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a b s t r a c t

A simple model for amorphous solids, consisting of a mixed bond triangular lattice with a
fraction of attenuated bonds randomly distributed (which simulate the presence of defects
in the surface), is studied here by using computational simulation. The degree of disorder
of the surface is tunable by selecting the values of (1) the fraction of regular [attenuated]
bonds ρ [1 − ρ] (0 ≤ ρ ≤ 1) and (2) the factor r , which is defined as the ratio between
the value of the conductivity associated to an attenuated bond and that corresponding to
a regular bond (0 ≤ r ≤ 1). The results obtained show how the percolation properties of
the disordered system are modified with respect to the standard random bond percolation
problem (r = 0).

© 2010 Elsevier B.V. All rights reserved.

1. Introduction

The percolation problem has been a focal point of statistical mechanics research for several decades and the activity in
this field is still growing [1–11]. Some aspects of the percolation process like the geometrical phase transitions occurring in
the system have gained a particular impetus due to the introduction of techniques like Monte Carlo (MC) simulations and
series expansions [12–21]. Despite the number of contributions to this problem, the problem is far from being exhausted.
The central idea of the pure percolation theory is based on finding the minimum concentration of elements (sites or

bonds) for which a cluster [a group of occupied sites (bonds) in such a way that each site (bond) has at least one
occupied nearest neighbor site (bond)] extends from one side to the opposite one of the system. This particular value of
the concentration rate is named critical concentration or percolation threshold and determines a phase transition in the
system [2]. Thus, in the random percolationmodel, a single site (or a bond connecting two sites) is occupiedwith probability
ρ. For the precise value ρ = ρc , the percolation threshold of sites (bonds), at least one spanning cluster connects the borders
of the system (indeed, there exists a finite probability of finding n (>1) spanning clusters [22–26]). In that case, a second
order phase transition appears at ρc which is characterized by well-defined critical exponents.
More general percolation problems can be formulated by introducing a sort of correlation between the occupation

probabilities of adjacent sites and bonds which are usually grouped by the named correlated percolation. Among them, one
of the most studied is the so-called directed percolation, or percolation with a special direction along which the activity can
only propagate one way but not the other [27].
Percolation also represents a standard model for a structurally disordered system with a wide range of applications

[2–5]. Generalizations of the pure percolation model include surface geometric heterogeneity (like variable distance among
neighboring sites or variable connectivity). In this sense, several contributions have been devoted to the analysis of bond
disordered lattices [28,29]. Most of these results are compiled in the excellent review paper by Tsallis and deMagalhaes [30].
More recently, the effects of geometric quenched disorder of the substrate on the percolation properties of monomer and
dimer adsorbed layers have been studied [31]. In Ref. [31] the disorderwas represented by a variable connectivity, as inspired
by the problem of percolation on the surface of amorphous solids.
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Nomenclature

r Ratio between the value of the conductivity associated to an attenuated bond and that corresponding to a
regular bond

n Number of spanning clusters
z Lattice connectivity
L Lattice side
M Total number of lattice sites
B Total number of lattice bonds
Ci ith cluster of regular bonds
Cij Cluster formed by connecting the ith and jth clusters of regular bonds
li ith attenuated bond connecting two clusters of regular bonds
na Number of attenuated bonds interconnecting two clusters of regular bonds
RRL Probability of finding a rightward percolating cluster
RDL Probability of finding a downward percolating cluster
RIL Probability of finding a cluster which percolates both in a rightward and in a downward direction
RUL Probability of finding either a rightward or a downward percolating cluster
RAL Average of RRL and R

D
L given by the relation, R

A
L ≡

1
2

(
RRL + R

D
L

)
RX
∗

Intersection point of the curves RXL , (X = I,U, and A)
m Total number of simulated samples
mX Number of simulated samples for which a percolating cluster of the desired criterion X is found
d Space dimension
a Parameter introduced in Eq. (1)
b Parameter introduced in Eq. (1)
zeff Effective lattice connectivity

Greek symbols

ρ Fraction of regular bonds
ρc Percolation threshold or critical concentration of regular bonds
σ Conductivity of a regular bond
ρ0 Parameter introduced in Eq. (1)

Other interesting application of the percolation theory is concernedwith the study of dispersed ionic conductors [32–34]
and micro- and nanocrystalline materials [35–37]. In the first case, a substantial amount of research has concentrated after
the discovery by Liang [32] that insulating fine particles with sizes of the order of 1 µm, dispersed in a conductive medium
(e.g. Al2O3 in LiI), can lead to a conductivity enhancement. This effect has been found to arise from the formation of a
defective, highly conducting layer following the boundaries between the conducting and the insulating phase. Effectively,
the system thus contains three phases. In the case of micro- and nanocrystalline materials, which are prepared by mixing
two different powders and pressing them together to a pellet, the grain size of both ionic conductor and insulator can be
varied over several orders of magnitude and the system contains two phases.
From the theoretical point of view, amorphous i-phase solids as described above (dispersed ionic conductors i = 3, and

diphase micro- and nanocrystalline materials i = 2) can be represented by i-component impedance network models. In
this line of thought, a simplified statistical model for amorphous solids is presented in this contribution. Here, a mixed bond
triangular lattice with a fraction of attenuated bonds randomly distributed (which simulate the presence of defects in the
surface) is studied by using computational simulation. It is quite obvious that the presentmodel is highly idealized and is not
meant to reproduce a particular experimental system such as those mentioned above. However, the intention of this work
is (1) to identify and characterize the most prominent features of this particular process, (2) to draw general conclusions
concerning how the percolation properties of the disordered system aremodifiedwith respect to the standard randombond
percolation problem and (3) to stimulate the development of more sophisticated models which can be able to reproduce
real experimental situations.
The paper is organized as follows. The basis of the model is described in Section 2. Results are presented and discussed

in Section 3. Finally, conclusions are drawn in Section 4.

2. The model

We consider a triangular lattice (connectivity z = 6) with M = L × L sites, B = 3M bonds, and periodic boundary
conditions. Each bond can be either a regular bond, characterized by a conductivity σ , or an attenuated bond, characterized
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Fig. 1. (a) Schematic representation of a disordered triangular lattice modeled as an array of regular (solid lines) and attenuated (dotted lines) bonds,
which are randomly distributed with concentration ρ and 1 − ρ. In this case we set ρ = 0.5 and r = 1/3. (b) Clusters of regular bonds, denoted as Ci ’s,
constructed on the basis of the standard percolation criterion. Different colors indicate different clusters. (c) State obtained after the application of the
criterion of connectivity of two regular clusters. As can be observed, C1 and C2 are interconnected by four attenuated bonds (denoted as l1 − l7). Then,
na = 7, nar > 1, and consequently, C1 and C2 are merged into a bigger cluster (denoted as C12). The rest of the clusters remain invariant.

by a conductivity rσ , where the factor r varies between 0 and 1. Regular and attenuated bonds are randomly distributed
with concentration ρ and 1 − ρ, respectively [see Fig. 1(a)]. In this way, the degree of disorder of the surface is tunable
by selecting the values of ρ and r . In the extreme limit where r = 0, the standard random bond percolation problem is
recovered. On the other hand, a fully connected network is obtained for r = 1 and any value of ρ, thus making the problem
meaningless.
As mentioned in Section 1, the central idea of the percolation theory is based on finding the minimum concentration of

elements for which a cluster extends from one side to the opposite one of the system. In the present model, the standard
percolation picture is modified in order to include the effect of the attenuated bonds. The new scheme is built on the basis
of three major stages:

(1) The number and size of clusters of regular bonds are determined [see Fig. 1(b)].
(2) Now, the connectivity of two clusters of regular bonds is defined in terms of the weight of the attenuated bonds. The
criterion is the following: if two clusters of regular bonds [as for instance C1 and C2 in Fig. 1(c)] are interconnected by a
number of attenuated bonds, na, such that nar ≥ 1, they are merged into a bigger cluster.1 This procedure is repeated
for all the pairs of clusters of regular bonds.

1 The criterion is based on a simple principle: if the conductivity of the attenuated bonds is decreased na times (r = 1/na), one needs na attenuated
bonds to reproduce the conduction properties of a regular bond.
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(3) The existence of an infinite percolation cluster (cluster connecting the opposite sides of the lattice) is verified on the
lattice obtained in step (2).

As was alreadymentioned, themain goal of this paper is to determine how the percolation properties aremodified when
a geometric disorder is introduced in the lattice. For this purpose, long scale numerical simulations are required in order to
predict the behavior of the system in the thermodynamic limit. A study of the finite-size effects allows us to make a reliable
extrapolation to the L→∞ limit. Details of this study will be given in the next section.

3. Results and discussion

As the scaling theory predicts [12], the larger the system size to study, the more accurate the values of the threshold
obtained therefrom. Thus, the finite-size scaling (FSS) theory gives us the basis to achieve the percolation threshold and
the critical exponents of a system with a reasonable accuracy. For this purpose, the probability R = RXL (ρ) that a lattice
composed of B bonds percolates at a concentration ρ of regular bonds can be defined [2]. Here, as in Refs. [13,14], the
following definitions can be given according to the meaning of X: (a) RR(D)L (ρ) = the probability of finding a rightward
(downward) percolating cluster, (b) RIL(ρ) = the probability that cluster which percolates both in a rightward and in a
downward direction, (c) RUL (ρ) = the probability of finding either a rightward or a downward percolating cluster, and
(d) RAL (ρ) ≡

1
2 [R

R
L (ρ)+ R

D
L (ρ)] ≡

1
2 [R

I
L(ρ)+ R

U
L (ρ)] [13–18].

The FSS theory allows for various efficient routes to estimate the percolation threshold ρc from computational data. One
of these methods, which will be used in this case, is from the coverage dependence of RXL (ρ), which is independent of the
system size for ρ = ρc . In other words, ρc is found from the intersection of the curves RXL (ρ) for different values of L, since
RXL (ρc) = const.
These considerations allow us to establish a strategy for determining the percolation threshold. Thus, each simulation

run consists of the following steps: (a) the construction of the lattice for a given coverage ρ of regular bonds and 1 − ρ
of attenuated bonds and (b) the cluster analysis by using the Hoshen and Kopelman algorithm [19] and the criterion of
connectivity between clusters of regular bonds described in previous section. The spanning cluster could be determined by
using the criteria R,D, I or U . m runs of such two steps are carried out for obtaining the number mX of them for which a
percolating cluster of the desired criterion X is found. Then, RXL (ρ) = m

X/m is defined and the procedure is repeated for
different values of both ρ and lattice sizes. A set of m = 5 × 104 independent samples are numerically prepared for each
value of ρ and L (L = 48, 60, 72, 90).
In Fig. 2, the probabilities RIL(ρ) (filled symbols), R

U
L (ρ) (cross symbols) and R

A
L (ρ) (open symbols) are presented for

r = 0 [standard random bond percolation, Fig. 2(a)], r = 1/2 [Fig. 2(b)] and different lattice sizes as indicated. From a
first inspection of the figure (and from data do not shown here for the sake of clarity) it is observed that: (a) curves cross
each other in a unique universal point, RX

∗

, which depends on the criterion X used and allows us to make a preliminary
identification of the universality class of the transition [38]; (b) the numerical values of RX

∗

change for different values of r
used; (c) those points are located at very well-defined values in the ρ-axes determining the critical percolation threshold
ρc for each r; and (d) ρc shifts to the left upon increasing r .
Several conclusions can be drawn from Fig. 2. On the one hand, the value obtained for the percolation threshold in the

case of r = 0, ρc(r = 0) = 0.347(1), coincides, within the statistical uncertainty, with the exact estimate of the percolation
threshold for the standard random bond percolation in a triangular lattice, ρc = 2 sin(π/18) ≈ 0.347296 [2,39]. This result
allows us to validate the computational scheme.
On the other hand, the percolation threshold ρc(r) decreases as r is increased, indicating that the region percolating,

or a range of values of ρ for which the system percolates, increases with the increase of r . In the limit of r close to 1, the
percolation threshold takes the value ρc(r ≈ 1) = 0.159(1).
Finally, the change observed in the fixed point of the curves of RXL (ρ) for different values of r used may be taken as a first

indication that the universality class of the phase transition is not conserved for disordered lattices. However, as recently
pointed out by Selke and Shchur [40,41], the value of the cumulant intersection (or its equivalent RX

∗

)may depend on various
details of the model, which do not affect the universality class (boundary condition, shape of the lattice, etc.). Consequently,
more research is required to determine the universality class of a phase transition. An exhaustive study on this subject will
be the object of future work.
The procedure of Fig. 2 was repeated for different values of r in the range 0 ≤ r ≤ 1/2, showing that ρc decreases

monotonically with r . This situation is reflected in Fig. 3 where, for the sake of clarity, only one curve (that corresponding
to L = 90) of RAL vs. ρ is shown for each r . The values obtained for ρc(r) are plotted in the inset of Fig. 4 and collected in the
second column of Table 1. In all cases, the error in the determination of ρc(r) is of the order of 0.001.2

2 For each criterion, one looks for the highest ρ below the intersection point(s) at which the error bars of RXL do not overlap, and for the lowest ρ above
the intersection point(s) at which they also do not overlap. The critical concentration is then the mean of these two, and their difference (divided by 2)
gives the error in the measurement. This procedure is done for X = I,U , and A. Combining the three estimates, we obtain the final value of ρc(r) (and its
error).



4692 P.M. Centres et al. / Physica A 389 (2010) 4688–4695

a

b

Fig. 2. Fraction of percolating lattices RXL , as a function of the concentration ρ of regular bonds for (a) r = 0 (standard random bond percolation)
and (b) r = 1/2. Squares, circles, triangles and diamonds correspond to lattice sizes L = 48, L = 60, L = 72 and L = 90, respectively. Different
criteria are used for establishing the spanning cluster, namely, RUL (ρ) = the probability of finding either a rightward or a downward percolating cluster
(cross symbols); RIL(ρ) the probability that we find a cluster which percolates both in a rightward and in a downward direction (filled symbols);
RAL (ρ) ≡

1
2 [R

R
L (ρ) + R

D
L (ρ)] ≡

1
2 [R

I
L(ρ) + R

U
L (ρ)] (open symbols). Horizontal dashed line shows the R

X∗ universal point. Vertical dashed line denotes
the percolation threshold in the thermodynamic limit L→∞.

Fig. 3. Fraction of percolating lattices RAL , as a function of the concentration ρ of regular bonds for L = 90 and different values of r as indicated.
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Fig. 4. Phase diagram, ρ vs. r , which shows the curve separating the percolating and non-percolating regions. Inset: Critical percolation threshold ρc as a
function of the factor r . The dotted line is drawn as a guide for the eye. The error bars are smaller than the symbol size.

Table 1
Values of zeff obtained for different values of r studied in the present paper.

r Percolation threshold ρc Effective connectivity zeff

0 0.347(1) 6.03
1/8 0.281(1) 7.83
1/7 0.273(1) 8.13
1/6 0.261(1) 8.61
1/5 0.248(1) 9.19
1/4 0.223(1) 10.56
1/3 0.194(1) 12.69
1/2 0.159(1) 16.60

Given that na (number of attenuated bonds for interconnecting two clusters) is a discrete variable (na = 2, 3, 4, . . .), the
connectivity criterion nar ≥ 1 leads to a unique value of ρc for all r in the interval

( 1
i ≤ r <

1
i−1

)
with i = 2, 3, 4, . . . . Thus,

the critical line separating the percolating and non-percolating regions is a stepped line as shown in Fig. 4, where the (ρ− r)
phase diagram is presented.
Fig. 4 also shows that the percolation threshold ρc(r) decreases upon increasing r . The curve varies between ρc =

0.347(1) for r = 0 and ρc = 0.159(1) for r → 1. This finding indicates that the region percolating, or a range of coverage
of regular bonds at which the transition occurs increases as r is increased.
As is well known [42,43], percolation thresholds are found to depend on both the space dimension d and the lattice

connectivity z. In Ref. [42], the authors found one unique power law to yield, within an excellent accuracy, both site and
bond percolation thresholds for all regular lattices at all dimensions.3 The power law is:

ρc = ρ0[(d− 1)(z − 1)]−adb, (1)

where b = 0 for site percolation and b = a for bond percolation. From a log–log plot all data were found to fit on two
straight lines. One line includes two-dimensional honeycomb, square and triangular lattices, which constitute the first class,
characterized by {ρ0 = 0.8889; a = 0.3601} for site percolation and {ρ0 = 0.6558; a = 0.6897} for bond percolation. Two-
dimensional Kagomé and all other regular lattices (for d ≥ 3) align on the other unique line and constitute the second class,
characterized by {ρ0 = 1.2868; a = 0.6160} and {ρ0 = 0.7541; a = 0.9346} for sites and bonds, respectively.
From this perspective, it is possible to interpret the effect of the attenuated bonds in terms of effective connectivity. For

this purpose, we start from Eq. (1), for the case of bond percolation on triangular lattices (first class), andwrite z as a function
of ρc :

z = 2
(
0.6558
ρc

)1/0.6897
+ 1. (2)

We can now think of a mapping from an original disordered lattice, characterized by a factor r and a percolation threshold
ρc(r), to an effective regular lattice, whose connectivity, denoted as zeff, is consistent with a percolation threshold equal to
ρc(r). Thus, introducing different values of ρc obtained for each r in Eq. (2), the corresponding values of zeff can be calculated.

3 Later, in Ref. [43], the study was extended to non-regular lattices.
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The results are collected in Table 1. As is possible to observe, small changes in r produce a dramatic increase in the effective
lattice connectivity, showing the importance of including the attenuated bonds in the system.

4. Conclusions

In this work, we have used computational simulations and FSS theory to study the percolation properties of disordered
triangular lattices with a fraction of attenuated bonds randomly distributed (which simulate the presence of defects in the
surface). The degree of disorder of the surface is tunable by selecting the values of (1) the fraction of regular [attenuated]
bonds ρ [1 − ρ] and (2) the ratio r between the value of the conductivity associated to an attenuated bond and that
corresponding to a regular bond.
According to the present analysis, the critical behavior of the system is characterized by the following properties:

(1) As r = 0, the standard random bond percolation problem is recovered, being ρc(r = 0) = 0.347(1).
(2) The percolation thresholdρc(r) decreases upon increasing r . This finding indicates that the region percolating, or a range
of values of ρ for which the system percolates, increases with the increase of r . In the limit of r close to 1, the percolation
threshold takes the value ρc(r ≈ 1) = 0.159(1).

(3) The numerical values of the fixed point of the curves of RXL (ρ) change for different values of r used as the first indication
that the universality class of the phase transition is not conserved for disordered lattices.

(4) Finally, the analysis of the behavior of the system in terms of connectivity shows that small changes in r produce a
dramatic increase in the effective lattice connectivity. The results show the importance of including the attenuated
bonds in the system.

Future effortswill be directed to develop an exhaustive study on critical exponents and universality in all ranges of values
of r .
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