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a b s t r a c t

The non-linear dynamic response of thin-walled composite beams is analyzed considering the effect of
shear deformation. The model is based on a small strain and large rotation and displacements theory,
which is formulated through the adoption of a higher-order displacement field and takes into account
shear flexibility (bending and warping shear). The beam is assumed to be in internal resonance conditions
of the kind 2:3:1, so that quadratic, cubic and combination resonances occur. In the analysis of a weakly
nonlinear continuous system, the Galerkin’s method is employed to express the problem in terms of gen-
eralized coordinates. Then, the perturbation method of multiple scales is applied to the reduced system in
order to obtain the equations of amplitude and modulation. The equilibrium solution is governed by the
modal coupling and experience a complex behavior composed by saddle–noddle and Hopf bifurcations.
The results of the analysis show that the equilibrium solutions are influenced by the shear effect, when
this effect is ignored the amplitude of vibration is reduced significantly, thus altering the dynamic
response of the beam. This alteration can infer in an incorrect stability prediction of the periodic
solutions.

� 2012 Elsevier Ltd. All rights reserved.
1. Introduction

Structural members made of composites materials have been
historically associated to aerospace industry and its very high
performance requirements. For example, thin-walled beam struc-
tures made of advanced anisotropic composite materials are found
in the design of the aircraft wings, helicopter blades, axles of vehicles
and so on. It is due that fiber reinforced composite materials can be
used to enhance the response characteristics of such structures that
operate in complex environmental conditions. Nowadays, there is a
new tendency to incorporate fiber reinforced plastic (FRP) in many
kind of non-aerospace purpose, such in bridge design or automotive
and others industrial applications. However, greater awareness and
knowledge of FRP materials is still needed within the construction
industry.

On the other hand, the effect of shear flexibility in this kind of
materials is a phenomenon very important and crucial in some beam
models. For example, it has been demonstrated the significance of
this effect in linear and non-linear static analysis [1–5] and in linear
dynamic cases [6,7]. Machado and Cortı́nez showed that shear-
deformation effect may significantly decrease the buckling loads
[1] and the values of the equilibrium path (post-buckling) [4]. They
ll rights reserved.

: +54 291 4555311.
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demonstrated that this effect is more significant when one of the
material axes coincides with the beam axis and for short beams.
The shear effect was also analyzed for different boundary conditions,
determining a larger influence in clamped–clamped conditions [1].
On the other hand, the discard of shear deformation results in an
overprediction of the resonance behavior, in the sense of the shift
of the domain of instability toward larger excitation frequencies
[6]. The influences of shear deformation and geometrically non-
linear coupling on the dynamic stability of thin-walled laminated
composite beam were analyzed by Machado and Cortı́nez [7]. They
showed the influence of this effect on the unstable regions sizes,
noting that the boundaries of instability move to the right when this
effect is ignored.

We consider in the present article the influence of shear
deformation effect on the non-linear response of a simply supported
beam subjected to a primary resonant excitation of its first mode. The
analysis accounts for a lateral load, modal damping and two fiber
orientations. The second and third natural frequencies are approxi-
mately two and three times the first natural frequency, respectively.
The flexural–torsional coupling produces a quadratic and cubic non-
linearity in the governing non-linear partial–differential equation.
Because of the quadratic and cubic non-linearity and the two-
to-one and three-to-one ratio of the second and third with the first
natural frequencies, the beam exhibits an internal (autoparametric)
resonance that couples the first, second and third modes, resulting
in energy exchange between them. For a comprehensive review of
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Fig. 1. Co-ordinate system of the cross-section and notation for displacement
measures.
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non-linear modal interactions we refer the reader to References
[9,10].

In this paper we present a brief review of some of the studies of
the response of systems exhibiting two-to-one and three-to-one
internal resonances to primary resonant excitations. Crespo da Silva
and Glynn [11,12] developed a non-linear shear-undeformable
beam model with a compact cross-section and derived a set of
integro-partial–differential equations governing flexural–flexural–
torsional motions of inextensional beams, including geometric and
inertia non-linearities. They used these equations and the method
of multiple scales to ascertain the importance of the geometric terms
[12], it was concluded that they cannot be neglected for the lower
modes, especially the first mode. Luongo et al. [13] and Crespo da
Silva and Zaretzky [14] analyzed shear and axial undeformable
beams. In the last reference the flexural–torsional free motions are
studied for a cantilever beam, having close bending and torsional
frequencies; although beams with non-compact cross-section are
considered, the warping effects are neglected. In these articles a
non-linear one-dimensional polar model of compact beam is
derived, it is capable of studying interactions between flexural and
torsional motions occurring in beam-like structures in several inter-
nal resonance conditions. Recently, Fonseca and Ribeiro [15] ana-
lyzed the non-linear planar motions and the non-linear resonance
frequencies by means of a p-version finite element formulated for
geometrically non-linear vibrations. This work was continued by
Lopes Alonso and Ribeiro [16] investigating the free vibrations of
clamped–clamped circular cross section beams using hierarchic sets
of displacement shape functions and that simultaneously considers
bending, torsion and longitudinal deformation. They employed the
harmonic balance method to show the variation of the bending
and torsional shapes of vibration with the non-linear natural fre-
quency. Besides they found internal resonances in bending and tor-
sion. Stoykov and Ribeiro [17] extended their model to investigate
the effects of the warping function, longitudinal displacements of
second order and shear deformations on the non-linear bending-
torsion vibrations of rectangular cross section. The effect of the shear
deformation on the amplitude-frequency response curves was
shown by Luo et al. [18]. They used the incremental harmonic bal-
ance method to study the response of a composite beam with clamp-
ing of two ends. In relation to thin-walled beams, Di Egidio et al.
[19,20] presented the dynamic response of an open cross-section
beam divided in two works. In the first part [19] they developed a
shear undeformable thin-walled beam, where the effects of non-
linear in-plane and out-of-plane warping and torsional elongation
were included in the model. This model was used in the second part
[20] to study the dynamic coupling phenomena in conditions of
internal resonance. In spite of the practical interest and future
potential of the composite beam structures, particularly in the
context of aerospace and mechanical applications, there are no
investigations about the non-linear dynamic response of thin-
walled composite beams considering the effect of shear
deformation.

The purpose of this paper is to study the influence of shear
deformation on the three dimensional large amplitude oscillations
of thin-walled composite beams. The analysis is based on a beam
model previously developed by the authors [1,4] which is
formulated in the context of small strain and large rotation and
displacements theory, through the adoption of a shear-deformable
displacement field (accounting for bending and warping shear), con-
sidering a laminate stacking sequence symmetric and balanced.
Machado and Cortı́nez [7,8] investigated the effect of non-linearity
degree considered in their formulation. They analyzed analytically
and numerically the effect of approximations on a geometrically
non-linear beam theory on the stability and free vibration behavior
of thin-walled composite beams. Machado [8] demonstrated that
second order approximation, which is very much used in finite
element models, produces the loss of some terms corresponding to
the flexural–torsional coupling in the non-linear strains. In order
to perform the non-linear dynamic analysis, the Galerkin procedure
is used to obtain a discrete form of the equations of motion. Multiple
time scales method is used to obtain modulation-phase equations
[21] and the reconstitution method proposed in [22] is adopted to
return to the true time domain. Steady-state solutions and their sta-
bility are studied by using the model proposed. For principal exter-
nal resonance of the first mode, the influence of internal resonance is
illustrated in frequency–response plots. The system is shown to
have Hopf bifurcations and saddle node bifurcations for different
parameter values. The influence of the shear deformation effect on
the equilibrium solutions is illustrated. It is found that the vibration
amplitude is reduced significantly when this effect is ignored, alter-
ing the dynamic response of the beam. This alteration can conclude
in an incorrect stability prediction of the periodic solutions.

2. Kinematics

Consider a straight thin-walled composite beam with an arbi-
trary cross-section (Fig. 1). The points of the structural member
are referred to a Cartesian co-ordinate system ðx; �y;�zÞ, where the
x-axis is parallel to the longitudinal axis of the beam while �y and
�z are the principal axes of the cross-section. The axes y and z are
parallel to the principal ones but having their origin at the shear
center (defined according to Vlasov’s theory of isotropic beams).
The co-ordinates corresponding to points lying on the middle line
are denoted as Y and Z (or Y and ZÞ. In addition, a circumferential
co-ordinate s and a normal co-ordinate n are introduced on the
middle contour of the cross-section.

�yðs;nÞ ¼ YðsÞ � n
dZ
ds
; �zðs;nÞ ¼ ZðsÞ þ n

dY
ds

ð1Þ

yðs;nÞ ¼ YðsÞ � n
dZ
ds
; zðs;nÞ ¼ ZðsÞ þ n

dY
ds
: ð2Þ

On the other hand, y0 and z0 are the centroidal co-ordinates
measured with respect to the shear center.

�yðs;nÞ ¼ yðs;nÞ � y0;�zðs;nÞ ¼ zðs;nÞ � z0: ð3Þ
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The present structural model is based on the following
assumptions [4]:

(1) The cross-section contour is rigid in its own plane.
(2) The warping distribution is assumed to be given by the

Saint–Venant function for isotropic beams.
(3) Flexural rotations (about the �y and �z axes) are assumed to

be moderate, while the twist / of the cross-section can
be arbitrarily large.

(4) Shell force and moment resultants corresponding to the
circumferential stress rss and the force resultant
corresponding to cns are neglected.

(5) The curvature at any point of the shell is neglected.
(6) Twisting linear curvature of the shell is expressed

according to the classical plate theory.
(7) The laminate stacking sequence is assumed to be

symmetric and balanced [23].

According to these hypotheses the displacement field is
assumed to be:

ux ¼ uo � �yðhz cos /� hy sin /Þ � �zðhy cos /� hz sin /Þ

þx h� 1
2

h0yhz � hyh
0
z

� �� �
þ hzz0 � hyy0

� �
sin /;

uy ¼ v � z sin /� yð1� cos /Þ � 1
2

h2
z
�yþ hzhy�z

� �
;

uz ¼ wþ y sin /� zð1� cos /Þ � 1
2

h2
y
�zþ hzhy�y

� �
:

ð4Þ

This expression is a generalization of others previously proposed
in the literature as explained for Machado and Cortı́nez [4]. To
analyze the influence of shear flexibility on the non-linear dynamic
behavior this effect can be neglected considering hz = v0, hy = w0 and
h = /0. Moreover, the displacement field of the classical Vlasov the-
ory is obtained when non-linear effects are ignored. In the above
expressions /, hy and hz are measures of the rotations about the
shear center axis, �y and �z axes, respectively. The variable h is a mea-
sure of the torsional warping along the beam and in the present for-
mulation is an independent variable. Furthermore the superscript
‘prime’ denotes derivation with respect to the variable x.

The warping function x of the thin-walled cross-section may be
defined as:

xðs;nÞ ¼ xpðsÞ þxsðs;nÞ; ð5Þ

where xp and xs are the contour warping function and the
thickness warping function, respectively. They are defined in the
form [4]:

xpðsÞ ¼
1
S

Z S

0

Z s

s0

½rðrÞ � wðrÞ�dr
� 	

ds
� �

�
Z s

s0

½rðrÞ � wðrÞ�dr;

xsðs;nÞ ¼ �nlðsÞ;
ð6a;bÞ

where r is a dummy variable, and

rðsÞ ¼ �ZðsÞ dY
ds
þ YðsÞdZ

ds
; ð7Þ

lðsÞ ¼ YðsÞdY
ds
þ ZðsÞ dZ

ds
; ð8Þ

r(s) represents the perpendicular distance from the shear center to
the tangent at any point of the mid-surface contour, and l(s)
represents the perpendicular distance from the shear center to the
normal at any point of the mid-surface contour.

In Eq. (6a) w is the shear strain at the middle line, obtained by
means of the Saint–Venant theory of pure torsion for isotropic
beams and normalized with respect to d//dx [4]. For the case of
open sections w = 0.
3. The strain field

The displacements with respect to the curvilinear system (x,s,n)
are obtained by means of the following expressions:

U ¼ uxðx; s;nÞ; ð9Þ

V ¼ uyðx; s;nÞ
dY
ds
þ uzðx; s;nÞ

dZ
ds
; ð10Þ

W ¼ �uyðx; s;nÞ
dZ
ds
þ uzðx; s;nÞ

dY
ds
: ð11Þ

The three non-zero components exx, exs, exn of the Green’s strain
tensor are given by:

exx ¼
@U
@x
þ 1

2
@U
@x

 !2

þ @V
@x

 !2

þ @W
@x

 !2
2
4

3
5; ð12Þ

exs ¼
1
2

@U
@s
þ @V
@x
þ @U
@x

@U
@s
þ @V
@x

@V
@s
þ @W
@x

@W
@s

" #
; ð13Þ

exn ¼
1
2

@U
@n
þ @W
@x
þ @U
@x

@U
@n
þ @V
@x

@V
@n
þ @W
@x

@W
@n

" #
: ð14Þ

Substituting expressions Eq. (4) into Eqs. (9)–(11) and then into
Eqs. (12)–(14), employing the relations Eqs. (1)–(3) and (5)–(8),
after simplifying some higher order terms, the components of the
strain tensor are expressed in the following form:

exx ¼ eð0Þxx þ njð1Þxx ; cxs ¼ 2exs ¼ cð0Þxs þ njð1Þxs ; cxn ¼ 2exn

¼ cð0Þxn ; ð15Þ

where

eð0Þxx ¼ u0o þ
1
2

v 02 þw02
� �

þxp h0 � 1
2

hzh
00
y � hyh

00
z

� �� �

þ Z �h0y cos /þ h0z sin /
� �

þ Y �h0z cos /� h0y sin /
� �

þ 1
2

/20ðY2 þ Z2Þ þ z0h
0
z � y0h

0
y

� �
sin /þ /0ðz0hz � y0hyÞ cos /;

ð16Þ

jð1Þxx ¼ �
dZ
ds
�h0z cos /� h0y sin /
� �

þ dY
ds
�h0y cos /þ h0z sin /
� �

� l h0 � 1
2

hzh
00
y � hyh

00
z

� �� �
� r/02; ð17Þ

cð0Þxs ¼
dY
ds

v 0 � hzð Þ cos /� z0
1
2

hzh
0
y � hyh

0
z

� �
þ ðw0 � hyÞ sin /

� �

þ ðr � wÞð/0 � hÞ þ dZ
ds

�
ðw0 � hyÞ cos /þ y0

1
2

hzh
0
y � hyh

0
z

� �

�ðv 0 � hzÞ sin /

�
þ w /0 � 1

2
hzh

0
y � hyh

0
z

� �� �
; ð18Þ

jð1Þxs ¼ �2 /0 � 1
2

hzh
0
y � hyh

0
z

� �� �
; ð19Þ

cð0Þxn ¼
dY
ds
ðw0 �hyÞcos/þy0

1
2

hzh
0
y�hyh

0
z

� �
�ðv 0 �hzÞsin/

� �

�dZ
ds
ðv 0 �hzÞcos/�z0

1
2

hzh
0
y�hyh

0
z

� �
þðw0 �hyÞsin/

� �
þ lð/0 �hÞ: ð20Þ

4. Variational formulation

Taking into account the adopted assumptions, the principle of
virtual work for a composite shell may be expressed in the form
[7]:
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Z Z
Nxxdeð0Þxx þMxxdjð1Þxx þ Nxsdcð0Þxs þMxsdjð1Þxs þ Nxndcð0Þxn

� �
dsdx

�
ZZZ

q €uxdux þ €uyduy þ €uzduz
� �

dsdndx�
Z Z

ð�qxd�ux þ �qyd�uy

þ �qzd�uzÞdsdx�
Z Z

ð�pxdux þ �pyduy þ �pzduzÞ



x¼0 dsdn

�
Z Z

ð�pxdux þ �pyduy þ �pzduzÞ




x¼L
dsdn�

ZZZ
ð�f xdux þ �f yduy

þ �f zduzÞdsdndx ¼ 0; ð21Þ
where Nxx, Nxs, Mxx, Mxs and Nxn are the shell stress resultants. The
beam is subjected to wall surface tractions �qx; �qy and �qz specified
per unit area of the undeformed middle surface and acting along
the x, y and z directions, respectively. Similarly, �px; �py and �pz are
the end tractions per unit area of the undeformed cross-section
specified at x = 0 and x = L, where L is the undeformed length of
the beam. Besides, �f x;

�f y and �f z are the body forces per unit of vol-
ume. Finally, �ux; �uy and �uz denote displacements at the middle line.

5. Constitutive equations

The constitutive equations of symmetrically balanced laminates
may be expressed in the terms of shell stress resultants in the fol-
lowing form [23]:

Nxx

Nxs

Nxn

Mxx

Mxs

8>>>>><
>>>>>:

9>>>>>=
>>>>>;
¼

A11 0 0 0 0
0 A66 0 0 0
0 0 AðHÞ55 0 0
0 0 0 D11 0
0 0 0 0 D66

2
666664

3
777775

eð0Þxx

cð0Þxs

cð0Þxn

jð1Þxx

jð1Þxs

8>>>>>><
>>>>>>:

9>>>>>>=
>>>>>>;
; ð22Þ

with

A11 ¼ A11 �
A2

12

A22
; A66 ¼ A66 �

A2
26

A22
; AðHÞ55 ¼ AðHÞ55 �

AðHÞ45

� �2

AðHÞ44

;

D11 ¼ D11 �
D2

12

D22
; D66 ¼ D66 �

D2
26

D22
; ð23Þ

where Aij, Dij and AðHÞij are plate stiffness coefficients defined accord-
ing to the lamination theory presented by Barbero [23]. The coeffi-
cient D16 has been neglected because of its low value for the
considered laminate stacking sequence.

6. Principle of virtual work for thin-walled beams

Substituting the kinematics expressions and the constitutive
equations Eq. (22) into Eq. (21) and integrating with respect to s,
one obtains the one-dimensional expression for the virtual work
equation given by:

LM þ LK þ LP ¼ 0; ð24Þ
where LM, Lk and Lp represent the virtual work contributions due to
the inertial, internal and external forces, respectively. The expres-
sion LM is:

LM ¼
Z L

0
q A

@2u0

@t2 du0 þ Iz
@2hz

@t2 dhz þ Iy
@2hy

@t2 dhy þ Cw
@2h

@t2 dh

"

þA
@2

@t2 ðv � z0/Þdv þ A
@2

@t2 ðwþ y0/Þdw

þ @2

@t2 ð�Az0v þ Ay0wþ Is/Þd/

#
dx; ð25Þ

where A is the cross-sectional area, Iz and Iy are the principal
moments of inertia of the cross-section, Cw is the warping constant,
Is is the polar moment with respect to the shear center and q is the
mean density of the laminate.
The expressions of Lk and Lp are the same as presented by Mach-
ado and Cortı́nez in [4]; in the same way, the 1-D beam forces in
terms of the shell forces, have been defined in this last reference.
Although the Lk expressions were already presented for the first
author in [4], the same ones are included here again to give an idea
of the complexity or size of the equations.

LK ¼
Z L

0
du00

�
N þ u00N �Mz h0z cos /þ h0y sen /

� ��
�My h0y cos /þ h0z sen /

� �
� Q yðhz cos /þ hy sen /Þ

�Q zðhy cos /þ hz sen /Þ
�
þ dv 0 Q y cos /� Q z sen /þ v 0N

� �
þdw0ðQz cos /þ Qy sen /þw0NÞ þ dhz

�
�Q y 1þ u00

� �
cos /

þQ z 1þ u00
� �

sen /þ 1
2
ðQ zy0 � Q yz0Þh0y �

1
2

Tsvh0y �
1
2

Bh00y

�

þdh0z

�
�Mz 1þ u00

� �
cos /þMy 1þ u00

� �
sen /þ Nz0 sen /

þ1
2

Qyz0 � Q zy0

� �
hy þ

1
2

Tsvhy þ h0zPzz þ h0yPyz

�

þdhy

�
�Q z 1þ u00

� �
cos /� Q y 1þ u00

� �
sen /

þ1
2

Qyz0 � Q zy0

� �
h0z þ

1
2

Tsvh0z þ
1
2

Bh00z

�

þdh0y

�
�My 1þ u00

� �
cos /�Mz 1þ u00

� �
sen /� Ny0 sen /

þ1
2
ðQ zy0 � Qyz0Þhz �

1
2

Tsvhz þ h0zPyz þ h0yPyy

�

þd/

�
My h0y þ h0yu00

� �
sen /þ h0z þ h0zu00

� �
cos /

� �
þMz h0z þ h0zu

0
0

� �
sen /� h0y þ h0yu00

� �
cos /

� �
þQ y ðhz � v 0 þ hzu00Þsen/� ðhy �w0 þ hyu00Þ cos /

� �
þN z0h

0
z � y0h

0
y

� �
cos /þ Q z hy �w0 þ hyu00

� �
sen /

�
þðhz � v 0 þ hzu00Þ cos /

��
þ dh00z

1
2

Bhy � dh00y
1
2

Bhz þ d/0½Tw þ Tsv

þB1/
0� þ dh0B� dhTw

�
dx: ð26Þ
6.1. Discrete model

The equations of motion are discretized according to the Galer-
kin procedure. The independent displacements vector is expressed
as a linear combination of given x-function vectors fk(x) = {fk1(x),
fk2(x), fk3(x)} and unknown t-function coefficients qk(t):

uðx; tÞ ¼
Xn

k¼1

qkðtÞfkðxÞ: ð27Þ

The functions fk(x) are chosen as eigenfunctions of the linear-
ized equations and boundary conditions. Since for a generic
cross-section even the linear equations are coupled, all the compo-
nents of fk(x) are different from zero. By substituting Eq. (27) into
Eq. (24) and vanishing separately terms in dqk; 3n ordinary differ-
ential equations of motion follow. The linear natural frequencies of
the beam depend on the boundary conditions and the sequence
of lamination proposed in the analysis. For specific combinations
of system parameters, the lower natural frequencies can be com-
mensurable, leading to internal resonance in the system and
non-linear interaction between the associated modes. We analyze
the specific case of three mode interaction corresponding to partic-
ular system parameters. Two-and three-to-one internal resonances
are considered in this study (x2 ffi 2x1 and x3 ffi 3x1). Since none
of these first three modes is in internal resonance with any other
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mode of the beam, all other modes except the directly or indirectly
excited first, second or third mode decay with time due to the pres-
ence of damping and the first three modes will contribute to the
long term system response [10]. Hence, by limiting the expansion
Eq. (27) to n = 3 terms (e.g. by assuming a group of three modes
with similar wave-length), three non-linear equations of the fol-
lowing type are obtained:

€qk þx2
kqk ¼

Xn

i¼1

Xn

j¼1

ckijqiqj þ
Xn

i¼1

Xn

j¼1

Xn

m¼1

ckijmqiqjqm þ fk ðk

¼ 1;2;3; . . . ;nÞ; ð28Þ
where xk is the kth linear frequency, fk the kth modal force, and ckij

and ckijm are coefficients depending on the eigenfunctions. In the
general case all quadratic and cubic terms appear in each equation
of motion.

6.2. Amplitude and phase equations for the discrete model

A simply-supported beam with a monosymmetric cross-sec-
tion, loaded by a concentrated harmonic force applied to the
beam’s centroid axis acting along the vertical section is considered,
see Fig. 2. Using a three-mode discretization, the non-linear flex-
ural–flexural–torsional oscillations are governed by the following
three ordinary differential equations:
€q1 þ d1 _q1 þx2
1q1 ¼ c1q1q2 þ c2q2q3 þ c3q3

1 þ c4q3
3 þ c5q1q2

2 þ c6q1q2
3 þ c7q3q2

1 þ c8q3q2
2 þ c19P;

€q2 þ d2 _q2 þx2
2q2 ¼ c9q2

1 þ c10q2
2 þ c11q2

3 þ c2q1q3 þ c12q1q2q3 þ c13q3
2 þ c5q2q2

1 þ c14q2q2
3;

€q3 þ d3 _q3 þx2
3q3 ¼ c2q1q2 þ c15q2q3 þ c16q3

1 þ c17q3
3 þ c8q1q2

2 þ c18q1q2
3 þ c6q3q2

1 þ c14q3q2
2 þ c20P;

ð29Þ
where qi is the ith mode amplitude, di are the modal damping coef-
ficients and P(t) = p eiXt is the load, of frequency X assumed to be
in primary resonance with the q1-mode. Moreover, the beam is as-
sumed to be in internal resonance conditions of the kind 2:3:1, so
that quadratic, cubic and combination resonances occur. The Eq.
(29) is similar to those obtained by Di Egidio et al. [20]; the main
difference is in the coefficients ci because the model used by them
corresponds to a shear undeformable model valid for isotropic
beams. The method of multiple time scales is employed to study
the non-linear Eqs. (29); since non-linear terms are quadratic
and cubic, a second-order expansion is developed. A small param-
eter e is introduced by ordering the linear damping and load
amplitude as di ¼ e2~di; p ¼ e3~p. Moreover, the displacements qi

are expanded as:

qiðT0; T1; T2; eÞ ¼ eqð0Þi ðT0; T1; T2; eÞ þ e2qð1Þi ðT0; T1; T2; eÞ

þ e3qð2Þi ðT0; T1; T2; eÞ; ð30Þ
where T0 = t, T1 = et, T2 = e2t. T0 is a fast scale, on which motions with
frequencies of the order of X occur, while T1 and T2 are the slow
scales, on which modulations of the amplitudes and phases take
place.

Substituting Eq. (30) into Eqs. (29) and equating coefficients of
like powers of e, the following perturbation equations are obtained:

Order e:

D2
0qð0Þi þx2

i qð0Þi ¼ 0; ði ¼ 1;2;3Þ: ð31Þ
Fig. 2. Simply-supported C-beam and midspan section
Orden e2:

D2
0qð1Þ1 þx2

1qð1Þ1 ¼�2D0D1qð0Þ1 þc1qð0Þ1 qð0Þ2 þc2qð0Þ2 qð0Þ3 ;

D2
0qð1Þ2 þx2

2qð1Þ2 ¼�2D0D1qð0Þ2 þc9qð0Þ
2

1 þc10qð0Þ
2

2 þc2qð0Þ1 qð0Þ3 þc11qð0Þ
2

3 ;

D2
0qð1Þ3 þx2

3qð1Þ3 ¼�2D0D1qð0Þ3 þc2qð0Þ1 qð0Þ2 þc15qð0Þ2 qð0Þ3 :

ð32Þ

Orden e3:

D2
0qð2Þ1 þx2

1qð2Þ1 ¼ �d1D0qð0Þ1 � 2D0D1qð1Þ1 � D2
1qð0Þ1 � 2D0D2qð0Þ1

þ c3qð0Þ
3

1 þ c1qð1Þ1 qð0Þ2 þ c5qð0Þ1 qð0Þ
2

2 þ c1qð0Þ1 qð1Þ2

þ c7qð0Þ
2

1 qð0Þ3 þ c8qð1Þ
2

2 qð0Þ3 þ c2qð1Þ2 qð0Þ3 þ c6qð0Þ1 qð0Þ
2

3

þ c4qð0Þ
3

3 þ c2qð0Þ2 qð1Þ3 þ c19peiXT0 ;

D2
0qð2Þ2 þx2

2qð2Þ2 ¼ �d2D0qð0Þ2 � 2D0D1qð1Þ2 � D2
1qð0Þ2 � 2D0D2qð0Þ2

þ 2c9qð0Þ1 qð1Þ1 þ c5qð0Þ
2

1 qð0Þ2 þ c13qð0Þ
3

2 þ 2c10qð0Þ2 qð1Þ2

þ c2qð1Þ1 qð0Þ3 þ c12qð0Þ1 qð0Þ2 qð0Þ3 þ c14qð0Þ2 qð0Þ
3

3

þ c2qð0Þ1 qð1Þ3 þ 2c11qð0Þ3 qð1Þ3 ;
D2
0qð2Þ3 þx2

3qð2Þ3 ¼ �d3D0qð0Þ3 � 2D0D1qð1Þ3 � D2
1qð0Þ3

� 2D0D2qð0Þ3 þ c16qð0Þ
3

1 þ c2qð1Þ1 qð0Þ2

þ c8qð0Þ1 qð0Þ
2

2 þ c2qð0Þ1 qð1Þ2 þ c6qð0Þ
2

1 qð0Þ3

þ c14qð1Þ
2

2 qð0Þ3 þ c15qð1Þ2 qð0Þ3 þ c18qð0Þ1 qð0Þ
2

3

þ c17qð0Þ
3

3 þ c15qð0Þ2 qð1Þ3 þ c20peiXT0 ; ð33Þ

where Di() = @()/@(Ti), Dij() = @2()/@(Ti)@(Tj) (i, j = 0,1,2) and the tilde
has been omitted for simplicity.

The solution to the first-order perturbation Eq. (31) is:

qð0Þi ¼ AiðT1; T2ÞeixiT0 þ c:c: i ¼ 1;2;3: ð34Þ

where c.c. stands for the complex conjugate of the preceding terms
and Ai are the unknown complex-valued functions. In order to
investigate the system response under internal and external reso-
nance conditions, three detuning parameters ri are introduced:

X ¼ x1 þ e2r1; x2 ¼ 2x1 þ er2; x3 ¼ 3x1 þ e2r3: ð35Þ

Replacing the first-order solution Eq. (34) into Eq. (32), solving
the e2-order perturbation equations and considering Eqs (35):

qð1Þ1 ¼ �
c1A1A2

2x1x2 þx2
2

eiT0 x1þx2ð Þ � c2A2A3

x2 þx3ð Þ2 �x2
1

eiT0 x2þx3ð Þ þ c:c;
displacements of the fundamentals eigenfunctions.
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qð1Þ2 ¼�
c10A2

2

3x2
2

e2iT0x2 � c2A1A3

x1þx3ð Þ2�x2
2

eiT0ðx1þx3Þ þ c11A2
3

x2
2�4x2

3

e2iT0x3

þ2c9A1A1

x2
2

þ2c10A2A2

x2
2

þ2c11A3A3

x2
2

þc:c; ð36Þ

qð1Þ3 ¼
c2A1A2

x2
3 � ðx1 �x2Þ2

eiT0ðx1�x2Þ � c15A2A3

x2
2 � 2x2x3

eiT0ðx2�x3Þ

� c15A2A3

2x2x3 þx2
2

eiT0ðx2þx3Þ þ c:c:

Finally, substituting Eqs. (34) and (36) into the e3-order perturba-
tion Eq. (33), eliminating the secular terms, then using a reconstitu-
tion method [22] to return to true time t, and finally introducing a
Cartesian coordinates Eq. (37), the following amplitude and phase
equations are obtained:

Ak ¼
1
2
ðpk � iqkÞeimk k ¼ 1;2;3: ð37Þ

p01 ¼ �
d1p1

2
� q1r1 �

c1p2q1r2

8x2
1

þ c1p1q2r2

8x2
1

þ c2p3q2r2

8x2
1

� c2p2q3r2

8x2
1

� b1p2
1q1

8x1
þ c1p2q1

4x1
� b3p2

2q1

8x1
þ b2p1p3q1

4x1

� b5p2
3q1

8x1
� b1q3

1

8x1
� c1p1q2

4x1
þ c2p3q2

4x1
� b4p2p3q2

4x1
� b3q1q2

2

8x1

� b2p2
1q3

8x1
� c2p2q3

4x1
þ b4p2

2q3

8x1
þ b2q2

1q3

8x1
� b4q2

2q3

8x1

� b5q1q2
3

8x1
; ð38Þ

p02 ¼ �
d2p2

2
� 2q2r1 �

c9p1q1r2

4x2
2

þ c2p3q1r2

8x2
2

þ c2p1q3r2

8x2
2

� c9p1q1

2x2
þ c2p3q1

4x2
� b9p2p3q1

8x2
� b6p2

1q2

8x2
� b7p2

2q2

8x2

þ b9p1p3q2

8x2
� b8p2

3q2

8x2
� b6q2

1q2

8x2
� b7q3

2

8x2
� c2p1q3

4x2

� b9p1p2q3

8x2
� b9q1q2q3

8x2
� b8q2q2

3

8x2
; ð39Þ

p03 ¼ �
d3p3

2
� 3q3r1 þ q3r3 þ

c2p2q1r2

8x2
3

þ c2p1q2r2

8x2
3

� 3b10p2
1q1

8x3
� c2p2q1

4x3
þ b11p2

2q1

8x3
þ b10q3

1

8x3
� c2p1q2

4x3

� b11p1p2q2

4x3
� b11q1q2

2

8x3
� b12p2

1q3

8x3
� b13p2

2q3

8x3
� b14p2

3q3

8x3

� b12q2
1q3

8x3
� b13q2

2q3

8x3
� b14q3

3

8x3
; ð40Þ

q01 ¼ �
d1p1

2
� p1r1 �

c1p1p2r2

8x2
1

þ c2p2p3r2

8x2
1

� c1q1q2r2

8x2
1

þ c2q2q3r2

8x2
1

þ c19p
x1
þ b1p3

1

8x1
þ c1p1p2

4x1
þ b3p1p2

2

8x1
þ b2p2

1p3

8x1

þ c2p2p3

4x1
þ b4p2

2p3

8x1
� b5p1p2

3

8x1
þ b1p1q2

1

8x1
� b2p3q2

1

8x1
þ c1q1q2

4x1

þ b3p1q2
2

8x1
� b4p3q2

2

8x1
þ b2q1q3

4x1
þ c2q2q3

4x1
þ b4p2q2q3

4x1

þ b5p1q2
3

8x1
; ð41Þ
q02 ¼ �
d2q2

2
þ 2p2r1 þ

c9p2
1r2

8x2
2

þ c2p1p3r2

8x2
2

� c9q2
1r2

8x2
2

þ c2q1q3r2

8x2
2

þ c9p2
1

4x2
þ b6p2

1p2

8x2
þ b7p3

2

8x2
þ c2p1p3

4x2
þ b9p1p2p3

8x2

þ b8p2p2
3

8x2
� c9q2

1

4x2
þ b6p2q2

1

8x2
þ b9p3q1q2

8x2
þ b7p2q2

2

8x2
þ c2q1q3

4x2

� b9p2q1q3

8x2
þ b9p1q2q3

8x2
þ b8p2q2

3

8x2
; ð42Þ

q03 ¼ �
d3q3

2
þ 3p3r1 � p3r3 �

c2p1p2r2

8x2
3

þ c2q1q2r2

8x2
3

þ b10p3
1

8x3

þ c2p1p2

4x3
þ b11p1p2

2

8x3
þ b12p2

1p3

8x3
þ b13p2

2p3

8x3
þ b14p3

3

8x3

� 3b10p1q2
1

8x3
þ b12q2

1p3

8x3
� c2q1q2

4x3
þ b11p2q1q2

4x3
� b11p1q2

2

8x3

þ b13q2
2p3

8x3
þ b14p3q2

3

8x3
; ð43Þ

where the prime indicates the derivative with respect to T1.

7. Numerical results

In this section the effect of shear deformation on the non-linear
coupling and resonant motions are investigated for a C-beam sim-
ply supported; the following geometrical and material characteris-
tic are used: L = 6 m, h = 0.6 m, b = 0.6 m, e = 0.03 m. The analyzed
material is graphite-epoxy whose properties are E1 = 144 GPa,
E2 = 9.65 GPa, G12 = 4.14 GPa, G13 = 4.14 GPa, G23 = 3.45 GPa, m12 =
0.3, m13 = 0.3, m23 = 0.5. The present model is used to analyze the
steady-state motion and its stability considering different reso-
nance conditions, modal damping and lamination sequences. The
equilibrium solutions of Eqs. (38)–(43) correspond to periodic mo-
tions of the beam. Steady-state solutions are determined by zero-
ing p0i ¼ q0i ¼ 0 the right-hand members of the modulation Eqs.
(38)–(43) and solving the non-linear system. Stability analysis is
then performed by analyzing the eigenvalues of the Jacobian ma-
trix of the non-linear equations calculated at the fixed points.
The coefficients of the discretized equations of motion Eq. (29)
are listed in Tables 1 and 2, denoting as SS and WS the values cor-
responding to the beam formulation with and without shear
deformation.

The solution of the linear free dynamic problem gives the
following first three eigenvalues for the sequence of lamination
{0/0/0/0}:

x1 ¼ 214 rad=s; x2 ¼ 444 rad=s; x3 ¼ 666 rad=s;

and for the sequence of lamination {0/90/90/0}:

x1 ¼ 166 rad=s; x2 ¼ 356 rad=s; x3 ¼ 600 rad=s;

where x1 and x3 correspond to the flexural–torsional modes, while
x2 correspond to the uncouple lateral mode.

Now, the frequency–response curves (FRCs) of simply sup-
ported composite beams considering and neglecting shear defor-
mation are presented. The modal amplitude curves ai are
obtained in function of the external detuning parameter r1. The
amplitudes a1, a2 and a3 are obtained by means of the following
expression:

ai ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p2

i þ q2
i

q
i ¼ 1;2;3: ð44Þ

Figs. 3 and 4 show the FRCs for a lamination sequences {0/90/90/
0} and {0/0/0/0}, respectively. Next in the figures, solid (dashed)
lines denote stable (unstable) equilibrium solutions and thin solid
lines denote unstable foci. In this first case, the forcing amplitude



Table 1
Coefficients of the non-dimensional discretized equations of motion, lamination {0/0/0/0}.

Model c1 c2 c3 c4 c5 c6 c7

SS 23134.1 �38059.0 �12549.1 51358.0 �2057.4 �93052.5 58212.7
WS 38355.6 125522.9 �14873.7 3427.8 �6223.4 �49342.7 �56520.8

c8 c9 c10 c11 c12 c13 c14

SS 3375.58 11569.2 322.56 31345.8 6752.41 �0.61 0.0
WS �9478.1 19181.7 1232.7 149395.4 �18959.9 �3.65 0.0

c15 c16 c17 c18 c19 c20

SS 62660.6 19398.2 �87918.5 154026.0 �0.00517 �0.00651
WS 298655.3 �18835.5 63522.1 10280.9 �0.00351 0.063536

Table 2
Coefficients of the non-dimensional discretized equations of motion, lamination {0/90/90/0}.

Model c1 c2 c3 c4 c5 c6 c7

SS 15189.6 29711.9 �7174.8 �24856.2 �1748.6 �48080.1 �31810.8
WS 20484.1 �67201.3 �7949.9 �1804.02 �3330.1 �26486.1 30263.7

c8 c9 c10 c11 c12 c13 c14

SS �2806.7 7596.26 299.79 28232.1 �5614.5 �0.683 0.0
WS 5077.6 10244.1 660.7 80110.2 10157.3 �1.959

c15 c16 c17 c18 c19 c20

SS 56436.8 �10600.5 �39607.2 �74546.6 0.00456 �0.06504
WS 160147.7 10085.3 34050.7 �5410.7 �0.00354 �0.0635
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is p = 250, modal damping d1 = d2 = d3 = 0.1 and the internal detun-
ing parameters r2 = 0.04 and r3 = 4. It can be observed from the fig-
ures that the curves are composed by saddle-node and Hopf
bifurcations, denoted as SN and H, respectively. As r1 increases from
a small value, the solution increases in amplitude and is stable until a
saddle-node bifurcation occurs (SN1). Then the response jumps to
another branch of stable equilibrium solutions (jump effect),
depending on the initial conditions. Increasing r1, the amplitude de-
creases until the stable equilibrium solution loses stability via a Hopf
bifurcation at H1 and regains its stability via a reverse Hopf bifurca-
tion at H2. Then for r1 larger than the perfect external resonant con-
dition, an approximated symmetric solution is observed in Fig. 3. For
r1 > H2 the stable solution grows again in amplitude until it arrives
to a saddle-node bifurcation SN3, resulting in a jump of the response
to another solution branch. The new stable branch is left bounded by
a saddle-node bifurcation SN4. Comparing the three modal ampli-
tude curves, the highest values of ai correspond to the first mode
which is directly excited by the external load. The same behavior
is observed in Fig. 4 for the lamination sequence {0/0/0/0}, but only
for the case of the formulation with shear deformation (black
curves). Conversely, whenr1 > 0 the response obtained disregarding
shear deformation is rather different (red curves). In fact, the theory
without shear effect predicts a stable periodic solution for r1 larger
than H2, while the shear model predicts the existence an unstable
branch with the possibility of jump amplitude effect. In both lamina-
tions analyzed, Figs. 3 and 4, the vibration amplitudes are lower
when the shear deformation is neglected; this effect is larger for
the sequence of lamination {0/0/0/0}. For example, the difference
can reach about the 60% in the larger amplitude of the second mode.
In the case of the lamination sequence {0/90/90/0}, the larger differ-
ence between both models (black and red curves) is about 37% in the
third mode.

As it is known, the vibration amplitudes increase when the
damping values are decreased; so, in the second case we want to
establish the influence of the modal damping on the FRCs is ana-
lyzed for the lamination {0/0/0/0}. Fig. 5 presents the FRCs com-
puted for both models, considering d1 = d2 = d3 = 0.05. In
comparison with the previous case (Fig. 4), it can be noted that
the vibration amplitudes are larger (as expected) and the shear ef-
fect is more noticeable in the second mode. For example, the differ-
ence between the curves can reach about the 69%, which
represents an increase of 9% in comparison with the previous case.
Another discrepancy observed in Fig. 5 is when r1 ffi 0, the shear
undeformable response (red curve) presents an unstable periodic
solution (dashed lines) between the Hopf bifurcation H1 and H2,
which is not present in the response with the shear theory (black
curve). Investigating the nature of the dynamic solutions in this re-
gion, would demand a continuation analysis following the quasipe-
riodic response of the beam (limit cycles) that could be born from
the Hopf bifurcations. For the sake of brevity, this analysis was not
carried out in this work.

In the last case, Figs. 6 and 7 show the influence of the internal
detuning parameters r3 = 0.04 on the FRCs, considering the modal
damping di = 0.1 and 0.05, respectively. As can be noted from the
figures, the response presents three peaks in amplitude corre-
sponding to each resonance case. The curves are qualitatively sim-
ilar; however, the influence of shear deformation is larger for lower
modes. However, the difference between the amplitudes arrives at
the saddle-node bifurcation denoted as SN5 (central peak) can
reach about the 53% for the third mode, when the damping is re-
duced to 0.05 (see Fig. 7). On the other hand, the unstable region
below the curves bending either to the right or to the left (jump ef-
fect), are smaller when the shear deformation effect is neglected.
Besides, this behavior is more noticeable for the first mode en both
Figs. 6 and 7.

8. Summary and conclusions

In this paper the influence of shear deformation on the non-
linear dynamic of thin-walled laminated composite beam is ana-
lyzed. A non-linear beam theory is formulated in the context of
large displacements and rotations, through the adoption of a
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higher-order displacement field and takes into account shear flexi-
bility (accounting for bending and warping shear). The response of a
simply-supported beam under a vertical concentrated load to a pri-
mary resonant excitation of its first flexural–torsional mode is ana-
lyzed. The frequency of the second and third mode is approximately
two and three times that of the first mode and hence a two-to-one
and three-to-one internal resonance can be activated. With the
method of multiple scales six first-order non-linear ordinary-differ-
ential equations describing the modulation of the amplitudes and
phases are derived.
The influence of shear deformation on the non-linear coupling
and resonant motions is noted in the numerical results and can
be summarized as follows:

1. The amplitudes of the steady-state motions obtained by means
of the shear undeformable theory are lower than the values
obtained with the present shear model.

2. This effect is larger when the damping value is reduced.
3. The sizes of the unstable regions are influenced by the shear

effect, when this effect is ignored the larger instability bound-
aries move down (jump behavior is also reduced). This behavior
is originated by a decrease of the vibration amplitude values
computed on the backbone of the resonance curves. As particu-
lar case, when r3 = 4 and lamination {0/0/0/0}, the discard of
shear effect overestimates the stable region for r1> 0.
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4. The lamination sequence plays an important role on the
non-linear dynamic behavior of the beam. For example, the
influence of shear deformation effect is more noticeable when
the fibers are in a longitudinal direction, this is due to the
lamination sequence {0/0/0/0} being stiffer behavior than
{0/90/90/0}.

5. The non-linear dynamic behavior observed in the FRCs is also
influenced by the interaction between modes. Selecting an
internal detuning parameter of r3 = 0.04, it is found that the
discrepancy in amplitude is larger for superior modes.

6. For this internal resonance condition, the FRCs exhibit a more
complex behavior due to the presence of additional saddle-
node and Hopf bifurcations in comparison with r3 = 4.
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7. Finally, based on the non-linear dynamic response, it can be
concluding that the discard of shear deformation effect results,
inadvertently, in a less critical behavior in the frequency–
response than in the case of its incorporation.
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