteristic polynomial Po(λ; z;µ) = det[λIm −
G(z;µ)J(µ)] = 0, preserving the stability of ŷ. However, if
λ̂(eiω;µ) is a simple root of Po(λ; z;µ) satisfying λ̂(eiω;µ) =
−1 + i0 for µ = µo and ω = ωo (einωo 6= 1 n = 1, 2, 3, 4) then
λ̂(eiω;µ) will also be a root of Pco (λ; z;µ). This N–S bifurcation
point can not be eliminated or moved to a different position in the
µ− ω space.
The characteristics of the orbits emerging from the bifurcation

can be analyzed by applying Theorem 1, via the calculations in
Table 1. Based on (3), the right and left eigenvectors (Step 1)
associated with λ̂(·) are

vc =
[
v
vn
]
=

[
Im

Gw(z; d)

]
v, uTc = [u

T 0]. (4)

From Step 2, Hc(z;µ; d) is given by

Hc(z;µ; d) =
[

Im
Gw(z; d)

]
H(z;µ), (5)

where H(z;µ) = [Im + G(z;µ)J(µ)]−1G(z;µ). For matrix Qc ={
qcij
}
in Step 3, it is possible to distinguish a part of qcij depending

on the second derivatives of f(·) and another one depending on the
second derivatives of fn(·), i.e.

qcij =



m∑
p=1

D2ypyj f
i(̂y;µ)vcp, for 1 ≤ j ≤ m,

2m∑
p=m+1

D2ypyj f
i
n(0;K)v

c
p, form+ 1 ≤ j ≤ 2m.

Hence, Qc can be represented as the block matrix

Qc = [Q Qn] = [ D2yf(̂y;µ)v D2yfn(0;K)v
n
]. (6)

Matrix Lc = D3yfc (̂yc;µ;K)v
c
⊗vc shows the same structure. Since

lcij =



m∑
p=1

m∑
q=1

D3ypyqyj f
i(̂y;µ)vcpv

c
q for 1 ≤ j ≤ m,

2m∑
p=m+1

2m∑
q=m+1

D3ypyqyj f
i
n(0;K)v

c
pv
c
q form+ 1 ≤ j ≤ 2m,

then,

Lc = [L Ln] = [D3yf(̂y;µ)v⊗ v D3yfn(0;K)v
n
⊗ vn]. (7)

According to (4)–(6), vectors vc0 and v
c
2 in Step 4 are

vc0 =
[
v0 + vn0

0

]
, vc2 =

[
Im

Gw(ei2ω; d)

]
(v2 + vn2), (8)

where vn0 = −H(1;µ)Qnv
n/4, vn2 = −H(e

i2ω
;µ)Qnvn/4 and

v0, v2 are the vectors corresponding to system S. Based on these
expressions and (7), vector pc(ω;µ; d;K) is

pc(ω;µ; d;K) = p(ω;µ)+ pn(ω;µ; d;K), (9)

where again p(ω;µ) is associated with S and

pn(ω;µ; d;K) = Qvn0 +
1
2
Qvn2 +

1
8
Lnvn

+
1
2
QnGw(e

i2ω
; d)(v2 + vn2). (10)

Coefficient ξ c(·) in Step 5 can also be expressed as the sum of
two terms. Since uTcGc(e

iω
;µ; d) = uTG(eiω;µ) and uTcv

c
= uTv,

ξ c(ω;µ; d;K) = ξ(ω;µ)+ ξ n(ω;µ; d;K)with ξ n(ω;µ; d;K) =
−uTG(eiω;µ)pn(ω;µ; d;K)/(uTv). Now, if the Nyquist diagram
of λ̂(eiω;µ) intersects the new curve −1 + ξ c(ω;µ; d;K)θ2,
the controlled system also presents an invariant orbit around ŷc
(Step 6). Amplitude θ and frequency ω of this oscillation depend
not only on µ but also on the washout-filter poles d and the gain
vector K.
Up to this point, the obtained results do not permit a direct

control over the stability of the orbits. Taking into account that
uTcDzGc(e

iω
;µ; d) = uTDzG(eiω;µ) and Jc(µ)vc = J(µ)v, it results

that γ c = γ , and the stability index given in Step 8 is given by
σc = Re{γpc(ω;µ; d;K)} for µ = µo and ω = ωo. Finally,
substituting (9) into this equation gives σc = σ + σn with

σn = Re{γop
n(ωo;µo; d;K)}, γo = γ|µ=µo,ω=ωo . (11)

Index σc reveals that the proposed controller adds a correction
term σn to the stability index σ of S. Thus, a properly chosen
function fn(·) together with vectors K and d makes it possible to
control the sign ofσc and, consequently, the type ofN–S bifurcation
presented by the system. �

A degenerate N–S bifurcation (σ = 0) can be transformed into
a supercritical (subcritical) one by defining fn(·), K and d such that
σn > 0 (σn < 0). When σ and σn share the same sign, |σc | > |σ |
and the controlled systemwill be farther fromadegeneracy. Aswill
be illustrated below, the manipulation of σc also provides a means
of modifying the amplitude of the orbits. In fact, as |σc | increases
the branches of the bifurcation growmore gradually, improving its
stability characteristics. On the contrary, when the signs of σ and
σn are opposite, |σc | < |σ |, and the amplitude of the orbit increases
more abruptly, deteriorating the stability of the bifurcation.

3.2. Static controller

If explicit and exact expressions of all fixed points of the system
are available, the control loop proposed in Section 3.1 can be
simplified to that shown in Fig. 3. In this case, the controller is only
composed of a nonlinear static function which depends only on yk.
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Fig. 3. Block diagram of the static feedback controller.

Assumption SC1. The static function fn(yk;K) : Rm × Rv →
R` of Fig. 3 satisfies: (i) it is at least C3 in its first argu-
ment; (ii) fn(̂yj;K) = 0 ∀̂yj, (iii) Dyfn(̂yj;K) = 0 ∀̂yj, where ŷj
stands for any of the fixed point of S.

As an example, if yk = [ y1k y2k ]
T and ŷ = [ ŷ1 ŷ2]Tis the

unique fixed point of the system, a possible selection of fn(·) could
be the homogeneous polynomial fn(yk;K) = κ1(y1k − ŷ

1)2 +

κ2(y2k − ŷ
2)2 + κ3(y1k − ŷ

1)(y2k − ŷ
2) where K is the gain vector

K = [ κ1 κ2 κ3]
T.

According to Assumption SC1, function fn(·) (and its derivative
with respect to yk) vanishes at every operating point of S; the
dynamic controller of Section 3.1, however, requires that the
nonlinear function (and its derivative with respect to ywk ) vanishes
only at the origin (Assumption DC2).

Theorem 3. The static controller of Fig. 3 with function fn(·)
satisfying Assumption SC1 changes the characteristics of the N–S
bifurcation exhibited by S while preserving the location and stability
of its fixed points. The stability of the emerging orbits is determined by
σc = σ + σn, where σ is the stability index of S and σn depends on
function fn(·) and the gain vector K.

Proof. The system depicted in Fig. 3 can be transformed into that
of Fig. 1 considering Gc(z;µ) = G(z;µ) and fc(yk;µ;K) =
f(yk;µ) + fn(yk;K). Therefore, it is possible to apply the
methodology of Section 2 to study its N–S bifurcation.
By Assumption SC1, fn(̂y;K) = 0 so that ŷc = ŷ (the

fixed points remains unchanged). The linearization of fc(·) in a
neighborhood of ŷ is given by Jc(µ;K) = J(µ) + Jn(K). Since
Jn(K) = Dyfn(̂y;K) = 0, the Jacobian is Jc(µ;K) = J(µ) and thus,
Gc(z;µ)Jc(µ) = G(z;µ)J(µ), with its characteristic polynomial
Pco (λ; z;µ) = det[λIm−G(z;µ)J(µ)] = 0. As before, the controller
maintains not only the stability of ŷ but also its critical points. In
fact, since λ̂(eiω;µ) is a root of Pco (λ; z;µ) such that λ̂(e

iω
;µ) =

−1 + i0 for µ = µo and ω = ωo (einωo 6= 1 n = 1, 2, 3, 4), the
controlled system also undergoes a N–S bifurcation.
Again, the orbits emerging from the bifurcation can be studied

by applying Theorem 1. In this case, it is easy to see that vc =
v,uTc = uT and Hc(z;µ) = H(z;µ). Due to the composition of
fc(·), matrix Qc (in Step 3 of Table 1) can be directly computed as
Qc = Q+Qn with Qn = D2yfn(̂y;K)v. In the sameway, Lc = L+ Ln,
where Ln = D3yfn(̂y;K)v⊗v. Following Step 4, vectors vc0 and v

c
2 are

given by vc0 = v0+vn0 and v
c
2 = v2+vn2 with v

n
0 = −H(1;µ)Qnv/4

and vn2 = −H(e
i2ω
;µ)Qnv/4. Similarly,

pc(ω;µ;K) = p(ω;µ)+ pn(ω;µ;K), (12)

where

pn(ω;µ;K) = Qvn0 +
1
2
Qvn2 + Qn(v0 + vn0)

+
1
2
Qn(v2 + vn2)+

1
8
Lnv. (13)

As in the proof of Theorem 2, the structure of pc(·) reveals that
coefficient ξ c(·) in Step 5 can be written as the sum of two
terms, ξ c(ω;µ;K) = ξ(ω;µ) + ξ n(ω;µ;K) with ξ n(ω;µ;K) =
−uTG(eiω;µ)pn(ω;µ;K)/(uTv). Then, if condition λ̂(eiω;µ) =
−1 + ξ c(ω;µ;K)θ2 is satisfied, the controlled system exhibits
an invariant orbit around ŷc in which the amplitude θ and the
frequency ω can be altered by varying ξ n(·).
Based on (12) and noticing that γ c = γ , the stability index of

Step 8 results in σc = σ + σn with

σn = Re{γop
n(ωo;µo;K)}, γo = γ|µ=µo,ω=ωo . (14)

As before, a proper selection of function fn(·) and gain vector K
makes it possible to control the N–S bifurcation presented by the
system. �

4. A simple example

The control of the emerging orbits of a N–S bifurcation is
illustrated with the classical delayed logistic map. This system
has been extensively analyzed and controlled in the literature. For
instance, a quadratic law is used in [5] tomanipulate the location of
the bifurcation. A cubic law is derived in [12] to control a modified
version of the delayed logistic map. In this case, the complexity of
the FD design is comparablewith that of the time-domainmethods
presented in the mentioned works.
The delayed logistic map is given by{
x1k+1 = x

2
k,

x2k+1 = µx
2
k(1− x

1
k).

This map has two fixed points: ŷ0 = 0 and ŷ1 = (1 −
1/µ)[1 1]T. Point ŷ1 is unstable for 0 < µ < 1 and stable for
1 < µ < 2, undergoing a N–S bifurcation at µo = 2 (ωo = π/3).
As shown in [19], this system can be recast in the formof Fig. 1with
G(z;µ) = (z−µ)−1[z−1 1]T and f (yk;µ) = µy1ky

2
k . The nonzero

eigenvalue associated with ŷ1 is λ̂(z;µ) = (µ − 1)(1 + z−1)(z −
µ)−1. Applying Theorem 1, it is found that σ = 0.5, indicating that
the bifurcation is supercritical. Table 2 reports the vectors related
to the system.
Now, the proposed control strategies are used to change the

characteristics of the orbits. Although yk is a two-dimensional
vector, only the state y2k is considered for bifurcation control, i.e.
fn(·) is chosen as a scalar function.
Dynamic controller. Based on Assumptions DC1 and DC2, blocks

are chosen as fn(·) = κ(yw,2k )2 and

Gw(z; d) =
[
0 0
0 g22

]
, g22 =

z − 1
z − 1+ d

.

Vectors necessary to calculate (10) can be found in Table 2.
Evaluating pn(·) at µo = 2 and ωo = π/3, the correction term
(11) of Theorem 2 is given by

σn =
(3− 7d+ 8d2 − 5d3 + d4)κ + d(2− d)κ2

4(3− 9d+ 16d2 − 17d3 + 12d4 − 5d5 + d6)
,

meaning that the stability of the N–S bifurcation can be altered by
varying feedback gain κ and filter parameter d. As is illustrated
by the solid curves in Fig. 4, the same σn value can be obtained
with several pairs of (κ, d). So, an additional criterion for fixing
these parameters can be, for instance, to minimize the feedback
gain of the controller for a given σn. Since the maximum gain of
the washout filter occurs at z = −1, its upper limit is gc =
κ g22|z=−1 = 2κ/(2 − d). Level curves of gc in terms of κ and
d are shown by dashed lines in Fig. 4. The minimum value is
attained when the line of gc is tangent to the curve σn. Hence,
for example, the optimal combination of κ and d for obtaining
σnd = 0.5 with the minimum feedback gain is κ = 1.15748 and
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Table 2
Vectors related to the control of the delayed logistic map.

Original system v =
[ 1
z 1

]T uT = [1 1]
H(z;µ) = 1

z2−z+µ−1
[1 z]T

Q = µ
[
1 1

z

]
L = [0 0]

v0 = µRe[z]
2(1−µ)|z|2

[1 1]T, v2 = µ

2z H(z
2
;µ)

p(ωo;µo) = i−3+
√
3

2 , γo = −i
√
3
3

Dynamic controller vn = [0 g22]T
Qn = [0 2κg22] Ln = [0 0]
vn0 =

κ(1−Re{z})
(1−µ)[(1−d)2+2(d−1)Re{z}+1]

[1 1]T

vn2 = −
κg222
2 H(z2;µ)

Static controller Qn =
[
0 2κ(1− 1

µ
)2
]

Ln =
[
0 12κ(1− 1

µ
)
]

vn0 =
(1−µ)κ
2µ2
[1 1]T

vn2 = −
(1−µ)2κ

2µ2(z4−z2−1+µ)
[1 z2]T

Fig. 4. Level curves of constant σn values (solid lines) and constant feedback gain
gc (dashed lines) as functions of κ and d.

Fig. 5. Invariant orbits for µ = 2.02 and different κ and d values of the dynamic
controller: (Γ0) κ = 0; (Γdf1 ) κ = 1.15748, d = 0.41675; (Γdf2 ) κ = 2.23981,
d = 0.50665.

d = 0.41675 (gcmin = 1.46215). In the same way, the optimal
pair corresponding to σnd = 1.5 is κ = 2.23981 and d = 0.50665
(gcmin = 2.99971).
Fig. 5 shows the changes in the oscillations of the controlled

map for µ = 2.02 and the κ and d values obtained above: (Γ0)
σc = σ = 0.5 (open-loop system with κ = 0); (Γdf1 ) σc =
1 > 0.5 (κ = 1.15748, d = 0.41675); and (Γdf2 ) σc = 2 > 1
(κ = 2.23981, d = 0.50665). The proposed controller allows a
precisemanipulation of the systemdynamics: larger σc values lead
to smaller orbits around ŷ1, as predicted by theoretical analysis.

Fig. 6. Invariant orbits for µ = 2.02 and different κ values of the static controller:
(Γ0) κ = 0; (Γsf1 ) κ = 8; (Γsf2 ) κ = 24.

Static controller. Taking into account Assumption SC1, the
nonlinear function is chosen as fn(·) = κ(y2k)

2(y2k − 1 + µ
−1)2.

According to the vectors in Table 2, the evaluation of (13) at the
critical point (µo = 2, ωo = π/3) results in pn(ωo;µo; κ) =
κ/64(12 − 3κ + 4

√
3i). Since γo = −i

√
3/3, the correction term

(14) is given by σn = κ/16. Therefore, from Theorem 3, the index
of the controlled system is σc = 1/2+ κ/16. The orbits presented
by the controlled delayed logistic map for µ = 2.02 are depicted
in Fig. 6. In this case, the κ values are: (Γ0) κ = 0 (open-loop
system with σ = 0.5); (Γsf1 ) κ = 8 (σc = 1 > 0.5); and (Γsf2 )
κ = 24 (σc = 2 > 1). Again, larger σc values lead to smaller orbits
around ŷ1.

5. Conclusions

Two FD methods for controlling the basic characteristics
of the oscillations exhibited by a discrete-time system due to
Neimark–Sacker bifurcation have been presented. The first one
adds to the original system an outer feedback loop consisting of
a washout filter and a nonlinear static function. The second one
uses only a nonlinear static feedback, but requires the knowledge
of all the equilibria of the system to preserve their locations
and stability. In both cases, the parameters of the controllers are
chosen according to the desired value of the stability index of the
bifurcation. The procedure is illustrated with a simple numerical
example. The proposed bifurcation control in the frequency-
domain offers an alternative to the traditional methodologies in
the time-domain.
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