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Block-oriented models (BOMs) have shown to be appealing and efficient as nonlinear representations for many
applications. They are at the same time valid and simple models in a more extensive region than time-invariant
linear models. In this work, Wiener models are considered. They are one of the most diffused BOMs, and their
structure consists in a linear dynamics in cascade with a nonlinear static block. Particularly, the problem of
control of these systems in the presence of uncertainty is treated. The proposed methodology makes use of a
robust identification procedure in order to obtain a robust model to represent the uncertain system. This model is
then employed to design a model predictive controller. The mathematical problem involved in the controller
design is formulated in the context of the existing linear matrix inequalities (LMI) theory. The main feature of
this approach is that it takes advantage of the static nature of the nonlinearity, which allows to solve the control
problem by focusing only in the linear dynamics. This formulation results in a simplified design procedure,
because the original nonlinear model predictive control (MPC) problem turns into a linear one.
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1. Introduction

There are very few controller design techniques that
can be proven to stabilise processes in the presence of
nonlinearities and constraints. Model predictive con-
trol (MPC) is one of these techniques. MPC refers to a
class of computer control algorithms that control the
future behaviour of a plant through the use of an
explicit process model. At each control interval, the
MPC algorithm computes an open-loop sequence of
manipulated variable adjustments in order to optimise
future plant behaviour. The first input in the optimal
sequence is injected into the plant, and the entire
optimisation is repeated at subsequent control intervals
(Qin and Badwell 1997).

Though industrial processes are inherently non-
linear, the vast majority of MPC applications up to
date are based on linear dynamic models, the step and
impulse response models being the most common ones
are derived from the convolution integral. There are
several potential reasons for this, for example, by using
a linear model and a quadratic objective function, the
nominal MPC algorithm takes the form of a highly
structured convex quadratic program (QP), for which
reliable solution algorithms and software can be easily
found (Wright 1997). This is important because the
algorithm solution must reliably converge to the
optimum value in no more than few tens of seconds
in order to be useful in manufacturing applications.

Nevertheless, there are many cases where nonlinear
effects are significant enough to justify the use of

nonlinear model predictive control (NMPC). Those
cases include at least two broad categories of applica-
tions: (a) regulator control problems where the process

is highly nonlinear and subject to large frequent
disturbances, and (b) servo control problems where
the operating points change frequently and span a

sufficiently wide range of nonlinear process dynamics.
With the introduction of a nonlinear dynamics

model within the NMPC algorithm, the complexity of
the predictive control problem increases significantly.

This issue has been thoroughly dealt with in the review
papers by Bequette (1991) and Henson (1998), where

they presented various approaches for handling non-
linear systems via MPC.

In particular, Wiener models (WMs) have a special
structure that facilitates their application to NMPC
(Norquay, Palazoglu, and Romagnoli 1998; Gerkšič,

Juričic, Strmčnic, and Matko 2000; Lussón-Cervantes,
Agamennoni, and Figueroa 2003). These models

consist in a process with linear dynamics followed by
a nonlinear gain (Figure 1), and can represent many of
the nonlinearities commonly encountered in industrial

processes. Due to the static nature of the nonlinearities,
they can be removed from the control problem, which
allows solving the NMPC problem as a linear MPC

(LMPC) one.
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The use of WMs has been treated in the literature

in various contexts. WMs have proved to be useful

for application in several fields, such as in chemical

processes (Pajunen 1992; Kalafatis, Arifin, Wang, and

Cluett 1995; Zhu 1999; Pearson and Pottmann 2000)
biological processes (Korenberg 1973; Hunter and

Korenberg 1986), communications (Kang, Cho,

and Youn 1998, 1999; Cheong, Werner, Cousseau,

and Laakso 2005) and control (Norquay et al. 1998;

Gerkšič et al. 2000; Lussón-Cervantes et al. 2003;

Biagiola, Agamennoni, and Figueroa 2004).
In this article, the design of robust model predictive

controllers for Wiener systems is addressed. In general,

robust model predictive control (RMPC) are MPC

algorithms that explicitly consider the process model

uncertainties in the control law computation. Since the

seminal work by Campo and Morari (1987), other

several approaches have been developed for the

treatment of robustness in linear MPC. Some of
these algorithms assume that the process model is

described by an infinite set of linear models and

propose a min–max optimisation to obtain the control

law (Allwright and Papavasiliou 1992; Zheng and

Morari 1993; Oliveira, Amaral, Favier, and Dumont

2000). Another approach for RMPC is based on state

spaces models with polytopic uncertainties and cost
function defined over an infinite horizon (Kothare,

Balakrishnan, and Morari 1996; Cuzzola, Geromel,

and Morari 2002; Wan and Kothare 2002; Mao 2003;

Ding, Xi, and Li 2004), in which case the control is

computed by a convex optimisation subject to a set of

linear matrix inequalities (LMI). However, to the best

of the authors’ knowledge, no RMPC results are
available in the literature for the case of WMs.

In this work a controller synthesis procedure is

developed forWMswith bounded uncertainty. Amodel

predictive-based strategy is used for the controller

design, recalling the methodology presented in

Kothare et al. (1996) and recently extended in Araújo

and Oliveira (2009) to linear models represented by
orthonormal basis functions (OBFs) (Heuberger, Van

den Hof, and Wahlberg 2005). The uncertainty in the

nonlinear model is explicitly considered in the controller

synthesis. This is achieved by the inclusion of uncer-

tainty bounds previously determined for the WM

through the characterisation algorithm presented in
Figueroa, Biagiola, and Agamennoni (2008) and gen-

eralised in Biagiola and Figueroa (2009).

This article is organised in the following way.
In Section 2 some previous results on RMPC are
revised. Section 3 deals with the problem of identifying
a WM capable to reflect the observed uncertainty.
Section 4 presents the RMPC synthesis for such
identified WMs, which is the main contribution of
this article. Two different examples are presented in
Section 5 to illustrate the modelling and control
strategies. This article concludes with some final
remarks in Section 6.

2. RMPC for linear systems

In the seminal work by Kothare et al. (1996), the
‘multi-model’ paradigm for RMPC was introduced.
The mathematical expression of this model is

xðkþ 1Þ ¼ AxðkÞ þ BuðkÞ,
yðkÞ ¼ CxðkÞ,

A B½ � 2 �,

ð1Þ

where uðkÞ 2 <nu is the control input, xðkÞ 2 <nx is the
state of the plant, yðkÞ 2 <ny is the plant output and �
is the set of uncertainty, described as a polytope

� ¼ Cof½A1 B1�, ½A2 B2�, . . . , ½AL BL�g, ð2Þ
where Co means convex hull. In other words, if
[A B]2� then, for some �i� 0; i¼ 1, . . . ,L withP

�i¼ 1 we have

½A B� ¼
XL
i¼1

�i½Ai Bi�: ð3Þ

For this process description, the unconstrained
RMPC performance objective can be posed as
(Kothare et al. 1996)

min
uðkþijkÞ,i¼0,1,...,m

max
½A B�2�

J1ðkÞ ð4Þ

with

J1ðkÞ ¼
X1
i¼0

xðkþ ijkÞTQ1xðkþ ijkÞ�
þ uðkþ ijkÞTRuðkþ ijkÞ�, ð5Þ

where x(kþ ijk) and u(kþ ijk) are the state and control
move, respectively, at time kþ i, computed based on
measurements at time k. In particular, x(kjk) is the
measured state at time k and u(kjk) is the control move
to be implemented at time k. It is assumed that there
is no control action after time kþm� 1 (i.e.
u(kþ ijk)¼ 0 for i�m), where m is the control horizon.

Equation (4) stands for a ‘min–max’ problem. The
maximisation is over the set of possible plants, and
corresponds to choosing a plant [A B]2�, which, if
used as model for predictions, would lead to the worst

Figure 1. Wiener model.
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case value of J1(k) among all plants in �. This worst
case value is then minimised over the present and
future control moves u(kþ ijk), i¼ 0, 1, . . . ,m.

To solve this problem, an upper bound on J1(k)
can be developed in the form of

J1ðkÞ � VðxðkjkÞÞ, ð6Þ
where V(x)¼ xTPx with P40. Thus

max
½A B�2�

J1ðkÞ � VðxðkjkÞÞ: ð7Þ

This expression gives an upper bound on the robust
performance objective. Thus solution of the problem
can be obtained on the basis of the following theorem.

Theorem 2.1: Let x(k)¼x(kjk) be the state of the
uncertain system (1). Then the state feedback matrix F
in the control law u(kþ ijk)¼Fx(kþ ijk), i� 0 that
minimises the upper bound V(x(kjk)) on the robust
performance objective function at sampling time k is
given by

F ¼ YQ�1, ð8Þ
where Q40 and Y are obtained from the solution (if it
exists) of the following linear objective minimisation
problem with LMI constraints:

min
�,Q,Y

� ð9Þ

subject to

1 xðkjkÞT
xðkjkÞ Q

� �
� 0 ð10Þ

and

Q QAT
j þ YTBT

j QQ1=2
1 YTR1=2

AjQþ BjY Q 0 0

QQ1=2
1 0 �I 0

R1=2Y 0 0 �I

2
66664

3
77775

� 0, j ¼ 1, 2, . . . ,L: ð11Þ
Proof: See Kothare et al. (1996). œ

This problem could be extended to consider
constraints on the manipulated variables and on the
process outputs. If constraints on the control variables
are set by ku(kþ ijk)k2� umax, for i� 0, the following
LMI should be included as a constraint in
problem (9)–(11)

u2maxI Y

YT Q

� �
� 0: ð12Þ

In the presence of output constraints of the form

max
½A B�2�

k yðkþ ijkÞk2 � ymax, ð13Þ

the LMI constraint to be included in (9)–(11) is

Q ðAjQþBjY ÞTCT

CðAjQþBjY Þ y2maxI

� �
� 0, j¼ 1,2, . . . ,L:

ð14Þ
Based on these results, Araújo and Oliveira (2009)

provided an extension of this approach for plants

modelled with OBFs in a recent work. In this

particular case, the model adopts the following

expression:

~xðkþ 1Þ ¼ ~A ~xðkÞ þ ~B ~uðkÞ,
~yðkÞ ¼ ~C ~xðkÞ,

ð15Þ

where matrices Ã, ~B and vector ~xð�Þ are formed by an

appropriate concatenation of the OBFs and input

signals which are not ‘contaminated’ with uncertainty.

Moreover, the states ~x have no connections with the

system states x(k), but are the outputs of the OBF

model when excited by the input u. In these models, the

uncertainty is concentrated on matrix ~C that gathers

the parameters of the model.
The convex hull is defined as

�C ¼ CofC1,C2, . . . ,CLg: ð16Þ
In other words, if ~C 2 �C then there exists any �i� 0;

i¼ 1, . . . ,L with
P

�i¼ 1.
Therefore

~C ¼
XL
i¼1

�iCi: ð17Þ

Rewriting the model in deviation variables, and

taking into account a constant setpoint (w) along the

control horizon m, the following model is obtained

(Araújo and Oliveira 2009):

D ~xðkþ1Þ
~yðkþ1Þ�w

� �
¼

~A 0

~C ~A I

" #
D ~xðkÞ
~yðkÞ�w

� �
þ

~B

~C ~B

" #
D ~uðkÞ

~yðkÞ�w
� �¼ 0 I

� � D ~xðkÞ
~yðkÞ�w

� �
, ð18Þ

where D¼ 1� q�1 and q�1 is the delay operator.
Now, the following definitions are made:

A ¼
~A 0

~C ~A I

" #
, B ¼

~B

~C ~B

" #
, C ¼ 0 I

� �
,

x ¼ D ~xðkÞ
~yðkÞ � w

� �
, yðkÞ ¼ ~yðkÞ � w

uðkÞ ¼ D ~uðkÞ, Ai ¼
~A 0

~Ci
~A I

" #
and

Bi ¼
~B

~Ci
~B

" #
for i ¼ 1, . . . ,L:
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Then, it is possible to solve the RMPC problem
given the following objective function:

J1ðkÞ ¼
X1
i¼0

ð ~yðkþ ijkÞ � wÞTQ1ð ~yðkþ ijkÞ � wÞ�
þ D ~uðkþ ijkÞTRD ~uðkþ ijkÞ�: ð19Þ

This can be accomplished using the result of
Theorem 2.1.

The next section deals with the problem of robust
identification of uncertain WMs, in which an ad hoc
developed identification approach is described. The
identification task is the previous stage to the
controller design work, which is then treated in
Section 4.

3. Uncertain WM identification

As it was introduced in Section 1, WMs structure
consists of an LTI system L followed by a static
nonlinearity NW (Figure 1). Then, the linear model L
maps the input sequence {u(k)} into the intermediate
sequence {v(k)}, and the overall model output is the
output of the nonlinear block, i.e. ŷ(k)¼NW(v(k)). In
general, the following parameterisation have been
adopted (Gómez and Baeyens 2004; Falugi, Giarré,
and Zappa 2005):

. Linear block

LðqÞ ¼
XM
i¼1

hiBiðq�1Þ, h ¼ ½h1, . . . , hM�T, ð20Þ

where Bi(q
�1) is any rational basis (Laguerre,

Kautz, orthonormal, etc.).
. Nonlinear block

NðxÞ ¼
XN
i¼1

pigiðxÞ, p ¼ ½ p1, . . . , pN�T, ð21Þ

where gi(�) :R!R are a set of specified basis
functions such as polynomial, trigonometric,
piecewise linear functions.

In the identification of block-oriented models
(BOMs), there is a scale factor which can be arbitrarily
distributed between the linear block and the memory-
less one without affecting the input–output character-
istics of the model (Pottmann and Pearson 1998). In
the following we assume h1¼ 1, since that any other
value of this gain can be included in the linear block.
Therefore, the identification task will involve the
determination of MþN� 1 unknown parameters.

The signal v(k) can be written as1

vðkÞ ¼ N�1
W ð ŷðkÞÞ ¼

XN
i¼1

pigiðŷðkÞÞ: ð22Þ

Note that the nonlinear block has been represented as

in Equation (21), where N ¼ N�1
W and x¼ ŷ(k). From

Figure 1, this signal can also be written as the output of

the linear block,

vðkÞ ¼
XM
i¼1

hiBiðq�1ÞuðkÞ: ð23Þ

Equating both sides of these equations (with the

inclusion of an error function �(k) to allow for

modelling error), the following equation is obtained:

�ðkÞ ¼
XN
i¼1

pigið yðkÞÞ � B1ðq�1ÞuðkÞ �
XM
i¼2

hiBiðq�1ÞuðkÞ,

ð24Þ
which is a linear regression in the parameters. Defining

� and �k as follows:

� ¼ p1, . . . , pN, h2, . . . , hM½ �T ð25Þ

�k ¼ g1ð yðkÞÞ, . . . , gNð yðkÞÞ,�B2ðq�1ÞuðkÞ, . . . ,�
�BMðq�1ÞuðkÞ�T, ð26Þ

then, Equation (24) can be written as

�ðkÞ ¼ �T�k � B1ðq�1ÞuðkÞ: ð27Þ
Now, an estimate �̂ of � can be computed by

minimising a quadratic criterion on the prediction

errors �(k), i.e. the least squares estimate (Kalafatis

et al. 1995; Gómez and Baeyens 2004). It is well known

that this estimate is given by

�̂ ¼ �K�
T
K

� 	�1
�K�, ð28Þ

where �¼ [B1(q
�1)u(1), . . . ,B1(q

�1)u(K )]T and �K¼
[�1, . . . ,�K] use the set of K input/output data available

from the process. Note that the practical identifiability

condition must be imposed to �, which implies that� is

full column rank. Two main advantages of this

approach are the relative simplicity and the uniqueness

of the solution.
Now, estimates of the parameters p̂i (i¼ 1, . . . ,N )

and ĥi (i¼ 2, . . . ,M ) can be computed by partitioning

the estimate �̂, according to the definition of � in (25).

It is important to remark that we are identifying the

inverse of the nonlinearity, which is frequently used in

many control applications.
Now, let us consider the more general case which is

the uncertain WM. In order to develop a methodology

to characterise the uncertainties, we use the nominal

description. To perform it, let us introduce a set of

parameters H for the linear dynamic block and a set P
for the parameters of the nonlinear block we want to

International Journal of Control 435
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identify (i.e. N�1
W ):

H ¼ h : hli � hi � hui , 1 � i � M
� � ð29Þ

P ¼ p : pli � pi � pui , 1 � i � N
� �

, ð30Þ
where the subscript i means the ith entry of a vector.

Now, to determine the parameters bounds in the

WM, let us first define some sets (Figueroa et al. 2008).

Given the input datum uk, the linear uncertain system

defined by H maps at some specific time k over a set

Vu ¼ v : vðkÞ ¼
XM
i¼1

hiBiðq�1ÞuðkÞ, h 2 H
( )

: ð31Þ

Given an input u(k), the basis term of order i, i.e.

hiBi(q
�1)u(k), is a real number and the set Vu takes the

form of Vu¼ {v : vl� v(k)� vu}.
On the other hand, if we consider the uncertain

description of the parameters in P, a given output y(k)

maps at some specific time k over a set

Vy ¼ v : vðkÞ ¼
XN
i¼1

pi gið yðkÞÞ, p ¼ ½ p1 . . . pN�T 2 P
( )

:

ð32Þ
This situation is illustrated in Figure 2. Remember that

in order to obtain an uncertain model, every input data

u(k) should be mapped through the model to the

corresponding y(k). From this picture it is clear that

the parameters set will match the uncertainties

description if Vy\Vu 6¼ ; for all k. In this way, the

input u(k) is mapped onto Vu through the family of

models generated by H. Then, since Vy\Vu 6¼ ;, the
intermediate value (i.e. v(k)) will result in y(k) through

the inverse of N�1
w .

Now, let us analyse this situation in order to

compute the parameters bounds to satisfy this condi-

tion. This determination is based on the whole input/

output data available.
Note that the linear bases Bi(q

�1) are a set of real

numbers for each input u(k). Let B(q�1)u(k) be the

vector whose ith entry is the linear basis Bi(q
�1)u(k).

Since the entries of B(q�1)u(k) could be positive or

negative, it is possible to split the vector. For this

purpose, we define Bþ(u(k)) ¼4 max(B(q�1)u(k), 0) and

B�(u(k)) ¼4 min(B(q�1)u(k), 0) and form the new vector
�B(k) ¼4 [(B�(u(k)))T, (Bþ(u(k)))T]T. Note that the
construction of vector B�(u(k))¼min(B(u(k)), 0)

involves keeping all the negative elements in the
vector and putting zero otherwise. Analogously,
Bþ(u(k)) keeps the positive elements and puts zero
otherwise. Therefore, the resultant �B is a vector with

all negative elements in the first rows and all positive
elements in the last ones.

In a similar way, since the nonlinear bases gi( y(k))
are real numbers for each output y(k), it is
possible to define �g(k) ¼4 [(g�( y(k)))T, (gþ( y(k)))T]T,
where gþ( y(k)) ¼4 max(g( y(k)), 0) and g�( y(k)) ¼4
min(g( y(k)), 0).

Theorem 3.1: The bounds of the uncertain parameters
hl, hu, pl, pu can be obtained by solving the following
optimisation problem:

min
hl,hu, pl, pu

�
XM
i¼2

ðhui � hliÞ þ ð1� �Þ
XN
i¼1

ð pui � pliÞ
 !

subject to

ð33Þ

ðhl ÞT,ðhuÞT,�ðpuÞT,�ðpl ÞT� � �BðkÞ
�gðkÞ

� �
� 0; k¼ 1, . . . ,K

ð34Þ

ðhuÞT, ðhl ÞT,�ðpl ÞT,�ðpuÞT� � �BðkÞ
�gðkÞ

� �
� 0; k¼ 1, . . . ,K,

ð35Þ
where the parameter �2 (0, 1) is a selected factor which
allows to distribute the weight of the uncertainty between
the linear and the nonlinear blocks. Note that the robust

identification requirement Vy\Vu 6¼ ; must be
ensured 8k.
Proof: See Biagiola and Figueroa (2009). œ

Note that the proposed approach for the identifica-

tion problem allows to transform it into a linear
programming problem with convex feasible region.
The number of optimisation variables is twice the
number of model parameters and the number of

constraints is twice the number of the process data.
Due to the suitable formulation of these problem, its
solution is obtained in an efficient way.

4. RMPC for Wiener systems

The objective of this section is to design of an RMPC
algorithm for uncertain WMs such as the ones
identified in Section 3.

u(k)

Vu Vy

)()(ˆ 1

1

kuqBh i

M

i
i

))((ˆ
1

kygp i

N

i
i

y(k)

Figure 2. Uncertainty sets in a WM.
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In order to develop a valid RMPC algorithm for

this type of WMs with uncertainty, an optimisation

approach is followed. The main tools involved in the

controller design are LMI theory and Lyapunov

functions.
The parametric representation introduced by

Araújo and Oliveira (2009) for linear models with

uncertainty is herein recalled. This mathematical

formulation based on OBFs and dedicated to linear

models is

~xðkþ 1Þ ¼ ~A ~xðkÞ þ ~B ~uðkÞ,
~vðkÞ ¼ ~C ~xðkÞ,

ð36Þ

where matrices Ã, ~B and vector ~xð�Þ are formed by an

appropriate concatenation of the basis data (Bi)

generated with the input signal. Note that none of

these elements are ‘contaminated’ with uncertainty.

The uncertainty is all concentrated in matrix ~C, and it

is represented by the set of parameters h2H (see

Equation (29)). Therefore, the representation in

Equation (36) is herein considered as a suitable

model for the uncertain linear block in Figure 1.
In this context, the RMPC problem can be

formulated in the line of the approach by Kothare

et al. (1996) as

min
uðkþijkÞ,i¼0,1,...,m

max
h2H, p2P

J1ðkÞ, ð37Þ

where

J1ðkÞ ¼
X1
i¼0

ð ~vðkþ ijkÞ � wvÞTQ1ð ~vðkþ ijkÞ � wvÞ
�

þ D ~uðkþ ijkÞTRD ~uðkþ ijkÞ�: ð38Þ
The following step is to analyse how to work out

the maximisation in Equation (37) subject to the

modelling approach followed in this work. This can be

posed as

max
h2H, p2P

J1ðkÞ ¼ max
p2P

max
h2H

J1ðkÞ

 �

, ð39Þ

and recalling the bound of Equation (7), it is possible

to write

max
h2H, p2P

J1ðkÞ � max
p2P

VðxðkjkÞÞ, ð40Þ

where, as defined above, x ¼ � D ~xðkÞ
~vðkÞ�wv

�
and, in this

expression, wv is the set point signal translated to the

output of the linear block. Now, since V(�) is a

quadratic positive definite function, it is clear that

maxp2PV(x(kjk)) is equivalent to

max
p2P

D ~xðkÞ
~vðkÞ � wv

� �����
���� ¼ D ~xðkÞ

maxp2Pð ~vðkÞ � wvÞ
� �����

����: ð41Þ

Let us analyse this last optimisation. From the
optimisation proposed in Equation (41), taking into
account the output measure y(k) at the time k, and
considering that the desired value for the output is w,
we have the following result:

max
p2P

ð ~vðkÞ � wvÞ
�� �� ¼ max

p2P

XN
i¼1

pi gið yðkÞÞ � giðwÞð Þ
�����

�����:
ð42Þ

To obtain this maximum, we have to apply a procedure
similar to the one used for the robust identification
accomplished in Section 3. For this aim, we define
� ¼4 [g�, gþ]T where gþ ¼4 max(g( y(k))� g(w), 0) and
g� ¼4 min(g( y(k)� g(w)), 0). Therefore, through the
solution of the following optimisation problem

max
p2P

XN
i¼1

pi gið yðkÞÞ � giðwÞð Þ
�����

�����
¼ max pugþ þ plg�

 , plgþ þ pug�
 � 	

, ð43Þ
we obtain the parameters that, according to
Equation (42), generate the worst case for ð ~vðkÞ � wvÞ,
where ð ~vðkÞ � wvÞ stands for the last entry of the
vector x.

Now, if this vector x is used as a datum, the control
input is given by the solution of the problem pointed in
Theorem 2.1. In this way, an RMPC algorithm is
provided for the uncertain WM, which is supported on
the basis of LMI theory. The controller synthesis
methodology takes into account the plant uncertainty,
and the calculated control law is the one that minimises
a worst-case objective function subject to the operation
constraints.

The main feature of this approach is that it takes
advantage of the static nature of the nonlinearity,
which allows to solve the control problem by focusing
only in the linear dynamics. This formulation results in
a simplified design procedure, because the original
nonlinear MPC problem turns into a linear one.

It should also be remarked that in this formulation,
the only information required from the process is the
controlled output y(k) which is used in Equation (42).
Therefore, the process states values are not necessary,
which contrasts with the commonly used state space
approaches for MPC.

In the next section the previous control strategy
is applied to simple illustration example. The design
procedure is applied and the controller performance is
evaluated.

5. Simulation examples

In this section, two examples are presented to illustrate
the implementation of the proposed RMPC algorithm
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for controlling a Wiener system. The goal of the first
example is to show the method for a SISO system. In
this way, and to avoid further complexity, a simple
case is tackled to illustrate the methodology and
implementation details.

In a second example, a MIMO Wiener system is
addressed to illustrate further aspects of the identifica-
tion and control proposal, such as implementation for
a multivariable system, influence of measurement noise
and conservatism of the robust controller approach.

5.1 Example 1

In this example we recall the widely cited WM which
was first introduced by Wigren (1993) to describe the
behaviour of a control valve for fluid flow. The
mathematical description for this final control element
is given by the following equations:

vðkÞ ¼ 0:1044q�1 þ 0:0883q�2

1� 1:4138q�1 þ 0:6065q�2
uðkÞ ð44Þ

yðkÞ ¼ N ðvðkÞÞ ¼ vðkÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
0:10þ 0:90v2ðkÞ

p , ð45Þ

where u(k) is the controller output, i.e. the signal
applied to the stem. The stem position is denoted as
v(k), and the resulting flow through the valve is
represented by y(k).

In order to generate the input–output data of the
system, it is necessary to define the input signal
characteristics. Following the example proposed by
Wigren (1993), a random zero-mean sequence between
�0.5 and 0.5 was first generated. The input u(k) was
then constructed by adding a bias of 0.5 and holding
each value in the sequence during six sampling
intervals.

To perform the WM identification, we assume a
WM formed by a Laguerre system followed by a
polynomial-type nonlinearity. Three Laguerre terms
with a dominant pole in �0.6 were considered for the
linear block, and a third-order polynomial was
proposed for the nonlinear block. Therefore, M¼ 3
and N¼ 3.

From the solution of the optimisation problem
formulated in Equations (33)–(35), the parameter
bounds of the uncertain WM were obtained. The
structural identifiability constraint h1¼ 1 was specified.
In this example, the weighting factor � was taken equal
to 0.5. Therefore, the uncertainty was equally weighted
between the linear and the nonlinear blocks, i.e. both
terms of uncertainty were identically weighted in the
optimisation cost function. The results for the para-
meter bounds are shown in Table 1.

Once the parametric uncertain WM is obtained,
the RMP Controller discussed in Section 4 can

be designed. For this purpose, the algorithm para-
meters are set equal to Q1¼ 0.001, R¼ 1, m¼ 1 and
Du2max ¼ 0:005.

In this example, the optimisation problem subject
to LMI constraints was solved using the LMI Control
Toolbox (Gahinet, Nemirovski, Laub, and Chilali
1995) in the Matlab environment.

The performance of the RMP controller designed
in Section 4 is depicted in Figures 3 and 4. Note that in
this example, two setpoint changes take place (from 0
to 0.2 in the sample number 10 and from 0.2 to �0.3 in
sample number 500). Figure 3 illustrates the manipu-
lated variable and the achieved output for the first
setpoint change. The second one is shown in Figure 4.

To achieve the control goal under the imposed
conditions and operation constraint (i.e.
Du2max ¼ 0:005), the control action shown in
Figures 3(a) and 4(a) has to be implemented. Note
that both in Figures 3 and 4 deviation variables were
depicted (i.e. the plotted controlled/manipulated vari-
able is the difference between the real controlled/
manipulated variable and its nominal value).

It must be remarked that the controller synthesis
procedure proposed for system is formulated for a
WM that explicitly takes into account the plant
uncertainty. Moreover, the proposed control law is
the one that minimises a worst-case infinite horizon
objective function subject to the operation constraint
using no other information from the process than the
measured output.

5.2 Example 2

In this example we recall the model introduced by Ray
and Majumder (1983) to describe the behaviour of a
steam generating unit (SGU). The mathematical
description for this MIMO nonlinear system is given
by the following equations:

dP

dt
¼ �0:00193SP1=8 þ 0:000736wc þ 0:014524F

� 0:00121Lþ 0:000176Te ð46Þ

dS

dt
¼ 10cvP

1=2 � 0:78571S ð47Þ

Table 1. Bounds on WMs parameters.

Parameter Lower bound Upper bound

h1 1.0000 1.0000
h2 0.0115 0.1272
h3 1.4783 1.4783
p1 1.2644 2.6265
p2 1.8124 1.8124
p3 �2.9801 �0.7056
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dL

dt
¼ 0:00893wc þ 0:002F þ 0:463cv � 610�6P2

� 0:00914L� 8:210�5L2 � 0:007328S: ð48Þ
The state variables in this nonlinear model are: the

pressure (P), the steam flow (S ) through the high

pressure turbine and the drum level (L). The states P

and L are the controlled variables. There are two

manipulated variables: the fuel input (F ) and the feed

water input (wc), and two disturbances: the feed water

temperature (Te) and the control valve setting (cv). The

steady state values for these variables are shown in

Table 2. In the sequel, y¼ [P,L]T and u¼ [F,wc]
T will

be the vectors of controlled and manipulated variables,

respectively.
In order to illustrate how the presence of noise can

be dealt with by the identification algorithm, we

consider the measured outputs corrupted with noise.

The most direct and trivial approach would be to
include the noisy outputs data in the identification
method developed in Section 3. In such a way the
identified robust model should be able to predict the
whole noisy measurements. However, this approach is
too conservative because the uncertainty bounds on
the parameters would be increased drastically, which
means we will be justifying with uncertainty the effect
of noise.
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0.04
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(a)
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Figure 4. Second setpoint change.
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Figure 3. First setpoint change.

Table 2. SGU variables.

Variable Value

F (kg/s) 40
wc (kg/s) 180
Te (K ) 290
cv 0.8
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On the other hand, if we consider that the output is

disturbed as follows:

y0ðkÞ ¼ yðkÞ þ eðkÞ jeðkÞj � � 2 <þ, ð49Þ
the conservatism can be reduced by introducing a

modification in the constraints (34)–(35) of the

identification algorithm presented in Section 3. The

change will consist in the inclusion of an error margin

associated to the noise bounds. Therefore, taking into

account that pi,i,1¼ 1 for i¼ 1, . . . ,Ns, constraint (34)

can be rewritten as

ðhliÞT, ðhui ÞT,�ð pui ÞT,�ð pliÞT
� � �B

i ðkÞ
�g
i ðkÞ

� �
� eðkÞ � 0

ð50Þ
and if the error bounds are set to their minimum value

(i.e. to make the problem less conservative), we have

ðhliÞT, ðhui ÞT,�ð pui ÞT,�ð pliÞT
� � �Bi ðkÞ

�g
i ðkÞ

� �
� ��: ð51Þ

In a similar form, constraint (35) results in

ðhui ÞT, ðhliÞT,�ð pliÞT,�ð pui ÞT
� � �B

i ðkÞ
�gi ðkÞ

� �
� �: ð52Þ

It must be remarked that this modification in the

optimisation algorithm allows the inclusion of the

known bounds of the measurement noise for reducing

the estimated bounds of the model parameters.
Therefore, now the model’s output prediction could

differ from the measured output as much as �. It is

assumed this possible bias is due to the noise. Under

this hypothesis, it is no longer possible to guarantee

that the output sampled data will be completely

justified by the model.
This approach based on noisy measurements is now

applied to the identification of a WM for the SGU. For

this purpose, a set of 1000 data is generated with a

sample period of 20 s. The system is excited with

uniformly distributed random manipulated variables

(F and wc). It is assumed both signals have a standard

deviation of 1%. Additionally, it was considered the

output data corrupted with noise bounded by �¼ 0.5.
The linear block was modelled as a Laguerre

system. Each basis was assumed to be integrated by

three terms with dominant poles equal to

�1,1¼ �1,2¼ �2,1¼ 0.95 and �2,2¼ 0.05. On the other

hand, second-order polynomials were proposed for the

nonlinear block. The values given to the parameter �
were 0.05 for P and 0.35 for L, respectively.

Figures 5–8 illustrate the identification bounds for

the sets Vy
i and Vu

i for both the pressure and level,

respectively. The simulations shown in Figures 5 and 6

were carried out using samples corrupted with
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10

20

30
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Bounds for Vu
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Figure 5. Robust identification without noise
information (P).
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Figure 6. Robust identification without noise
information (L).
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Figure 7. Robust identification with noise information (P).
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measurement noise. However, this noise was ignored in
the model’s identification procedure. On the other side,
Figures 7 and 8 show the results obtained when the
knowledge on the measurement noise is incorporated
in the identification algorithm by using constraints (51)
and (52). It should be noted how the bounds amplitude
decrease when the knowledge about the noise is used.
Table 3 shows the parameters obtained when the noise
information is included in the identification algorithm.

Once the identification of the SGU is accom-
plished, the algorithm introduced in Section 4 is used
to develop a controller for this system. To evaluate the
performance of the RMPC design algorithm, three
different situations were considered. The first case

consists in designing the controller based on the WM

obtained as described in Section 3 but replacing

Equations (34) and (35) by Equations (51) and (52).

We will make reference to this approach as model

based predictive control with noise consideration

(MBPCwn). The second approach ignores the mea-
surement noise present in the output data and it is

referred to as model based predictive control without

noise consideration (MBPCwon). The comparison

between both cases allows to interpret the advantages

of using the information about the noise. The third

controller design (which is herein named as MBPC) is
based on the identification of a nominal model. The

performance of this last approach gives information

about the conservatism of the robust control

algorithm.
In all the situations the controller design para-

meters were set to Q1¼ 10I, R¼ 0.1I, m¼ 1 and

Du2max ¼ 5. The optimisation problem subject to LMI

constraints is solved by means of the LMI control

toolbox (Gahinet et al. 1995) in Matlab environment.
Figure 9 depicts the simulation results for several

changes in the reference signal. The plots show the
necessary control movements in both F and wc to

achieve the desired values for P and L. The three

different strategies (MBPC, MBPCwn and MBPCwon)

were accomplished. For performance assessment, the

comparison criterion illustrated in Figure 10 was

considered. It shows the calculated bounds for the
objective function in Equation (38) for each controller

(i.e. MBPC, MBPCwn and MBPCwon). These values

are normalised with respect to the nominal MBPC. It

should be remarked that the nominal controller design

was accomplished taking into account the mean value
for each of the identified parameters (i.e. the average

between the upper and the lower identified bounds).

From these results we conclude that the proposed

algorithm does not present a relevant conservatism.

We can also conclude that the use of the information

about the measurement noise in the identification
procedure reduces the conservatism significantly.

6. Conclusions

In this work the model-based control of uncertain

Wiener systems has been dealt with. In this sense, a

robust procedure is dedicated for controlling this
system in the presence of uncertainty. Provided an

input–output data set obtained from the system is

available, the first stage consists in the identification of

a WMs family able to reproduce the whole output

information from the input data. This modelling
problem is tackled using a parametric identification

Table 3. WM parameters (identification with noise).

Parameter Lower bound Upper bound

h1,1,1 1.009391564821534 1.056215269911753
h1,1,2 0.054602770292 0.054602770292
h1,1,3 0.03504078065 0.03504078065
h1,2,1 �0.01698209270 �0.01698209270
h1,2,2 �0.00099619246 �0.00099619246
h1,2,3 0.00166984650 0.00166984650
h2,1,1 0.18155136496 0.18155136486
h2,1,2 �0.108601038 �0.108601038
h2,1,3 0.042514434 0.042514434
h2,2,1 0.09459015674 0.09459015674
h2,2,2 0.1178946005 0.1178946005
h2,2,3 �0.11179579510 �0.11179579510
p1,1,1 1.000 1.000
p1,1,2 �0.000341816277861 0.000265422453944
p1,2,1 0.000 0.000
p1,2,2 �0.000341816277861 0.000265422453944
p2,1,1 0.320687467210654 0.320687467204003
p2,1,2 �0.001299202756650 0.004592308614066
p2,2,1 1.000 1.000
p2,2,2 0.001842907845663 0.001842907770726
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Figure 8. Robust identification with noise information (L).
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approach which is formulated and solved as a linear

programming problem.
The special configuration of the Wiener structure

(a linear dynamics followed by a static nonlinearity) in

combination with the OBF supported parametric

model approach, makes it possible to concentrate all

the uncertainty in a unique output matrix. The main

contribution of work relies in the development of an

ad hoc robust model predictive-based methodology for

controlling a Wiener system in the presence of

uncertainty.
The proposed RMPC algorithm is built using

Lyapunov functions, which is a well-known tool for

stability assessment. The algorithm shows an appro-

priate performance in the tracking of changing

setpoints. This results in an efficient robust control of

uncertain Wiener systems.
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Note

1. The present identification algorithm requires that the
static nonlinearity is invertible, for both the nominal and
uncertain model.
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