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Abstract

Ovarian steroids control a variety of physiological functions. They exert actions through 
classical nuclear steroid receptors, but rapid non-genomic actions through specific 
membrane steroid receptors have been also described. In this study, we demonstrate 
that the G-protein-coupled estrogen receptor (GPER) is expressed in the rat pituitary 
gland and, at a high level, in the lactotroph population. Our results revealed that 
~40% of the anterior pituitary cells are GPER positive and ~35% of the lactotrophs are 
GPER positive. By immunocytochemical and immuno-electron-microscopy studies, we 
demonstrated that GPER is localized in the plasmatic membrane but is also associated 
to the endoplasmic reticulum in rat lactotrophs. Moreover, we found that local Gper 
expression is regulated negatively by 17β-estradiol (E2) and progesterone (P4) and 
fluctuates during the estrus cycle, being minimal in proestrus. Interestingly, lack of 
ovarian steroids after an ovariectomy (OVX) significantly increased pituitary GPER 
expression specifically in the three morphologically different subtypes of lactotrophs. 
We found a rapid estradiol stimulatory effect on PRL secretion mediated by GPER, 
both in vitro and ex vivo, using a GPER agonist G1, and this effect was prevented by the 
GPER antagonist G36, demonstrating a novel role for this receptor. Then, the increased 
pituitary GPER expression after OVX could lead to alterations in the pituitary function 
as all three lactotroph subtypes are target of GPER ligand and could be involved in the 
PRL secretion mediated by GPER. Therefore, it should be taken into consideration in the 
response of the gland to an eventual hormone replacement therapy.

Introduction

The involvement of estrogens in the control of pituitary 
function has been extensively studied (reviewed in 
Seilicovich 2010). Initially, estradiol was described to 
induce lactotroph proliferation through ERα; however, 
apoptotic (Zarate  et  al. 2009) and antiproliferative 
(Perez et al. 2015) actions of estradiol in anterior pituitary 
cells were also demonstrated. These opposite effects 

depend on the duration of the stimuli, the receptor 
subtype involved, and receptor subcellular localization. 
For example, nuclear ERα may trigger lactotroph 
proliferation, whereas membrane-associated ERα was 
described to mediate antimitogenic (Gutierrez  et  al. 
2008) and apoptotic effects (Zarate  et  al. 2009). On the 
other hand, ERβ receptors, expressed in the lactotroph 
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population (Mitchner et al. 1998), are also able to mediate 
antiproliferative estradiol actions (Perez et al. 2015).

There is substantial evidence that estradiol exerts rapid 
non-genomic effects initiated at the cell surface through 
binding to membrane estrogen receptors (Kelly & Levin 
2001, Levin & Hammes 2016). Although it was demonstrated 
that membrane-initiated signaling could be mediated by the 
classic receptors ERα and ERβ trafficked to the cell membrane 
(Zhang et al. 2011, 2012, Zarate et al. 2012, Micevych et al. 
2017), the involvement of the 7-transmembrane G protein-
coupled estrogen receptor (GPER, formerly named GPR30) 
in estradiol-induced rapid, non-genomic events has been 
in the spotlight during the last decade (Maggiolini & Picard 
2010, Zimmerman  et  al. 2016, De Francesco  et  al. 2017, 
Thomas 2017, Fredette et al. 2018).

It has been proposed that GPER collaborates with 
membrane ERα signaling (Levin 2009). However, there are 
numerous studies demonstrating specific-GPER function 
in estradiol-induced non-genomic events in ER-negative 
cells (Filardo et al. 2000, 2002, Thomas et al. 2005), as well 
as studies performed in GPER KO mice (Martensson et al. 
2009, Prossnitz & Hathaway 2015) which clearly support 
the idea that GPER can act as a ‘stand-alone’ receptor.

GPER, a transmembrane receptor belonging to the 
GPCR family, was first identified in human breast cancer 
cells (Filardo  et  al. 2000), but was later found to be 
expressed ubiquitously, even in the rat brain and pituitary 
(Brailoiu et al. 2007, Hazell et al. 2009, Rudolf & Kadokawa 
2013). Although previous reports have provided strong 
evidence of GPER expression in the pituitary gland, 
most of these studies focused on gonadotroph cells 
(Brailoiu et al. 2007, Hazell et al. 2009), meanwhile GPER 
involvement in the physiology and pathology of the 
lactotroph population remains to be elucidated.

In the present study, we examined the expression 
and localization of GPER in the lactotroph population, 
the local regulation of this receptor by estradiol and 
progesterone, as well as the local alterations induced 
in GPER expression in the anterior pituitary gland after 
ovariectomy. In addition, using pharmacological tools 
(GPER agonist and antagonist) the involvement of GPER 
in the regulation of PRL release was studied in vitro and ex 
vivo, in the GH3 cell line and in rat pituitaries respectively.

Materials and methods

Animals

Adult Sprague–Dawley (SD) rats (3-month old, 250 ± 30 g) 
were maintained at 25 ± 2°C and 12 h light–dark cycle, 

lights 07:00–19:00 h. The animals were provided with 
food and water ad libitum. All the animal procedures were 
carried out in accordance with the National Institutes of 
Health guidelines for animal research (8th ed. 2010, NRC, 
USA) and the European Communities Council Directive of 
November 2010 (2010/63/UE) and approved by Institute 
of Biology and Experimental Medicine Animal Care and 
Use Committee (CICUAL).

SD female rats were ovariectomized (OVX) under 
anesthesia (Ketamine 50 mg/kg + Xylazine 10 mg, i.p.) as 
previously described (Ferraris et al. 2014). Two weeks after 
surgery, animals were killed by decapitation and anterior 
pituitaries were carefully excised and the neurohypophysis 
was removed. In addition, cycling rats were monitored 
daily by vaginal smears, during 4–5 day estrous cycles, and 
killed at diestrus, proestrus or estrus. Control female rats 
were used at diestrus. Anterior pituitary glands were kept 
in Dulbecco Eagle’s Modified Medium (DMEM) (Sigma-
Aldrich) or Trizol Reagent (Ambion, Life Technologies) 
at −70°C until assays were conducted. For immunogold 
electron microscopy, anterior pituitaries from female rats 
in diestrus and OVX rats were collected in a mixture of 
4% v/v formaldehyde, 1.5% v/v glutaraldehyde and 0.1 M 
cacodylate buffer and processed as described below.

In vivo experiments

Adult female SD rats in diestrus were injected with 
estradiol valerate (0.2 mg/kg sc, Schering, Buenos Aires, 
Argentina), progesterone (6.5 mg/kg sc, Sigma-Aldrich) or 
castor oil (vehicle, control group). Animals were killed by 
decapitation after 1, 2 or 24 h. Anterior pituitaries were 
collected in Trizol reagent for qRT-PCR studies.

Ex vivo assay

Female SD rats in diestrus were killed by decapitation and 
anterior pituitaries were collected in 250 µL of Dulbecco 
Eagle’s Modified Medium (DMEM) supplemented with 
15% v/v horse serum (Internegocios, Argentina), 2.5% 
v/v fetal bovine serum (Natocor, Argentina) and 20 µg/mL 
of gentamicin (Sigma-Aldrich). Anterior pituitaries were 
washed and cut in pieces with fresh media and incubated 
for 2 h at 37°C. The GPER receptor antagonist G36 (1 μM) 
or vehicle (ethanol, 1 μM) were added to pituitary explants 
and incubated for 30 min at 37°C. At the end of 30-min 
period, explants (with or without G36) were stimulated 
with either vehicle, 17β-estradiol (E2, 100 nM) or the 
GPER receptor agonist G1 (100 nM) for 15 min at 37°C. 
At the end of the treatment period, secreted medium and 
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pituitaries were collected and PRL levels were measured by 
radioimmunoassay (RIA).

GH3 cell culture

GH3 clone was established in 1965 by A H Tashjian Jr et al. 
from a pituitary tumor carried in a 7-month-old female 
Wistar–Furth rat (Tashjian Jr et al. 1970). GH3 cells (ATCC 
CCL-82.1, authenticated by STRS analysis) were cultured 
with DMEM supplemented with 10% v/v fetal bovine 
serum and 10% v/v horse serum (previously adsorbed), 
1 mg/mL MEM amino acids, 1 mg/mL glutamine and 
100 mg/mL of gentamicin. Medium was changed every 
1–2  days and 0.025% v/v trypsin-EDTA was used to 
harvest cells.

For experiments, GH3 cells seeded on 24-well culture 
plates were incubated with DMEM containing vehicle 
(ethanol, 1 μM) or GPER antagonist (G36, 1 μM) for 30 min. 
Then, cells were incubated with 17β-estradiol (E2, 10 nM) 
or GPER agonist (G1, 1 μM) alone or in combination 
with G36 for additional 15 min. GH3 cells incubated 
with vehicle (Ethanol, 1 μM) were used as controls. After 
experimental treatments, medium was collected and 
stored at −70°C until rat prolactin radioimmunoassays 
(rPRL RIA) were performed.

Rat prolactin radioimmunoassay (rPRL RIA)

PRL levels were measured by RIA using reagents provided 
by the National Institute of Diabetes and Digestive and 
Kidney Diseases National Hormone and Pituitary Program 
(NHPP) (Dr A F Parlow, NHPP, Torrance, CA, USA). Results 
are expressed as ng/mL in terms of referent preparation 3 
(RP3). Intra- and inter-assay coefficients of variation were 
6.7 and 11.9%, respectively.

Quantitative real-time RT-PCR (qRT-PCR)

Anterior pituitaries from different experimental groups 
were collected in TRIzol reagent. Total RNA was isolated 
according to the manufacturer’s protocol as described in 
Faraoni et al. (2017). Reverse transcription was performed 
using 1 µg of total RNA and the resulting cDNA was used 
for qRT-PCR analysis. A working solution of cDNA was 
prepared by adding 5 µL of samples diluted 1:20 with RNase-
free water to a 5 µL master mix containing 2 µL EVA green 
qPCR mix (Solis BioDyne, Estonia) and 0.5 µM of specific 
primers for Gper: 5′-ACGCTCAAGGCAGTCATACC-3′ 
(sense); 5′-CTCCCCTGTCCGTTTTCCTC-3′ (antisense). 
To determine the appropriate housekeeping gene as 

an internal control to normalize the differences in the 
amount of starting template between samples, two 
reference genes were evaluated: the 60S ribosomal protein 
L38 (Rpl38): 5′-GTTCGGTGCTCGCTCCTGT-3′ (sense) 
and 5′-CAGATTTGGCATCCTTCCGC-3′ (antisense); and 
Cyclophilin B (Cypb): 5′-GACCCTCCGTGGCCAACGAT-3′ 
(sense) and 5′-GTCACTCGTCCTACAGGTTCGTCTC-3′ 
(antisense). qPCR efficiency of each pair of primers was 
tested using serially diluted samples and was established 
by means of calibration curves. Amplification efficiency 
was determined from the slope of the log-linear portion 
of the calibration curve. Specifically, PCR efficiency was 
calculated as 10(−1/slope) − 1, when the logarithm of the 
initial template concentration was plotted on the x axis 
and Ct was plotted on the y axis. All primers showed 
similar efficiencies, approximately 95–100%. Rpl38 was 
selected as the most proper housekeeping gene due to the 
parallelism presented between its slope of the regression 
line (and consequently on the value of the correlation 
coefficient) with the Gper slope. Table 1 shows average of 
Ct values obtained in the in vivo treatment with estradiol 
showing stable expression levels of Rpl38 regardless of the 
experimental conditions, ensuring a proper normalization 
within the samples and a robust q-RT-PCR analysis. 
Relative fold change in target mRNAs was quantified 
using the 2−∆∆Ct method, where ∆Ct was determined by 
subtracting the average control ∆Ct from the ∆Ct of the 
sample. Each ∆Ct was calculated as by substracting the 
Cts of Rpl38 from the Gper Cts. All cDNA samples were 
assayed in duplicate for each gene and melt curve analysis 
was performed to ensure specificity of amplification.

Immunostaining by confocal laser scanning 
microscopy

Pituitaries from 3-month-old female SD rats in diestrus 
were removed immediately after euthanasia and the 
pituitary cells were dispersed and seeded on glass coverslips 
(13 mm) at a density of 2.5 × 104 cells/well. Then, the cells 
were maintained in DMEM supplemented with 4% v/v 
fetal calf serum and 8% v/v horse serum (Gibco) in an 

Table 1 Average of Ct values showing stable expression of 
Rpl38 within samples.

Ct values ( )X Rpl38 Gper

Diestrus 24.44 28.43
E2 1 h 24.16 28.31
E2 2 h 24.34 29.43
E2 24 h 24.22 30.07
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incubator with a humidified atmosphere of 5% CO2 and 
95% air at 37°C for 3 days, and finally were fixed in 4% 
v/v formaldehyde.

For GPER detection, dispersed pituitary cells in 
coverslips were permeabilized with 0.5% v/v Triton 
X-100/PBS, blocked for 1 h in 5% PBS–BSA, incubated 
overnight in primary antibody (anti-rat GPER, ab39742, 
Abcam, 1:100) and exposed to Alexa 594 anti-rabbit 
secondary antibody (Invitrogen, 1:1000) for 1 h. Then, 
the cells were blocked for 1 h in 5% PBS–BSA, incubated 
with guinea pig antibody directed against rat PRL or rat 
LH or rat GH (1:1000, Dr A Parlow, NHPP, Torrance, CA, 
USA) and further incubated with Alexa 488 anti-guinea 
pig secondary antibody (Invitrogen, 1:1000) for 1 h. The 
glass coverslips were mounted with fluoromount (Sigma) 
containing DAPI. Negative controls were carried out 
incubating the coverslips with the corresponding normal 
serum, instead of primary antibody or with antibody 
dilution plus five-fold excess of the control peptide antigen 
(GPER Peptide, ab41565, Abcam) overnight at 4°C. Images 
were obtained using the inverted confocal laser scanning 
microscope FluoView FV 1000 (Olympus). The analysis 
of confocal microscopy images was performed using the 
software FV10-ASW 1.6 Viewer. Briefly, the presence of 
GPER in GH3 cells was evaluated by immunostaining as 
described above. GH3 cells (2 × 105 cells per well) were 
seeded onto glass coverslips in 24-well tissue culture plates 
and fixed with 4% v/v paraformaldehyde (PFA) in PBS for 
20 min. After cell permeabilization and 1-h blocking in 
a humidified chamber, cells were incubated with GPER 
antibody (anti-rat GPER, ab39742, Abcam, 1:50) and with 
an Alexa Fluor 488 goat anti-rabbit secondary antibody 
(1:100) for 1 h at room temperature. Cells were stained 
with DAPI and mounted with Vectashield. Then, cells were 
visualized in a fluorescence light microscope (Axiophot, 
Carl Zeiss, Jena, Germany).

Immunogold electron microscopy

The subcellular localization of GPER in lactotroph cells 
was determined by applying a labeling post-embedding 
protocol. Pituitary glands from female rats at diestrus 
stage or OVX rats were fixed in a mixture of 4% v/v 
formaldehyde, 1.5% v/v glutaraldehyde and 0.1 M 
cacodylate buffer, pH 7.3, at room temperature, with 
osmiun fixation being omitted. After dehydration and 
embedding in LR White (London Resin, UK), thin sections 
were cut using a JEOL ultramicrotome with a diamond 
knife. Then, the grids were labeled for GPER overnight 
at 4°C (anti-rat GPER, ab39742, Abcam, 1:50), washed 

and incubated with anti-rabbit secondary antibody 
conjugated to 15 nm colloidal gold particles (1:18; 
Electron Microscopy Sciences; Hatfield, USA). To confirm 
that lactotroph cells expressed GPER, ultrastructural 
immunocytochemistry for PRL was performed. Thin 
sections were incubated overnight at 4°C with antisera 
raised against rat PRL diluted 1:5000 (NIHDDK, Bethesda, 
MD, USA), washed and incubated with anti-rabbit 
secondary antibody conjugated to 5 nm colloidal gold 
particles (1:50; Electron Microscopy Sciences; Hatfield, 
USA). To validate the specificity of the immunostaining, 
controls were performed with 1% v/v BSA in PBS instead 
of primary antiserum. Then, sections were stained with 
an aqueous uranyl acetate saturate solution, examined in 
a Zeiss LEO 906-E electron microscope, and photographed 
with a megaview III camera.

Flow cytometry

Control and OVX female rats were killed by decapitation 
and anterior pituitary glands were removed within 
minutes and collected in 1000 µL of DMEM supplemented 
and processed as previously described in Ferraris  et  al. 
(2014). Cell viability, as assessed by trypan blue exclusion, 
was over 95%. Cells were fixed using PFA 0.2% for 15 min 
at room temperature, washed and resuspended in PBS. 
Then, after permeabilization of the cells with saponine-
PBS 0.2% w/v, washing and centrifuging, immunostaining 
of GPER-positive cells and of lactotrophs was performed 
using a rabbit anti-rat GPER (1 μg/mL) and a guinea pig 
antiserum directed against rat PRL (1:2000) (Dr A Parlow, 
NHPP, Torrance, CA, USA) for 1 h at 37°C. Cells were then 
washed in PBS and incubated with goat PE-conjugated 
anti-rabbit (Chemicon International, Temecula, CA, 
USA) (1:67) and donkey FITC-conjugated anti-guinea 
pig antibody (Chemicon International) (1:75) for 
40 min at 37°C in slow agitation. Cells incubated with 
guinea pig serum instead of PRL antiserum and rabbit 
IgG instead of specific primary antibodies were used as 
isotype controls. Cells were washed, resuspended in PBS 
and analyzed by FACS (Zarate et al. 2009). Fluorescence 
intensity of ≥10,000 gated-cells/tube was analyzed using 
a FACScalibur (BD). Data was analyzed using WinMdi 
and FlowJo Softwares.

The experiments (n = 6) were performed using two 
different GPER antibodies to ensure specificity. Similar 
results were obtained using either a rabbit antibody 
against rat GPER (sc-48525, Santa Cruz Biotechnology 
Inc, 5 μg/mL) or a rabbit anti-rat GPER (ab39742, Abcam, 
1 μg/mL).
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Statistical analysis

Results are expressed as mean ± s.e.m. and the significance 
levels were chosen at P < 0.05. Student’s t test was used 
to compare OVX and control group data. Estradiol and 
progesterone acute treatments were analyzed by a One-
way ANOVA followed by a Tukey’s post hoc test. In vitro 
and ex vivo experiments were repeated three times with at 
least three replicates, and treatments were compared by a 
One-way ANOVA followed by a Tukey’s post hoc test.

Results

GPER is expressed in the lactotroph population

First, in order to establish the localization of GPER in 
pituitary cells, a double indirect immunofluorescence 
using confocal microscopy was performed. Our results 
showed lactotroph cells (immunoreactive to PRL), 
somatotroph cells (GH) and gonadotroph cells (βLH) 
with a circumferential staining pattern, evidencing the 
presence of GPER in plasmatic membrane in addition to 
punctuated diffuse fluorescence signal distributed in the 
cytoplasm (Fig. 1).

Immunocytochemical controls evaluated the specificity 
of the primary antiserum, and no immunolabelling was 
found after the omission of the primary antibody and  
pre-absorbing the antibody with purified antigen.

Next, to determine the percentage of GPER-positive 
cells expressing PRL, dispersed and double-immunostained 
(GPER, PRL) anterior pituitary cells from female rats were 
analyzed by flow cytometry. Our results revealed that 
38.5 ± 8.4% were GPER positive among the total anterior 
pituitary cells (Fig. 2A and B). Interestingly, 39.5 ± 9.8% of 
the GPER-positive cells were PRL positive, and 35.5 ± 3.5% 
of the PRL-positive cells were GPER positive (Fig. 2C and D).

Estradiol and progesterone negatively regulates 
pituitary Gper mRNA expression

17β-Estradiol (E2) and progesterone (P4) typically 
upregulate or downregulate the expression of their classical 
receptors according to the tissue and the physiological 
situation. Then, in order to study E2 and P4 regulation 
of pituitary Gper expression, we next performed acute  
in vivo assays in adult female rats. In vivo treatment with 
E2 significantly decreased pituitary Gper levels after 2 and 
24 h compared to control rats in diestrus (CTRL), (Fig. 3A). 
In addition, in vivo treatment with P4 decreased pituitary 
Gper expression after 24 h (Fig.  3B). In accordance,  

and due to the loss of the control by ovarian steroids, Gper 
expression was significantly increased in the pituitary 
gland of OVX adult female rats (Fig. 3C).

In order to evaluate the physiological impact of the 
regulatory effects of gonadal steroid hormones, Gper 
mRNA levels were measured in the anterior pituitary 
gland of female rats at different stages of the estrous cycle. 
Interestingly, Gper mRNA levels were the lowest on the 
morning of proestrus, when steroid levels were at their 
highest (Freeman 1986) (Fig.  3D). Finally, we evaluated 
putative gender differences, but similar levels of pituitary 
Gper mRNA were found in male pituitaries when compared 
with those found in females in diestrus (data not shown).

Ovariectomy increases GPER-positive cells among the 
lactotroph population

To examine whether the increased pituitary Gper 
mRNA expression after OVX (Fig.  3C) was associated 
to an increase in the protein receptor expression in the 
lactotroph population, dispersed anterior pituitary cells 
from controls (diestrus) and OVX rats were double-
immunostained (GPER, PRL) and analyzed by flow 
cytometry. The cytometry analysis shows that the 
percentage of GPER-positive anterior pituitary cells 
significantly increased in OVX rats compared to CTRL 
rats in diestrus (Fig.  4A). Interestingly, this increment 
was primarily due to an increase in GPER expression in 
the lactotroph population (GPER-positive lactotrophs, 
Fig.  4B) since no differences were found, neither the 
percentage of GPER-positive non-lactotrophs cells 
(Fig. 4C) nor the percentage of lactotrophs/total pituitary 
cells among groups (Fig. 4D).

GPER in different morphological subtypes of 
lactotrophs

It is well known that lactotroph population exhibits 
morphological and functional heterogeneity (Kukstas et al. 
1990, De Paul et al. 1997, Christian et al. 2007). In fact, 
three subtypes of lactotrophs, defined morphologically 
by electron microscopy (De Paul et  al. 1997), could be 
observed in the anterior pituitary gland from rodents. 
Interestingly, the proportion of each lactotroph subtype 
depends, at least partially, on estradiol levels; then it 
was described that the depletion of estrogen, induced 
remarkable changes in the lactotroph population.

To the extent of deepening the study of GPER 
subcellular localization and the lactotroph subtypes 
expressing GPER, a post-embedding immunolabelling 
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Figure 1
GPER expression in anterior pituitary gland. Anterior pituitary cells from 3-month-old female rats in diestrus were processed for GPER identification. 
White arrows show lactotrophs (PRL), somatotrophs (GH) and gonadotrophs (β-LH) expressing GPER. Nuclei were stained with DAPI. To validate the 
specificity of the immunostaining, negative controls were performed using blocking peptide or replacing primary antibody with the corresponding 
normal serum and then incubated with secondary antibody Alexa 594 or Alexa 488. Bar = 20 μm.
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with IgG-colloidal gold for transmission electron 
microscopy was used. GPER protein was immunolabelled 
using secondary antibody conjugated to colloidal gold 
particles of 15 nm and lactotroph cells were identify 
immunolabelling PRL with a secondary antibody 
conjugated to colloidal gold particles of 5 nm. Our 
results show lactotroph cells expressing GPER, being the 
subcellular localization in plasmatic membrane, with the 
gold particles appearing to be attached to the inner surface 
of the plasmalemma, in rough endoplasmic reticulum 
and with a few colloidal gold particles being observed 
in the free cytosol (Fig. 5). In female rats in diestrus, the 
lactotroph cells were recognized by their irregular, large 
and polymorphic secretory granules of sizes ranging 
between 300 and 700 nm distributed in the cytoplasm and 
immunolabelled for PRL, typical characteristics of subtype 
I lactotrophs (Fig. 5A, B and C). In pituitaries from OVX 
rats, the three morphological subtypes of lactotrophs (I, II 
and III), were GPER positive. The subtype I was recognized 
by the irregular and large granules (Fig. 5E), the subtype II 
were recognized by the medium-sized spherical granules 
about diameter 200–250 nm (Fig.  5F), and the subtype 
III was distinguished by their small spherical granules, 
between 100 and 200 nm (Fig. 5G).

GPER activation induces PRL release

GH3 cells
In order to investigate the involvement of GPER in rapid 
estradiol effect on prolactin secretion, we performed 
in vitro assays using the GH3 cell line. First, the GPER 
protein expression in GH3 cells was demonstrated by ICC 
(Supplementary Fig. 1, see section on supplementary data 
given at the end of this article). Then stimulation assays 
with E2 and GPER agonist and antagonist were performed. 
After 15 min of stimulation both E2 and G1 increased PRL 
secretion (**P = 0.005), whereas the GPER antagonist G36 
prevented the G1 effect, and partially the E2 stimulation 
(Fig. 6A) without exerting any per se effects.

Ex vivo assay
Once stimulation of PRL secretion induced by E2 and G1, 
involving GPER receptors was confirmed in vitro, this effect 
was assayed in female rat pituitary explants. As shown in 
Fig. 6B, both E2 and G1 increased PRL release after 15-min 
stimulation. These effects were not observed when tissues 
were pre-incubated with G36, implying that GPER 
receptors are involved in rapid E2 and G1 stimulation of 
PRL release. G36 did not modify PRL secretion per se.

Figure 2
Flow cytometry analysis of GPER-positive cells in 
dispersed anterior rat pituitary cells. Dispersed 
anterior pituitary cells were incubated with 
anti-GPER antibody (ab39742, Abcam) and 
analyzed by flow cytometry, n = 8. Representative 
dot plots and histograms showing: (A and B) 
percentage of total anterior pituitary cells 
GPER-positive (GPER+) and (C and D) lactotrophs 
GPER-positive. Gray: isotype controls; gate: 
lactotrophs.
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Discussion

The involvement of estradiol in the control of PRL 
secretion was widely demonstrated (Mitchner  et  al. 
1998, Seilicovich 2010). Although this effect has been 
long proposed to be mediated by ERα (Yen  et  al. 1974, 
Ben Jonathan  et  al. 2009), in this study, we provide 
new evidences that estradiol can rapidly stimulate PRL 
secretion in a mechanism mediated by GPER in the 
lactotroph population.

Previous studies have provided strong evidence of 
GPER expression in the pituitary gland, but focusing on 
gonadotroph function (Brailoiu  et  al. 2007, Hazell  et  al. 
2009). For example, Rudolf et  al. reported that 
approximately 50% of GPER-positive cells express LH in 
bovine anterior pituitaries. This finding supports the idea 
that GPER is expressed in non-gonadotroph pituitary cells 
as well (Rudolf & Kadokawa 2013). Our present results 
are in agreement with previous studies, and showed 

GPER expression in gonadotrophs, lactotrophs and also 
in somatotrophs. Moreover, the flow cytometry analysis 
revealed that about the 40% of the GPER-positive cells 
are PRL-positive and immunocytochemical and inmuno-
electron-microscopy studies strongly demonstrated GPER 
expression in lactotroph population. The present results, 
indicating that GPER expression in is primarily localized 
to the plasma membrane, are consistent with previous 
findings demonstrating the localization of this receptor in 
the cell surface of other cell types (Filardo et al. 2000, 2008, 
Kelly & Levin 2001, Thomas 2017). In agreement, and 
using electronic microscopy, we confirmed the subcellular 
localization of GPER in plasmatic membrane, with gold 
particles attached to the inner surface of the plasmalemma. 
However, GPER was also localized in the cytosol. This is 
in accordance with previous results describing GPER 
localization in Golgi membranes and in the endoplasmic 
reticulum in several cancer cell lines. Interestingly, this 
intracellular localization seems to have a specific role. 
Revankar et al. demonstrated that activation of intracellular 
GPER by estradiol induces intracellular calcium mobilization 
and synthesis of phosphatidylinositol 3,4,5-trisphosphate 
in the nucleus. Then, GPER was postulated as a plasmatic 
membrane and intracellular transmembrane estrogen 
receptor (Revankar et al. 2005, 2007).

Figure 3
Regulation of Gper mRNA expression in the rat pituitary by E2 and P4. 
Alterations induced by OVX, and during the estrous cycle. (A) E2 
regulation of pituitary Gper mRNA levels was assessed in vivo in female 
rats in diestrus (E2, 0.2 mg/kg BW, sc) 1, 2 and 24 h or vehicle (CTRL). 
Pituitary Gper expression was analyzed by qRT-PCR. One-way ANOVA 
followed by Tukey’s post hoc test, n = 5, **P < 0.0052 E2 2 h vs CTRL; 
****P < 0.0001 E2 24 h vs CTRL; **P = 0.0059 E2 1 h vs 2 h; ****P < 0.0001 
E2 1 h vs 24 h and *P = 0.0239 E2 2 h vs 24 h. (B) P4 regulation of Gper 
mRNA levels was studied similarly, in vivo (P4 6.5 mg/kg BW, sc, 1, 2 and 
24 h) or castor oil (CTRL) in female rats in diestrus. One-way ANOVA 
followed by Tukey’s post hoc test, n = 5, *P = 0.0484 P4 24 h vs CTRL and 
*P = 0219 P4 1 h vs 24 h. (C) The effect of OVX (15 days post-OVX) on 
pituitary Gper mRNA levels, analyzed by qRT-PCR. Student’s t test, n = 6, 
**P = 0.0083 OVX vs control. (D) Gper mRNA levels in pituitaries from 
cycling rats. One-way ANOVA followed by Tukey’s test, n = 5; ***P < 0.0001 
proestrus vs diestrus; *P < 0.0139 estrus vs diestrus.

Figure 4
Effect of OVX in GPER expression in lactotrophs. (A) Percentage of GPER+ 
pituitary cells measured by flow cytometry in OVX rats compared to their 
control in diestrus: Student’s t test, n = 6, **P = 0.0022. (B) Percentage of 
GPER+ lactotrophs (PRL+) population: Student’s t test, n = 6, **P = 0.0063. 
(C) Percentage of GPER+ non-lactotrophs (PRL−) pituitary cells, Student’s  
t test, n = 6, P > 0.05. (D) Percentage of lactotrophs in both groups. 
Student’s t test, n = 6, P > 0.05.
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The biological significance of GPER being highly 
expressed in rat lactotrophs, suggested a role for this 
receptor in this cell type population. Previous studies 
postulated GPER involvement in prolactin secretion: (i) 
induced by xenoestrogens in the GH3 cell line (Vinas & 
Watson 2013) or (ii) an indirect effect activating GPER 
in hypothalamus (Lebesgue  et  al. 2009). Regarding the 
latter, this is particularly relevant considering that a high 
expression of GPER was found in the paraventricular 
nucleus and supraoptic nucleus in rats (Brailoiu  et  al. 
2007). In fact, it has been described that GPER agonist 
G1 administered in vivo into the third ventricle triggers 
a PRL surge similar in amplitude to the one observed 
in response to E2 (Lebesgue  et  al. 2009). In the light of 
the aforementioned results it may be interesting to 
study the hypothalamic influence of E2-GPER in the 
neuroendocrine regulation of proestrus surge of PRL 
secretion. The complex mechanism is poorly understood 
and appears to be due to a complex mechanism  
starting in the hypothalamus, more than a direct  
estradiol-mediated rapid action in the lactotroph 
population (Szawka et al. 2007).

Explicit data regarding the role of GPER in normal 
pituitary lactotrophs is missing. Our present results 
demonstrate that GPER activation rapidly increases PRL 
secretion in vitro (in GH3 cell line) and ex vivo (female rat 

pituitary explants). Moreover, this effect was counteracted 
when cells or tissues were pre-incubated with G36, a GPER 
antagonist. Taken together, our results provide the first 
evidences of a specific role of GPER in rat lactotrophs.

In addition, we found that pituitary Gper expression 
is negatively regulated by estradiol and progesterone 
treatments, and, moreover, it changes during the estrous 
cycle. In consequence, GPER expression (protein and 
transcript) was found increased after OVX, likely due 
to the lack of ovarian steroids. In fact, according to the 
flow cytometry studies with double immunostaining 
(PRL, GPER), the increase in pituitary GPER expression 
after OVX was observed specifically in the lactotroph 
population, as the proportion of GPER-positive cells, and 
GPER-positive lactotrophs significantly increased in OVX 
rats compared to controls in diestrus and no differences 
were found neither in the proportion of non-lactotroph 
GPER-positive cells nor in the proportion of lactotrophs 
among groups.

It was previously described that three subtypes 
of lactotrophs, defined morphologically by electron 
microscopy, could be observed in the anterior pituitary 
gland from rodents (De Paul et al. 1997). In our present 
work, GPER was observed mainly in the subtype  
I (lactotroph cells), in pituitaries from female rats at 
diestrus. This is reasonable considering that, in adult 

Figure 5
Immuno-electron-microscopy for GPER. (A, B and 
C) Subtype I lactotroph cells from female rat at 
diestrus with gold particles of 15 nm indicating 
the presence of GPER in plasmatic membrane 
(arrows), rough endoplasmic reticulum (RER) and 
free cytosol. Inset: Irregular, large and 
polymorphic secretory granules immunolabelled 
for PRL (5 nm gold particles). (D) Negative control. 
Bar = 0.5 μm. (E, F and G) Lactotroph cells from 
OVX female rat immunolabelled for GPER with 
gold particles of 15 nm (GPER) in plasmatic 
membrane (arrows). PRL was immunostained 
with 5 nm gold particles identifying lactotroph 
cells with large and irregular secretory granules 
(E: Subtype I lactotroph), lactotrophs with 
spherical granules about diameter 200–250 nm  
(F: Subtype II), and lactotroph cells with small 
spherical granules, between 100 and 200 nm 
(G: Subtype III). N, nucleus; pm, plasmatic 
membrane; g, secretory granules. Bar = 0.2 μm.
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female rats, the subtype I represents about the 90% of 
the total of lactotroph population, and the subtype II 
and III account for less than 10% (Kurosumi et al. 1987). 
However, when the electron microscopy was performed 
in pituitary glands from OVX female rats, the GPER 
expression was found extended to the three lactotroph 
subtypes, characteristic of this model (pituitaries from 
OVX rats) where the 35% of lactotrophs are subtype I, 30% 
are subtype II and about 36% are subtype III (Maldonado 
& Aoki 1994).

This result could explain the specific increase of GPER-
positive lactotrophs observed in OVX rats compared to 
controls in diestrus, and moreover, shows that all three 
lactotroph subtypes are target of GPER ligand and could be 
involved in the PRL secretion mediated by GPER in OVX rats.

Considering that a rapid estradiol stimulatory effect 
on PRL secretion mediated by GPER was demonstrated 
in vitro and in pituitary explants, the elevated expression 
of GPER observed in the lactotroph population after an 
OVX, should be taken into consideration in: (i) the use of 
OVX as animal models, (ii) the response of the gland to an 
eventual hormone replacement therapy after OVX.

Estrogen replacement therapy is frequently suggested 
in women after bilateral prophylactic oophorectomy to 
prevent the potential negative effects of losing of natural 
hormone production (Watson  et  al. 2008, Erekson  et  al. 
2013). As the major concern in those patients is the risk of 
cancer, the impact of the oophorectomy in the pituitary 
function, with or without hormone replacement therapy, 
is usually ignored.

Even though our present results do not include 
the involvement of GPER in lactotroph proliferation, 
several studies performed in many cancer cell lines and 
tumors of breast, endometrium, ovaries, thyroid and 
prostate among others, suggest that high levels of GPER 
protein expression correlate with increased tumor size 
and poor outcome, and, moreover, stimulation of GPER 
with estrogenic compounds such as atrazine, bisphenol 
A or tamoxifen activates cell proliferation (Prossnitz & 
Barton 2011).

In the light of these facts and our present results, it is 
worth facing future studies to investigate the involvement 
of GPER in physiological and pathological lactotroph 
proliferation and the significance of increased expression 
of GPER observed in lactotrophs after OVX in rats.
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Figure 6
Effect of E2, G1 and/or G36 on PRL levels in vitro 
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levels were measured by RIA. One-way ANOVA 
followed by Tukey’s post hoc test, n = 3, three 
replicates in each set of experiments, ***P < 0.001 
E2 vs V, *P < 0.05 E2 + G36 vs V, ***P < 0.001 G1 vs 
V and ***P < 0.001 G1 vs G1 + G36. (B) SD rats 
were sacrificed and anterior pituitaries were 
collected. Explants were incubated 30 min with 
G36 (1 μM) or vehicle (ethanol, 1 μM) and then 
estradiol (100 nM) or G1 (100 nM) were added 
alone or in combination with G36 for 15 min at 
37°C. After treatments, PRL levels were measured 
by RIA in secreted medium. One-way ANOVA 
followed by Tukey’s post hoc test, n = 3, three 
replicates in each set of experiments, **P < 0.01 
E2 vs V, **P < 0.01 G1 vs V, ***P < 0.001 E2 vs 
E2 + G36 and ***P < 0.001 G1 vs G1 + G36.
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