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THE TRUSS-LIKE  DISCRETE ELEMENT METHOD IN FRACTURE 

AND DAMAGE MECHANICS 

 

Abstract 

Purpose – It is the purpose of this paper to further develop the truss-like discrete element 

method (DEM) in order to make it suitable to deal with damage and fracture problems.   

Design/methodology/approach – Finite and boundary elements are the best developed 

methods in the field of numerical fracture and damage mechanics. However, these methods 

are based on a continuum approach, and thus, the modelling of crack nucleation and 

propagation could be sometimes a cumbersome task. Besides, discrete methods possess the 

natural ability to introduce discontinuities in a very direct and intuitive way by simply 

breaking the link between their discrete components. Within this context, the present work 

extends the capabilities of a truss-like DEM via the introduction of three novel features: a 

tri-linear elasto-plastic constitutive law; a methodology for crack discretization and the 

computation of stress intensity factors; and a methodology for the computation of the stress 

field components from the unixial discrete-element results. 

Findings – Obtained results show the suitability and the performance of the proposed 

methodologies to solve static and dynamic crack problems (including crack propagation) in 

brittle and elasto-plastic materials. Computed results are in good agreement with 

experimental and numerical results reported in the bibliography.  

Originality/value – The scope of the truss-like DEM has been extended. New procedures 

have been introduced to deal with elastoplastic crack problems and to improve the post 

processing of the stress results.   

Research implications – This paper demonstrates the versatility of the truss-like DEM to 

deal with damage mechanics problems. The approach used in this work can be extended to 

the implementation of time dependent damage mechanisms. Besides, the capabilities of the 

discrete approach could be exploited by coupling the truss-like DEM to finite and boundary 

element methods. Coupling strategies would allow using the DEM to model the regions of 

the problem where crack nucleation and propagation occurs, while finite or boundary 

elements are used to model the undamaged regions. 
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Introduction  

During the 1960s an alternative set of computational methods that do not use a set of 

differential or integral equations to describe the problem were introduced. Depending on 

the individual element introduced, such as particles, agents or molecules,  methods such as 

molecular dynamics (MD), discrete element (DEM), discontinuous deformation analysis 

(DDA), and similar were invented. In the process, computational mechanics of discontinua 

emerged, and its is now  an integral part of cutting edge research in nanotechnology and 

industrial processes spanning over diverse fields as mining, milling, pharmaceuticals, 

powders, ceramics, composites, blasting, construction, etc (Munjiza, 2009). 

The numerical simulation of fracture and damage problems is always an active research 

topic. Finite and boundary element methods are the best developed methods in this field 

(see for instance Anderson, 2005 and Aliabadi and Rooke, 1991). However, these methods 

are based on a continuum approach, and thus the modelling of crack nucleation and 

propagation could be a cumbersome task. In contrast, it could be argued that discrete 

methods have the natural ability to introduce discontinuities in a very direct and intuitive 

way by simply breaking the link between their discrete components. Moreover, discrete 

methods offer a convenient framework to account for the disorder of the material 

microstructure by means of statistical models. This feature constitutes and advantage over 

traditional continuum models of micromechanics which adopt homogenization techniques 

to convert a disordered material into an equivalent continuum model. This approach, 

reasonable in the pristine state, is not realistic in presence of cooperative phenomena 

between existing defects and/or microcracks (Rinaldi et al, 2008). Within this context, it is 

explored in this paper the application of a truss-like DEM to deal with fracture and damage 

problems.  

The utilization of discrete elements to represent a solid continuum can be tracked back to 

the pioneering work by Hrenikoff (1941) who used arrays of solid bars with this purpose. 

Absi (1971) developed a similar idea, and used bar arrays to simulate elastic foundations 
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and structural walls in tall buildings. Another important early work was that by Cundall and 

Strack (1979), who represented the continuum using discrete elements to simulate the 

behaviour of granular soils in geotechnical problems.  

More recently, a number of discrete element methods for solid mechanics have been 

proposed. These methods are mainly two-dimensional, and they use either beam or truss 

lattices. Among others, beam lattices were used by Schlangen and Garboczi (1997) and 

Chiaia et al (1997) to study different aspects of the quasi-fragile fracture of cementitious 

materials. Discrete formulations based on truss lattices were introduced by Fraternali et al 

(2002) to solve small deformations of generally anisotropic plane continua; by Slepyan 

(2005) to model crack propagation and by Rinaldi and Lai (2007) and Rinaldi et al (2008) 

to estimate the damage and effective mechanical properties of disordered microstructures. 

Moreover, DEMs were coupled to the finite element method (FEM) to deal with damage 

mechanics problems. Among others, Klerck at al (2004) developed an explicit FEM-DEM 

formulation to model discrete fracture in quasi-brittle geomaterials, while Cottrel et al 

(2003) introduced a finite-element discrete-particle method to model the erosion of ceramic 

materials when subjected to large-scale dynamic loads.   

The formulation of the truss-like DEM used in this work is based on studies conducted by 

Nayfeh and Hefzy (1978). The objective of that work was to determine the properties of an 

equivalent orthotropic elastic continuum to model panels made of large numbers of small 

interconnected bars. Using the opposite approach, this is, to represent an orthotropic 

continuum using a regular truss lattice (see the concept of inverse homogenization proposed 

by Sigmund, 1994), the results due to Nayfeh and Hefzy (1978) were used by other authors 

to develop truss-like DEMs for solid mechanics problems. In this way, there have been 

introduced applications of truss-like DEMs  to model shells subjected to impulsive loading 

(Riera and Iturrioz, 1995 and 1998);  fracture of elastic foundations on soft sand beds 

(Schnaid et al, 2004); dynamic fracture (Miguel et al, 2010); generation and spread of 

earthquakes (Dalguer et al, 2001); scale effect in concrete (Rios and Riera, 2003) and in 

rocks dowels (Miguel et al, 2008 and Iturrioz et al, 2009); and the computation of fracture 

parameters (Kosteski et al, 2010). 
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In this work, a truss-like DEM is further developed to deal with ductile damage and 

fracture-mechanics problems. To this end, three novel features are introduced: a tri-linear 

elasto-plastic constitutive law; a methodology for crack discretization and the computation 

of stress intensity factors; and a methodology for the computation of the stress field 

components from the traction/compression discrete element results. The proposed 

methodologies are verified by solving three demanding application examples involving 

static and dynamic load cases.  

 

The Truss-like Discrete Element Method  

The truss-like DEM used in this work represents the continuum by means of a periodic 

spatial arrangement of bars with the masses lumped at their ends. The discretization 

strategy is due to Nayfeh and Hefzy (1978) and it is shown in Figures 1a and 1b.  The 

discretization uses a basic cubic module constructed using 20 bar elements and 9 nodes. 

Every node has three degrees of freedom, which are the three components of the 

displacement vector in the global reference system.  

In the case of an isotropic elastic material, the equivalent axial stiffness per unit length of 

the longitudinal elements (those located along module edges and those connecting the 

nodes in the centre of the modules) is  

A

lE = lA E= φEL
2
,     (1) 

where lA  is the cross-sectional area of the element, L is the length of the basic cubic 

module, and E is the Young´s modulus of the solid being discretized. The 

function ( ) ( )9 8 / 18 24φ δ δ= + + , where ( )9 / 4 8δ ν ν= − , accounts for the effect of the 

Poisson’s ratio  ν (see Nayfeh and Hefzy, 1978; and Dalguer et al, 2001).  

Similarly, the axial stiffness per unit length of the diagonal elements is  

A

dE = dA  E= 
3

2
δφEL

2
.
   

 
(2) 
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The coefficient 2 3 in equation (2) accounts for the difference in length between the 

longitudinal and the diagonal elements, this is, 2 3
d

L L= ⋅ .  

It is important to point out that for ν = 0.25, the correspondence between the equivalent 

discrete solid and the isotropic continuum is complete. On the other hand, discrepancies 

appear in the shear terms for values of ν ≠ 0.25. These discrepancies are small and may be 

neglected in the range 0.20≤ν≤0.30. For values outside this range, a different array of 

elements for the basic module should be used (see Nayfeh and Hefzy, 1978).  It is 

interesting to note that while no lattice model can exactly represent a locally isotropic 

continuum, it can also be argued that no perfect locally isotropic continuum exists in 

practical engineering applications. Isotropy in solids is a bulk property that reflects the 

random distribution of the orientation of the constituent elements. A comprehensive study 

on the effect of the DEM lattice geometry on the value of the Poisson´s ratio can be found 

in Rinaldi et al (2008). 

The method is assembled by enforcing the second Newton´s law at every node in the 

model. This procedure results in the system of equations  

( ) ( ) +  + t  - t 0=M x Cx F P&& &  (3) 

where x , x&  and x&&  are vectors containing the nodal displacements, velocities and 

accelerations; and M  and C  are the mass and the damping matrices, respectively. The 

vectors ( )tF  and ( )tP  contain the internal and external nodal loads respectively.  

Since matrices M  and C are diagonal, the equations in expression (3) are not coupled, and 

they can be easily integrated in the time domain using an explicit finite difference scheme. 

It is worth noting that since nodal coordinates are updated at every time step, large 

displacements are accounted for naturally.  

Following the Courant–Friedrichs-Lewy (CFL) criterion (see for example Bathe, 1996), the 

stability of the integration scheme is ensured by limiting the size of the time step. For the 

present implementation, the elements in the worst condition (this is, those requiring the 

smallest ∆t) are the diagonal ones. Thus, considering the relationships in Equations (1) and 

(2), the limitation to the time increment is 
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0.6L
t

Cρ

∆ ≤  (4) 

where Cρ is the propagation velocity of the longitudinal wave,  

/Eρ ρ=C . (5) 

The convergence of DEM for linear elasticity and elastic instability was verified by 

Hayashi (1982). 

The truss-like DEM has a natural ability to model cracks. They can be introduced into the 

models as pre-existent features and as the irreversible effect of crack nucleation and 

propagation. Pre-existent cracks are modelled using a simple strategy which consists in the 

duplication of the nodes located on the crack surface together with the elimination of the 

elements connecting the material on both sides of the crack. In this way, the DEM 

discretization is allowed to “open” along the crack locus, and pre-existent cracks are 

integrated seamlessly into the DEM formulation. Crack nucleation and propagation make 

use on non-linear constitutive models for material damage which allow the elements to 

break when they attain a critical condition. The details about the formulation and 

implementation of these non-linear constitutive models are given in the next section.  

 

Non-linear constitutive models for material damage 

The bi-linear model 

Rocha et al (1991) extended the truss-like DEM by Nayfeh and Hefzy (1978) to handle 

fragile fracture. To this end, he introduced the bilinear constitutive relationship illustrated 

in Figure 1c. This constitutive law aims to capture the irreversible effects of crack 

nucleation and propagation by accounting for the reduction in the element load carrying 

capacity. The area under the force vs strain curve (the area of the triangle OAB in Figure 

1c) is the energy density necessary to fracture the area of influence of the element. Thus, 

for a given point P on the force vs strain curve, the area of the triangle OPC represents the 

reversible elastic energy density stored in the element, while the area of the triangle OAP is 

the dissipated fracture energy density.  Once the damage energy density equals the fracture 

energy, the element fails and loses its load carrying capacity. On the other hand, in the case 
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of compressive loads the material behaves as linear elastic. Thus, the failure in compression 

is induced by indirect traction. This assumption is reasonable for quasi fragile materials for 

which the ultimate strength in compression is usually from five to ten times larger than that 

in tension (see Kupfer and Gerstle, 1973).   

Constitutive parameters and symbols in Figure 1c are (see Rocha et al, 1991; and Riera and 

Rocha, 1989): 

• Force, F: the element axial force as a function of the longitudinal strain ε. 

• Element stiffness,
A

iE : depending whether a longitudinal or a diagonal element is 

considered the values for 
A

lE  or 
A

dE , see equations (1) and (2), should be adopted.  

• Length of the DEM module, L. 

• Specific fracture energy, Gf: the fracture energy by unit area, which is coincident with the 

material fracture energy, Gc . 

• Element area, A: depending whether a longitudinal or a diagonal element is considered 

the values for lA  or dA , should be adopted. 

• Equivalent fracture area, 
f

iA : this parameter enforces the condition that the energy 

dissipated by the fracture of the continuum material and its discrete representation are 

equivalent. With this purpose, a cubic sample with dimensions L×L×L is considered. The 

energy dissipated when a continuum sample fractures into two parts due to a crack 

parallel to one of its faces is  

2

f f
G G LΓ = ∆ = , (6) 

where ∆  is the fracture area. On the other hand, the energy dissipated when the DEM 

module fractures in two parts has to account for the contribution of five longitudinal 

elements (four coincident with the module edges and one internal one) and four diagonal 

elements, see Figure 1a. Then, the energy dissipated by a DEM module can be written as 

follows 
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2

2

DEM

2
4 0.25 4

3
f A A A

G c c c L
  

Γ = ⋅ ⋅ + + ⋅ ⋅     
,  (7) 

where the first term in the sum accounts for the four edge elements, the second term 

accounts for the internal longitudinal element, and the third term considers the 

contribution of the four diagonal elements. It is worth noting that the coefficient 0.25 in 

the first term accounts for the general case of an internal module with its four edge 

elements shared with four neighbour modules. When dealing with modules on the model 

surface, some of the edge elements could be shared by two elements or not shared at all. 

For such cases expression (7) has to be modified accordingly.  

The coefficient cA in equation (7) is a scaling parameter used to enforce the equivalence 

between Γ and ΓDEM. Thus, equating expressions 6 and 7 results 

2 222

3
f f AG L G c L

 =  
 

, (8) 

from which it can be easily deduced that 3 22
A

c = . Finally, the equivalent transverse 

fracture area of the longitudinal elements is 

( ) 2
3 22

f

lA L= , (9) 

while for the diagonal elements is 

( ) 24 22f

dA L= . (10) 

• Critical failure strain (εp): the maximum strain attained by the element before damage 

initiation (point A in Figure 1c). The relationship between εp and the specific fracture 

energy, Gf, is given in terms of Linear Elastic Fracture Mechanics concepts. In this way  

( )21

f

p f

G
R

E
ε

ν
=

−
, 

(11) 

where fR is the so-called failure factor, which accounts for the presence of an intrinsic 

defect of size d. fR is defined as 

 
1

fR
Y d

= ,   (12) 
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where Y is a dimensionless parameter that depends on both the specimen and the crack 

geometry. 

It is worth noting here that the intrinsic defect size, d, is predetermined, and it could be 

consider as a material property.  

Any disorder in the material properties is introduced to the model by specifying a random 

distribution in the specific fracture energy, Gf.  

• Limit strain (εr): the strain value for which the element loses its load carrying capacity 

(point C in Figure 1c). This value must be set to satisfy the condition that, upon the failure 

of the element, the dissipated energy density equals the product of the element influence 

area, 
f

iA , times the specific fracture energy, Gf, divided by the element length . This is 

( )
2 2

0
2 2

r f A

f i r p i r p i

i

G A K E A K E
F d

L

ε
ε ε

ε ε
⋅ ⋅ ⋅ ⋅ ⋅ ⋅

= = =∫ , 
(13) 

where the sub indexes i have to be specialized to l or d depending whether the element 

under consideration is a longitudinal or diagonal one, respectively.  

The coefficient Kr in equation (13) is a function of the material properties and the element 

length, Li . Recalling the first equality in Equation (1) and substituting it into equation 

(13), the expression for Kr  can be retrieved: 

2

2
f

f i

r

p i i

G A
K

E A Lε

   
=        

. (14) 

In order to guarantee the stability of the algorithm, the condition Kr ≥ 1 must be 

accomplished (Riera and Rocha, 1991). In this sense it is interesting to define the critical 

element length 

2
2

f
f i

cr

p i

G A
L

E Aε

  
=      

. (15) 

The coefficient 

f

i

i

A

A

 
 
 

in equation (15) is 
3

22

f

l

l

A

A φ
 

= 
 

 and 
3

11

f

d

d

A

A δφ
 

= 
 

 for the 

longitudinal and diagonal elements respectively (see equations (1), (2), (9) and (10)). In 

the special case of an isotropic continuum with ν=0.25, the value of the functions δ=1.125 
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and φ=0.4, which results in 0.34
f f

l d

l d

A A

A A

   
= ≈   

   
.  Thus, for practical purposes a single 

value of the critical element length can be used for both the longitudinal and diagonal 

elements. Therefore, the above stability condition can be expressed as 

1cr
r i cr

i

L
K L L

L
= ≥ ⇒ ≤ . (16) 

 

This is, there is a maximum element length which preserves the stability of the element 

constitutive relationship. 

Finally, the expression for the limit strain is  

r
ε = Kr εp. (17) 

It is interesting to note that in contrast to the usual practice in finite and boundary elements, 

the constitutive relationship in the DEM is not a function of the material properties only. 

The element constitutive relationship introduced above is defined in terms of parameters 

which are material properties (εp, E, Rfc and Gf), depend on model discretization (
f

iA  and 

L) and depend on both, the material properties and the model discretization (
A

iE  and εr ). 

Besides, it is worth noting that although the DEM uses a scalar damage law to describe the 

uniaxial behaviour of the elements, the global model accounts for anisotropic damage since 

it possess elements orientated in different spatial directions. 

 

The tri-linear model 

The bi-linear element constitutive relationship described in the previous section is extended 

in this section to account for elasto-plastic behaviour by introducing the tri-linear 

constitutive relationship illustrated in Figure 1d. For a given point P on the force vs strain 

curve, the area of the triangle O’PC represents the reversible elastic energy density stored 

in the element, while the area of the polygon OAA’PO’ corresponds to the dissipated 

energy density. The dissipated energy is associated not only with the fracture energy as in 

the bi-linear model, but also with the energy dissipation due to the plastic deformation. In 

addition to the parameters introduced for the bilinear element constitutive relationship, the 
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definition of the tri-linear law uses two extra parameters, namely
'
pε and E

A’ 
(see Figure 1d). 

The behaviour in compression is the same to that in tension.  

The element failure occurs when the dissipated energy density (area OAA’PO’ in Figure 

1d) equals the total area under the force vs displacement plot (area OAA’B). This is 

'

'

2 ' 2

'

' '

( - )
( ) +( - )

2 2

( - )( ( ) )
+

2

r f A A

f i p i p p iA

p p p

i

A A

r p p i p p i

G A E E
F d E

L

E E

ε
ε ε ε

ε ε ε ε ε

ε ε ε ε ε

= = + +

+ −

∫
0  

 

(18) 

where the four summands in the last member account for the total area under the force vs 

strain diagram depicted in Figure 1d. Following a similar approach to that for the bi-linear 

model, it is possible to obtain the value for the factor  '

r
K  that relates the strain 

'
pε  with the 

limit strain,
r

ε : 

' '

r r pKε ε= . (19) 

The expression for '

r
K  results from equation (18) and it yields  

 

' '

' '

2

' '

'

'

2
( ) 2

1
( ( ) )

f

f i p A A A

i i i p

i p p

r A A

p A i p i

G A
E E E

L
K

E E E

ε
ε

ε ε

ε ε

+ − +

= −
− +

.
 

 

(20) 

The stability of the tri-linear element constitutive relationship is ensured by means of two 

conditions: 

'

p pε ε≥  and 

' 1
r

K ≥ . 

(21) 

 

Computation of stresses 

The visualization of the stress contours is a key tool to assess the performance of a 

numerical model. Since the stress fields are not a direct outcome for the DEM used in this 

work, a simple post processing methodology was devised for the computation of the 

stresses from the unixial element results. 
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Stresses are assumed constant over each DEM module, and the components of the stress 

tensor are computed as the ratio between the mean equivalent resultant force, Feq, and the 

cross section of the module. The mean equivalent resultant force is computed from the 

individual forces exerted by the module elements, Fn. The procedure for the computation of 

the normal and shear stress components σ11 and σ12 are given in Tables 1 and 2. Analogous 

procedures are used for the remaining stress components. 

The performance of the proposed methodology was assessed by comparison with results 

computed using the Finite Element Method (FEM). These analyses were carried out on a 

series of randomly generated models for a ferritic cast iron microstructure. This problem 

will be described in the detail in one of the examples presented later in this paper. By now 

it is only mentioned here that the model geometry consists of a metal matrix with circular 

graphite nodules. The graphite nodules of radius r=25 µm are randomly distributed over the 

problem domain, and they can be assimilated to voids because they possess very weak 

mechanical properties when compared to the metal matrix.  

The DEM discretization for a typical model is illustrated in Figure 2b. The element length 

was chosen four times smaller than the nodule radius, this is, L /r =0.25. Based on previous 

results (see Galiano, 2007), the model discretization used two modules in the direction of 

the thickness. That discretization strategy was found appropriate to reproduce the plane 

stress condition. The resulting discretization consisted of 4800 modules with approximately 

29000 degrees of freedom. On the other hand, FEM models were constructed using 

approximately 16000 4-noded quadrilateral elements (PLANE 42 element), see Figure 2a. 

FEM models were solved using ANSYS 7 (2007).  

DEM and FEM results were compared along a number of paths which were regularly 

placed on the sample domains (see Figure 2). As an example, FEM and DEM results for the 

von Misses equivalent stress along the path #6 of the example in Figure 2 are plotted in 

Figure 3a. Figure 3b presents the histogram with the distribution of the error (the difference 

between the DEM and FEM results) for the 485 positions evaluated along the nine paths 

shown in Figure 2. Mean value for the error is 0.47%, with a standard deviation of around 

7%. A comprehensive report of the obtained results for the complete set of models and 

other benchmark tests are reported in Galiano et al (2003). Based on that results, it was 

concluded that the proposed procedure possess a reasonable accuracy for assessing the 
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DEM results using contour plots. Contour plots will be illustrated for the examples in the 

next section. 

 

Computation of stress intensity factors 

The stress intensity factors (SIFs) are computed by replacing the DEM displacement results 

into the theoretical expressions for the displacement fields near the crack tip. This is a 

common procedure used with finite and boundary element methods. The mixed-mode SIFs 

can be written in terms of the displacement fields in the vicinity of the crack tip as follows 

(see for instance Aliabadi and Rooke, 1991 or Anderson, 2005): 

,
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(22) 

where ux, uy and uz are the components of the relative displacement between the crack 

surfaces measured at a distance r from the crack tip (see Figure 4).  

In the present implementation, the relative displacement between the crack surfaces, u, are 

measured at a number of positions, r , coincident with the nodes of the DEM discretization. 

These displacements are replaced into equations (22) to compute their corresponding sets of 

values for KI(r), KII(r) and KIII(r). Finally, the SIFs, KI, KII and KIII, result from the linear 

extrapolation of the K(r) values for 0r → . The coefficients for the extrapolation are 

computed using least square fitting. It is worth mentioning that, being the SIF a local 

parameter, the proposed procedure is suitable for the analysis of both, static and dynamic 

crack problems. 

 

Examples  

There are presented in this section three validation examples devoted to verify and to 

illustrate the performance of the proposed implementations. It is worth noting that although 

the DEM presented in this paper is three-dimensional, the examples are two-dimensional. 

Page 13 of 37

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

The reason for the selection of such examples was to allow the comparison of the results to 

those available in the literature.  

 

Slant crack in a rectangular plate under impact loading 

This example consists in the computation of the dynamic stress intensity factor for a 45º 

inclined crack in a rectangular plate. The problem geometry and dimensions are given in 

Figure 5a. The plate was dynamically excited by a uniform impact traction, 0σ , in the 

vertical direction. The load was specified using a Heaviside function at time t = 0. The plate 

had a linear elastic behaviour. Material properties were: E =200 GPa, ν = 0.3, ρ = 5000 

kg/m
3
. The material fracture toughness was set high enough to avoid crack propagation. 

The DEM model was discretized using a 150×300×1 module mesh in the directions of the 

specimen width, height and thickness, respectively. The model module length was L=2 10
-4 

m. The model consisted in approximately 90000 degrees of freedom. The nodal 

displacements in the direction of the thickness were constrained in order to impose the 

plane strain condition to the model. Previous results (see Galiano, 2007) showed that this 

discretization strategy accurately reproduces the plane strain condition.  

Figure 5b depicts the details of the procedures for the application of the load and the crack 

modelling. The load was applied to the central node of the modules located next to the 

bottom and top edges of the plate. The geometry of the crack was approximated using a 

relatively fine (one twentieth of the crack length) zigzag pattern. The problem was solved 

using ∆t=1×10
-8

 second time increments. 

The evolution in time of the mixed-mode dynamic stress SIFs, KI and KII, are plotted in 

Figure 6. In every case the SIF results are normalized with respect to K0= 0 aσ π⋅ ⋅ . 

Results in Figure 6 are compared to those due to Dominguez and Gallego (1992) who 

solved the problem using the Boundary Element Method (BEM) in the time domain and 

due to Krysl and Belytschko (1999) who used the element-free Galerkin method. There 

exists a good agreement between the three sets of results. 

Figure 7 depicts a series of stress contour plots for the maximum principal stress at t = 3, 6, 

9, 12, 15 and 18 µs. It can be observed that before the arrival of the longitudinal stress wave 

to the crack tip, this is for t < 3.6 µs, both the stress at the crack tip (see Figure 7a), and 
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consequently the SIF values (see Figure 6) are zero. Afterwards, the stress level starts 

increasing (see Figures 7b to 7d) together with the SIF values (see Figure 6). The maximum 

KII occurs at t =9.5 µs, while KI is nearly constant during the period 9.5µs < t < 12µs (see 

Figure 6). After this moment, both the stress level at the crack tips and the SIF values 

diminish following the trend indicated in the figures. 

 

Dynamic crack propagation: the Kalthoff- Winkler experiment 

In the Kalthoff-Winkler (1988) experiment a specimen with two parallel edge cracks was 

impacted by a projectile with a diameter equal to the distance between the two cracks (see 

Figure 8a). No displacement restrictions were prescribed to the specimen. The specimen 

material was polymethylmethacrylat (PMMA) with the following properties E = 190 GPa, 

ν = 0.30, Gc = 22170 N/m, σu = 844 MPa and ρ = 8000 Kg/m
3
. The velocity of the 

projectile was 16.5 m/s. 

The above experiment was simulated using then DEM model illustrated in Figure 8b. Due 

to the problem symmetry, only one half of the specimen was discretized. The appropriate 

displacement boundary conditions were applied along the bottom edge of the model. 

Following the same discretization strategy used for the previous example, the DEM model 

was discretized using a 40×40×1 module mesh in the directions of the width, the height and 

the thickness, respectively. The discretized model consisted in approximately 9400 degrees 

of freedom. The nodal displacements in the direction of the thickness were constrained in 

order to impose the plane strain condition. The details in Figure 8b illustrate the strategy 

used to prescribe de displacements along the bottom edge of the specimen and the velocity 

in the impact zone. The crack was modelled using the same approach of the previous 

example; this is, by deleting elements and duplicating nodes along the crack locus. Being 

the PMMA a brittle material, the bilinear constitutive law (see Figure 1c) was assigned to 

all the elements in the model. The DEM model parameters were L=2.5× 10
-3

 m, Gf = 22170 

N/m, ν=0.25, εp=0.00444, and ∆t=1×10
-7

 seconds. 

Figure 9a depicts the resulting crack path geometry. It can be observed that the obtained 

result is in close agreement to those computed by Belytschko et al (2003) using XFEM and 

by Huespe et al (2006) using the strong discontinuity approach and FEM (see Figures 9b 

and 9c, respectively). In every case not only the pre-existent crack propagates, but also a 
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new crack nucleates and propagates from the opposite side to that where the projectile 

impacted.  

The DEM results were post processed to compute the crack propagation velocity of the pre 

existent crack. This was done by recording the crack tip position as a function of time for a 

series of snapshots of the DEM simulation. The result is plotted in Figure 10, together with 

the results reported by Belytschko et al (2003) and Huespe et al (2006). The agreement 

between the three sets of results is reasonably good. It can be observed that the three 

models predict the start of the crack propagation in the range 24µs<t<25µs. Besides, the 

mean crack velocity in the early stages of the crack propagation (say up to t≈50 µs) for the 

DEM model is VDEM≈ 1600  m/s, what is around 10% to 15% lower than those reported by 

the references. Finally, it is noted that the mean propagation velocity resulting from the 

three models is always bellow the theoretical limit, the Raleigh wave velocity, VR= 2799 

m/s (see Freund, 1989). 

   

Damage-mechanics analysis of a nodular cast iron microstructure 

Nodular cast iron microstructure consists in dispersed graphite spheroids (nodules) in a 

ferrous matrix, which can spread from purely ferritic to perlitic. Mechanical properties of 

nodular cast iron vary in a wide range of values, mostly controlled by the effect of the 

nodule size and distribution, together with the process of microcrack nucleation, growth 

and coalescence (see Berdin et al, 2001; Bonora and Ruggiero, 2005; Basso et al, 2009). 

It is presented in this example the application of the DEM to model the micromechanics of 

failure of a nodular cast iron. While a number of authors (see for example Bonora and 

Ruggiero, 2005) have studied this problem using periodic unit-cell models, it is proposed in 

this work to use representative volume elements (RVE). RVEs consist of a homogeneous 

isotropic metal matrix with twenty randomly distributed graphite nodules. The details of the 

studies concerning the topological analysis of the microstructure and the determination of 

the RVE size can be found in the works by Ortiz et al (2001) and Galiano et al (2007). 

The mechanical properties of the cast iron were those reported by Berdin et al (2001):  

E=187 GPa, σy=260 MPa, σUTS=390 MPa, total elongation 19%, KIC=77 MPa⋅√m. The 

nodule volume fraction was 7.7%. Nodules were introduced into the DEM model by setting 

the graphite mechanical properties to those elements with their centroids located within the 
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nodule loci. A typical model discretization is illustrated in Figure 2b, where the elements in 

the locus of the nodules had been deleted in order to better visualize the model. The 

mechanical properties of graphite were set as follows: Young´s modulus: E= 15 GPa, 

Poisson coefficient ν= 0.3, fracture toughness KIC= 1 MPa·√m, tensile strength σut= 25 

MPa. Graphite exhibits a brittle behaviour and thus it was modelled using the bilinear 

constitutive relationship  with the following data for the constitutive parameters (see Figure 

1c): εp = 1.66x10
-3

, εr = 2.67, E = 15×10
9
 N/m

2
, Gf  = 67

 
N/m.  

The ductile behaviour of the metal matrix was modelled using the trilinear constitutive law 

(see Figure 1d). The parameters for the element constitutive relationship were adjusted to 

reproduce the macroscopic stress vs strain behaviour of the cast iron reported by Berdin et 

al (2001). The resulting material properties for the matrix material were: E= 233 GPa and 

σy= 325 MPa, which compare well to the values E= 210 GPa and σy= 325 MPa reported by 

Bonora and Ruggerio (2005). The associated parameters for the element constitutive 

relationship were: εp = 9.2×10
-4

, 
'
pε =0.229, εr = 5.894, E = 2.5×10

11
 N/m

2
, Gf  = 11×10

3 

N/m and L = 3.33×10
-6

 m. The model discretization strategy is that discussed in the section 

Computation of Stresses.  

Uniaxial traction tests were modelled for twenty randomly generated RVEs and a periodic 

microstructure. Stress vs strain results are presented in Figure 11 together with the 

experimental results from Berdin et al (2001).  The results for the RVE analyses are 

reported using the mean value of the twenty samples and their standard deviation.  

It can be observed in Figure 11 the difference in the behaviour between the RVE models 

and their periodic counterparts. The periodic models exhibit a constant strain hardening in 

contrast to the softening observed of the RVE models and the experimental data. In an 

attempt to provide a further insight to better understand this difference, the sequence of 

subfigures in Figure 11 depict the evolution of the damage with the applied load for a 

typical RVE. Black areas in the subfigures correspond to those with plastic deformation. 

Subfigure (a) shows the localization of damage in the ligaments between the nodules in the 

early stages of the non-linear portion of the stress vs strain curve. Damage localization 

progresses with the increment of the load up the point where coalescence starts. This 

phenomenon is illustrated in subfigure (b) for the case of two nodules merging in a single 
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void (see circled detail). Finally, subfigure (c) depicts the stage of advanced damage, with 

void growth and coalescence extensively spread over the specimen domain. These last 

phenomena results in the rapid loss of the load carrying capacity. On the other hand, the 

periodic distribution of the nodules conducts to the simultaneous failure of all the matrix 

ligaments between the nodules (see subfigure d), avoiding the damage localization to occur 

like in the RVE models.  

Figure 12 presents the evolution of the elastic and dissipated energy densities as functions 

of the longitudinal strain. These results can be easily computed from the DEM model by 

adding up the individual contributions of the elements (the area O’PC for the reversible 

elastic energy density and the area OAA’PO’ for the dissipated energy density, see Figure 

1d). It can be seen that both, the elastic and dissipated energy densities are higher for the 

periodic model than for the RVE. This result could look contradictory if we consider that 

RVE models fail at a lower stress level that their periodic counterpart. However, the 

explanation for such behaviour can be given in terms of damage localization. The periodic 

model spreads the damage over the complete model domain, and thus, it dissipates more 

damage energy before failure than the RVE which leads to the formation of a crack. This 

result emphasizes the key role played by the random spatial distribution of nodules when 

assessing the nonlinear behaviour of the material. This limitation for the periodic model is 

in agreement with results presented by other authors who studied the problem using FEM 

(see for example Kousnetsova, 2001 and Pierard et al, 2007).  

 

Conclusions 

It has been presented in this paper a customization of  a truss-like discrete element method 

with the objective of further extend its capabilities to solve fracture and damage mechanics 

problems. The novel features are: the formulation of elasto-plastic element constitutive 

relationship and procedures for the computations of stresses and stress intensity factors. 

The performance of the proposed methods has been assessed by solving three challenging 

application examples. In every case, the computed results helped understanding the 

mechanics of failure in terms of stress intensity factors, energy balance, damage 

localization and stress results. The computed results were in every case in good agreement 

with the experimental and numerical results reported in the literature.  
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The obtained results show that the truss-like DEM introduced in this work constitutes a 

simple and versatile numerical tool to deal with fracture and damage mechanics problems. 

The method can be effectively used for the analysis of problems in terms of the energy 

balance, stress intensity factors and damage patterns. On the other hand, the accuracy of the 

stress results is lower than those which could be computed using FEM or BEM. However, 

the DEM stress results are fairly precise for visualization purposes. 

The proposed method can be easily extended to deal with other damage mechanisms like 

creep, time dependent degradation and coupled damage-plastic behaviours. Besides, the 

versatility of the DEM could be exploited by coupling it to finite or boundary element 

methods. Such a coupling strategy would allow using the discrete element method to 

represent those regions of the model undergoing localized damage, while finite or boundary 

elements are used to deal with the undamaged regions.  
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Table 1: procedure for the computation normal stress components σ11. 
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Table 2: procedure for the computation shear stress components σ12. 
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Figure 1: DEM discretization strategy: (a) basic cubic module, (b) generation of 

prismatic body, (c) bilinear and (d) trilinear constitutive models. 
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Figure 2: (a) FEM and (b) DEM discretizations. For the sake of clearness only the 

longitudinal elements are plotted in the DEM discretization. The paths are those used to 

compare the FEM and DEM results. 

 

 

 

 

 

 

 

 

 

 

 

 

path 9 

path 8 

path 7 

path 6 

path 5 

path 4 

path 3 

path 2 

path 1 

 

(a) (b) 

l l 

Page 27 of 37

http://mc.manuscriptcentral.com/engcom

Engineering Computations

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3: (a) Comparison of stress computed using FEM and DEM along path 6 (see 

Figure 2b) ; (b) Histogram with the error (difference between the FEM and DEM 

results) for resulting after checking 485 positions located along the 9 paths indicated in 

Figure 2. 
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Figure 4: (a) A crack of length 2a in a remotely load plate; (b) Relative displacement of 

the crack surfaces and local coordinate system at the crack tip.  
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Figure 5: (a) Geometry and dimensions of the problem of the slant crack in a 

rectangular plate under impact loading (dimensions in mm); (b) Details of the DEM 

model.  
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Figure 6: Time evolution of the mixed-mode dynamic stress intensity factors for the 

inclined crack in the rectangular plate. 
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Figure 7: Time evolution of the of the maximum principal stress field for the example 

of the inclined crack in the rectangular plate. 
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Figure 8: (a) Schematic of the Kalthoff-Winkler experiment; (b) DEM model details. 
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Figure 9: Fracture patterns for the Kalthoff-Winkler experiment: (a) DEM, this work; 

(b) XFEM from Belytschko et al. (2003); (c) Strong disconinuity approach with FEM 

from Huespe et al. (2006). 
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Figure 10: Crack propagation velocity as a function of time for the Kalthoff-Winkler 

experiment: (a) DEM, this work; (b) XFEM from Belytschko et al. (2003); (c) Strong 

disconinuity approach with FEM from Huespe et al. (2006). 
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Figure 11: Uniaxial stress vs. strain curves for RVE and periodic models. Shaded area 

indicates the standard deviation of the RVE results.  
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Figure 12: Evolution of the (a) elastic strain energy and (b) damage energy densities as 

functions of the longitudinal strain. Shaded areas indicate the standard deviation of the 

RVE results.  
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