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Abstract—The application of the graphical Hopf theorem
(GHT) as a tool for detecting invariant cycles in maps is presented.
The invariant cycle emerging from the bifurcation is approxi-
mated using an analogous version of the GHT for continuous-time
systems. This technique is formulated in the so-called frequency
domain and it involves the use of the Nyquist stability criterion
and the harmonic balance method. Some examples are included
for illustration.

Index Terms—Bifurcation, discrete-time systems, frequency do-
main, harmonic analysis.

I. INTRODUCTION

T HE HOPF bifurcation theorem (HBT) for maps gives con-
ditions for the appearance of an invariant cycle in smooth

maps of dimension equal or greater than two when one param-
eter of the system is varied appropriately [1]. The bifurcation
can be supercritical or subcritical, denoting the appearance of
stable or unstable cycles for parameter values larger or smaller
than the critical one, respectively. The distinction between the
vague attractor or the vague repeller at criticality can be ob-
tained by a coordinate transformation leading to a type of stan-
dard normal form in polar coordinates. After laborious calcula-
tions, it is possible to find an expression for a stability index (the
so-called curvature coefficient) that allows to determine which
type of bifurcation the system will develop under the variation
of the distinguished parameter (see [2], [3] for regular Hopf bi-
furcations and [4] for applications). The Hopf bifurcation for
maps can also be thought as an instrument to describe more
complex behavior in continuous-time nonlinear dynamical sys-
tems, when the resulting map comes from intersections between
a periodic orbit and a certain plane: the so-called Poincaré map.
In this case, the bifurcation of the limit cycle results into an in-
variant torus and the resulting dynamics on the torus: a quasi-pe-
riodic motion [5]. This phenomenon has been observed in a va-
riety of electronic and mechanical systems, mainly those having
a piecewise linear nonlinearity such as in the very well-known
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Chua’s circuit [6], or in power electronic circuits as in [7], and
more recently [8]–[10], as well as for smooth nonlinear vector
fields [11], to mention only a few.

This paper presents an adaptation of available formulas for
the detection of Hopf bifurcations in continuous-time systems
to the case of smooth maps using a frequency-domain approach
[12], [13]. The formulas capture the essential asymptotic
behavior of the dynamics of the emerging invariant cycle
using concepts from control theory. The main formulation and
interpretation of the GHT for single-input single-output (SISO)
discrete-time systems follow the developments of [14] for
continuous-time systems. The extension of this methodology
for multiple-input multiple-output (MIMO) systems has been
also derived [15]. Based on the simplicity and usefulness
of the technique, the multiparameter bifurcation analysis
of continuous-time systems [16] may be also extended for
discrete-time systems, allowing the study of degenerate Hopf
bifurcations for maps (see, for instance, [17] and [18]) via the
frequency-domain approach.

The paper is organized as follows. In Section II, the approx-
imation formulas of the invariant cycle emerging through the
Hopf bifurcation are derived. In Section III, some examples to
illustrate the application of the GHT for maps are shown. Fi-
nally, some concluding remarks are given in Section IV.

II. HOPFBIFURCATION FORDISCRETE-TIME SYSTEMS

Let us consider the discrete-time nonlinear system

(1)

where , , , , ,
is a smooth ( , ) -dimensional

vector field, is the iteration index and is the bifur-
cation parameter. All the matrices may have explicit dependence
on , and may be the zero matrix.

According to [15], there are many distinct but equivalent
feedback representations for (1). This can be easily seen by
introducing an arbitrary matrix (which may also
depend on ) and rewriting (1) as

After applying the -transform to the previous difference
equations, the following frequency-domain representation can
be derived

(2)
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Fig. 1. A nonlinear feedback representation of the system (1).

(3)

This representation suggests that the discrete-time nonlinear
system (1) can be thought as the feedback interconnection
shown in Fig. 1, where the linear system and the
nonlinear map are defined by (2) and (3), respectively.
In the figure, the inputs (generally used to model parameter
perturbation, noise effects, etc.) and (external reference
input used for nonautonomous systems) are set to zero as in the
continuous-time version of the HBT.

The frequency-domain representation has some computa-
tional benefits. Observe that is an -dimensional vector
field. Since is usually smaller than, it is reasonable to expect
that the frequency-domain approach of the HBT requires less
amount of computation than its analogous temporal form.
For example, the fixed point of (1), obtained by solving a
system of nonlinear equations, now corresponds to the point

obtained by solving the system of nonlinear equations
.

Local dynamical behavior can be analyzed via the lineariza-
tion of the open-loop system, given by where
is the Jacobian matrix, . One of the hypotheses of
the discrete-time version of the HBT is the crossing of a simple
pair of complex eigenvalues through the unit circle for a given
value of parameter . This is equivalent to the require-
ment that an eigenvalue of for , denoted
as , crosses the critical point for some values and

. This approach is particularly attractive from a feedback sys-
tems viewpoint, because the type of bifurcation and the ampli-
tude and frequency of the invariant cycle (in case it does exist)
can be derived by simple geometrical arguments on the Nyquist
diagram. Moreover, under this approach the study of some fail-
ures of the classical hypotheses available for continuous-time
systems [16] may be easily extended to the discrete-time case.

A. A Frequency-Domain Approach

The frequency-domain version of the HBT for a SISO dis-
crete-time system can be obtained applying the second-order
harmonic balance method [14]. Let us fixnearly equal to so
the locus of lies near the critical point . Therefore,
the periodic solutions (if they exist) will have small amplitude
and frequency close to . In this case, it is sufficient to consider

(4)

where and “ ” means “real part.” For simplicity, we
can choose the phase of equal to zero, by properly defining

the time origin, so will be a complex number, .
We will also assume that , .

Based on the previous hypothesis, can be expanded
in Taylor series in a neighborhood of the fixed point. Since
we are performing a second-order harmonic approximation, the
output of the nonlinear block can be written as

with

where denotes .
The linear part of the system should balance input and

output harmonics with the corresponding oscillatory solution
(4). Therefore, the harmonic balance equations are given by

. Solving and as function of , we
obtain

To avoid singularities it will be assumed that
and that there is no resonance at .

Then, defining and substituting
the above expressions into the formula for, the equation in-
volving only and is

(5)

where

As we are dealing with a SISO system, the only eigenvalue of
the open-loop system is and thus (5) can be expressed
as

(6)

The previous results have an appealing geometrical interpre-
tation on the Nyquist diagram. Equation (6) can be thought as
the intersection between the locus of and a half-line
starting at in the direction defined by . If this inter-
section occurs at , then is the frequency and

is the amplitude of the periodic solution. However,is a
complex number depending on the unknown frequency of the
periodic solution, and therefore (6) is a set of polynomial equa-
tions in both and . Although these equations can be solved
using iterative methods, a reasonably accurate approximation
can be obtained computingfor a fixed frequency close to

. In this case, if the half-line starting at in the direc-
tion defined by intersects the locus of the eigenvalue at the
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Fig. 2. Geometrical interpretation on the Nyquist diagram of the GHT for a
SISO discrete-time system.

point , then is the approximate frequency of the
periodic solution and its amplitude.

In Section III, we will consider two ways for computing
. One alternative, as shown in Fig. 2, is to chooseas the

frequency at which intersects the negative real axis
at the point near (i.e., is close to 1 and

). In that case, depends on the current
value of parameter . Another option is to consider as the
frequency at which passes over the critical point

when (i.e., and thus
and ). This value of is then used as an ap-
proximation for all values of taking into account the general
(local) linear law of the variation of the frequency versus the
bifurcation parameter for regular Hopf bifurcations.

B. MIMO Systems

The previous computations for SISO discrete-time systems
can be extended to MIMO systems. The procedure is completely
similar to the one given in [15]. We suppose that the second-
order harmonic balance solution is now

(7)

where and . The coefficient vectors are
obtained equating the output of the linear part with the input
signal to the nonlinear feedback vector field , whose
Fourier coefficient vectors are noted as. Thus, the harmonic
balance equations are . These equations are
solved in terms of , where is the normalized right
eigenvector associated with the eigenvalue , and is the
measure of the amplitude of the periodic solution. The other
complex vectors are given by and with

where , “ ” is the complex conju-
gate operator and involves the second-order partial
derivatives of with respect to and it can be computed
as in [15].

Therefore, for the periodic solution (7) to exist, it is necessary
that

(8)

with

where , is the normalized
left eigenvector associated with the eigenvalue and

, involving the third-order partial derivatives of
with respect to , can be computed as in [15]. Since

(8) can be thought as the MIMO system counterpart of (6), an
analogous geometrical interpretation can be applied.

III. A PPLICATIONS OF THEGHT IN MAPS

In this section, the dynamical behavior of several smooth
maps is studied using the methodology proposed above. Ex-
ample 1 shows a detailed analysis of the well-known delayed lo-
gistic map, and Example 2 presents the derivation of an approx-
imate expression of the periodic oscillation in a neural netlet.
In both cases, the discrete-time system develops a supercrit-
ical Hopf bifurcation. On the other hand, Example 3 describes
the appearance of a subcritical Hopf bifurcation in an adap-
tively-controlled system, showing also how the GHT can be
used to estimate the boundary of the basin of attraction of a fixed
point.

Example 1: The delayed logistic map is given by

(9)

This system has two fixed points: the origin which is stable for
and unstable for ; and

which is unstable for and stable for
. For , the two eigenvalues associated to the latter

point are complex conjugated and lie on the unit circle. When
the parameter takes values greater than, these eigenvalues
cross the unit circle from the inside to the outside, changing the
stability of the fixed point.

It is well-known that (9) develops a supercritical Hopf bi-
furcation around the nonzero fixed point (see [1] for a one-pa-
rameter analysis, and [19] for a more complete two-parameter
study). In this work, we emphasize the approximation of the in-
variant cycle instead of the computation of the resonant behavior
of the system. The interested readers should consult [19] to find
more details when the invariant cycle can lose its smoothness
through homoclinic and heteroclinic interactions.

In order to apply the GHT, the map (9) can be transformed
into the equivalent feedback system (2) and (3) choosing the
trivial representation
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Then

Linearizing the nonlinear map around the fixed point
, the Jacobian matrix is given by

and thus the open-loop system matrix is

with eigenvalues

The only relevant eigenvalue is , as for all
and thus it never crosses the critical point . There-

fore, corresponds to the eigenvalue defined pre-
viously.

The normalized right and left eigenvectors associated with
are

The matrices and (computed as in [15]) are

and the linearized closed-loop matrix is

Then

where

and thus

with

Assuming, for instance, that , the intersection be-
tween and the negative real axis near the critical point

takes place at and thus

Fig. 3. The locus of� (e ) and the half-line�1 + � �(~!).

Fig. 4. The stable invariant cycles predicted via the GHT (4) and by
simulation (�).

. The locus of and the half-line starting at
in the direction defined by are shown in Fig. 3. As

expected, the locus intersects the half-line verifying the exis-
tence of an invariant cycle. This intersection occurs at

and the corresponding frequency is .
The amplitude of the approximate periodic solution is obtained
as

and then the first three harmonics are

The invariant cycle predicted through the GHT and that obtained
by numerical simulation are depicted in Fig. 4. As can be seen
in the figure, there exists a close agreement between the actual
and the predicted cycles because the parameteris close to the
critical value .



D’AMICO et al.: HOPF BIFURCATION FOR MAPS: A FREQUENCY-DOMAIN APPROACH 285

Example 2: The discretized model of a neural netlet of exci-
tation and inhibition is

(10)

where and are positive constants andis the bifurca-
tion parameter that represents the time-delay due to the finite
switching speed of amplifiers in models of electronic networks
[4]. For oscillations to exist, .

The origin is the only fixed point of (10) and it is stable for
with .

When , the linear part of the map has a pair of complex
conjugate eigenvalues on the unit circle. As the parameter
is increased through , these eigenvalues cross the unit circle
modifying the stability of the fixed point.

A representation leading to a single nontrivial eigenlocus is
given by the matrices

and the vector

with . Then

The open-loop system matrix is

and its eigenvalues are

As expected, the only relevant eigenvalue is , so
.

The normalized right and left eigenvectors associated with
are

Fig. 5. The locus of� (e ) and the half-line�1 + � �(~!) for different
values of�. (a)� = 0:55. (b)� = � . (c)� = 0:8. (d)� = 0:9.

with and

In this example, the matrices and are

and then,

To simplify the calculations, we choose ,
and assume that for all values of

the parameter. The locus of and the half-line from the
point in the direction of corresponding to different
values of are shown in Fig. 5. For , the fixed
point is stable and there is no intersection between the locus
of the eigenvalue and the half-line [Fig. 5(a)]. Asincreases,
the locus moves away from criticality [Fig. 5(b)] and intersects
the half-line. Then, for the fixed point is unstable and
an intersection appears denoting the existence of an invariant
cycle [Fig. 5(c) and (d)]. Moreover, a stability analysis for small
perturbations of the intersection point establishes that the cycle
is stable (for more details, see [15]).

From (7), the expression of the periodic solution is
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Fig. 6. Stable invariant cycles computed by the GHT (4) and by simulation
(�) for different values of�. (a)� = 0:72. (b)� = 0:8.

with . Since for near
, the last equation can be approximated as

The invariant cycles obtained through the GHT and those ob-
tained iterating the map are shown in Fig. 6. In Fig. 6(a) the
parameter is near the critical value ( ) and thus
the actual and the predicted cycles are very similar. For larger
values of ( , for example) the difference between both
cycles increases [see Fig. 6(b)], revealing the local nature of the
approximation.

Example 3: In the adaptively-controlled system proposed in
[17], the aim is to maintain a linear, second-order discrete-time
system at a desired state using a first-order model-reference,
self-adapting, nonlinear feedback control scheme. The map in-
cluding the plant, the controller and the estimator is

(11)

Fig. 7. The locus of� (e ) and the half-line�1+� �(~!) for different values
of �. (a)� = �0:5. (b)� = �0:51. (c)� = �0:5238. (d)� = �0:55.

where is a small positive constant of the estimation algorithm
and and ( and in [17], respectively) are parameters that
define the mismatch between the plant and the model-refer-
ence. This system presents a complex dynamical behavior in the
neighborhood of its unique fixed point when
varying and (see [17]). We will focus our attention in the
region of the -plane where this point loses local stability
via a Hopf bifurcation.

To apply the GHT, the map (11) is expressed as a feedback
system adopting

where and . Then

The eigenvalues of the open-loop matrix are
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Fig. 8. Projections of the unstable cycle obtained by the GHT (4) and
trajectories of the map (�) for � = �0:5.

Notice that, as in the previous examples, an appropriate election
of the feedback representation leads to a single nontrivial eigen-
value, .

A necessary condition for a Hopf bifurcation is given by
with (see [17]). In order to

compute some numerical results, we choose , ,
assuming as the main bifurcation parameter.

The locus of and the half-line for dif-
ferent values of are presented in Fig. 7. Whenis greater than
the critical value [Fig. 7(c)], the fixed point is stable and an
unstable invariant cycle is detected [Fig. 7(a) and (b)], while for

the fixed point is unstable and no invariant cycle exists
[Fig. 7(d)]. Therefore, the map (11) develops a subcritical Hopf
bifurcation.

Figs. 8 and 9 show projections on the phase planes
and of the unstable invariant cycles obtained by the
GHT, and some trajectories of the adaptively-controlled system.
The initial conditions are located inside and outside the cycle,
and the simulations have been performed for values ofgreater
than . As can be seen in the figures, when the parameteris
closer to , the invariant cycle is smaller.

An useful byproduct of the frequency-domain analysis is also
depicted in Figs. 8 and 9. System (11) has two attractors at this
parameter setting: the stable fixed point and a chaotic attractor,
with the unstable invariant cycle (and its stable manifold when

Fig. 9. Projections of the unstable cycle obtained by the GHT (4) and
trajectories of the map (�) for � = �0:51.

the third contracting direction is taken into account) defining the
boundary of attraction of the fixed point. Notice that this cycle,
due to its saddle-node nature in [17], can not be located
numerically by backward iteration of the map in time. Conse-
quently, the predictions of the GHT method complete the results
of [17] giving an explicit estimation of the emerging invariant
cycle.

IV. CONCLUSIONS

A frequency-domain approach to analyze Hopf bifurcations
for smooth maps as well as approximation formulas to recover
the invariant cycle using a second-order harmonic balance tech-
nique have been presented. The application of the GHT is il-
lustrated with three examples. A close agreement between the
numerical simulations and the approximate solution is obtained
when the parameter is close to the bifurcation point. Since the
GHT for discrete-time systems provides a useful graphical in-
terpretation, an extension to deal with other degenerate cases
seems very attractive to pursue.
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