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Abstract 

It is presented in this paper a three-dimensional Boundary Element Method (BEM) implementation of the 

Energy Domain Integral for the fracture mechanical analysis of three-dimensional interface cracks in 

transversely isotropic bimaterials. The J-integral is evaluated using a domain representation naturally 

compatible with the BEM, in which the stresses, strains and derivatives of displacements at internal points 

are evaluated using their appropriate boundary integral equations. Several examples are solved and the 

results compared with those available in the literature to demonstrate the efficiency and accuracy of the 

implementation to solve straight and curved crack-front problems. 

1 Introduction 

The greatest advantage of composite materials is strength and stiffness combined with lightness. By choosing 

an appropriate combination of reinforcement and matrix material, manufacturers can produce materials with 

mechanical properties that fit the requirements for a particular structure for a particular purpose.  

Commonly, high strength and stiffness are required in various directions within a plane. The solution is to 

stack and weld together a number of plies, each having the fibres oriented in different directions. Such a 

stack is termed a laminate. The individual plies present a macroscopic transversely isotropic behaviour with 

the symmetry axis in the direction of the fibres (Gibson, 2007). 

Delamination is one of the most important damage mechanisms in laminate composites. It consists in the 

nucleation of interface cracks between the plies of the laminate as consequence of thermo-mechanical 

fatigue, impact or material degradation (Gibson, 2007). Once cracking initiation has arisen, preventing crack 

growth (propagation) is the variable to control in order the keep the material in a reliable condition. It is 

therefore important to develop fracture-mechanics methods for assessing interface cracks and predicting their 

Key Engineering Materials Vol. 454 (2011) pp 47-77
Online available since 2010/Dec/06 at www.scientific.net
© (2011) Trans Tech Publications, Switzerland
doi:10.4028/www.scientific.net/KEM.454.47

All rights reserved. No part of contents of this paper may be reproduced or transmitted in any form or by any means without the written permission of TTP,
www.ttp.net. (ID: 150.214.182.8-18/02/11,19:47:11)

http://www.scientific.net
http://www.scientific.net/feedback/87227
http://www.scientific.net/feedback/87227
http://www.ttp.net


 

behaviour during the material life time. 

Many questions regarding the mechanics of interface fracture have been answered during the past few 

decades. However, progress has been generally focused in the two-dimensional idealization of an interface 

crack, and not until recently major effort has been conducted on the three-dimensional aspect of interface 

fracture. This is in part due to the complexity of such problems and the very large computational efforts 

required for their numerical analysis. However, given the material mismatch at the interface boundary, it is 

expected that the three-dimensional effects play a more significant role in a laminate structure than in a 

homogenous structure. 

The numerical analysis of interface cracks in transversally isotropic materials has been traditionally 

addressed using Finite Element Analysis (FEA) (see for example Boniface and Banks-Sills, 2002 and Freed 

and Banks-Sills, 2005).  Besides, there is the alternative of using the Boundary Element Method (BEM). The 

attraction of the BEM can be largely attributed to the reduction in the dimensionality of the problem; for 

two-dimensional problems, only the line-boundary of the domain needs to be discretized into elements, and 

for three-dimensional problems only the surface of the domain needs to be discretized. This means that, 

compared to finite-element domain-type analysis, a boundary analysis results in a substantial reduction in 

data preparation. At the same time, and due to the inherent characteristics of its formulation, BEM provides 

very accurate results for problems containing strong geometrical discontinuities. This makes BEM a 

powerful numerical tool for modelling crack problems (see Aliabadi, 1997). Fracture mechanical analysis of 

three dimensional transversely isotropic materials using BEM has been reported by Sáez et al. (1997) and  

Ariza and Dominguez (2004a, 2004b) who modelled static and dynamic crack problems, Zhao et al. (1998) 

who derived the displacement discontinuity boundary integral equation, and more recently by Chen et al. 

(2009) who studied the stress intensity factors of a central square crack in a transversely isotropic cuboid 

with arbitrary material orientations. To our knowledge, there is no published material about the three 

dimensional BEM modelling of interface cracks in dissimilar transversely isotropic bimaterials. 

A number of techniques have been proposed for the evaluation of fracture parameters of interface cracks 

using FEM and BEM. They are, among others, the virtual crack extension approach (So, Lau and Ng; 2004), 

contour and domain path-independent integrals (Chow and Atluri, 1998; Ortiz and Cisilino, 2005; Freed and 

Banks-Sills, 2005; Shah, Tan and Wang, 2006), displacement extrapolation techniques (Freed and Banks-

Sills, 2005; Tan and Gao, 1990; Mao and Sun, 1995) and special crack-tip elements (He, Lin and Ding, 

1994).  In particular, path-independent integral techniques are derived from the J-integral proposed by Rice 

(1968). Being an energy approach, path-independent integrals eliminate the need to solve local crack tip 

fields accurately. If the integration domain is defined over a relatively large portion of the mesh, an accurate 

modelling of the crack tip is unnecessary because the crack tip field contribution to the overall energy is not 

significant. At the same time, it is worth noting that the J-integral as it was developed by Rice (1968) 

characterizes the crack driving force for two-dimensional problems. Therefore, for general three-dimensional 

cases involving cracks of arbitrary shape an alternative form for the J-integral is needed. 

Three basic schemes have evolved for the numerical computation of the J-integral in three dimensions: 

virtual crack extension methods, generalization of Rice’s contour integral, and domain integral methods 

(Anderson, 1994). Domain integrals are equivalent to the virtual crack extension technique and are better 

suited for numerical analysis than contour integral methods. Among the available domain integral methods 
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(see for example Nikishkov and Atluri ,1987 and Saliva et al, 2000) the Energy Domain Integral (EDI) due 

to Moran and Shih (1987) was chosen for this work.  

The EDI can be formulated by applying the divergence theorem to Rice's J-integral. It produces a domain 

independent integral defined over finite volumes enclosing some portion of the crack front (Moran and Shih, 

1987). Previous works by the authors of this paper have demonstrated the versatility and efficiency of the 

BEM implementation of the EDI for assessing three-dimensional cracks in elastic (Cisilino et al, 1998), 

elastoplastic (Cisilino and Aliabadi, 1999) and thermoelastic bodies (Balderrama et al, 2006 and 2008) and 

for interface cracks in dissimilar isotropic bimaterials (Ortiz and Cisilino, 2005).  

It is presented in this work the BEM implementation of the EDI for the J-integral computation in three-

dimensional interface cracks in dissimilar transversely isotropic bimaterials. The BEM solution strategy for 

the fracture problem and the EDI implementation is an extension of that proposed by Ortiz and Cisilino 

(2005) for interface cracks in dissimilar isotropic bimaterials. A number of examples demonstrate the 

suitability of the proposed numerical tool for assessing delamination cracks in composite laminates. 

2 Transversely isotropic materials 

The basic constitutive expressions governing the elastic behaviour of transversely isotropic materials are 

reviewed next following Ting (1996).  

The general constitutive law of the anisotropic material is  

���(�) = ���	
(�)�	
(�) = ���	
(�)�	,
(�) (1) 

where ���(�) is the stress tensor, ���(�) is the infinitesimal strain tensor and �	(�) is the displacement 

vector. Partial derivatives are indicated using the comma notation. The symbol ���	
(�) is the fourth-order 

constitutive tensor which is defined in terms of 21 independent elasticity constants. 

Transversely isotropic materials are those with an axis of symmetry such that all directions perpendicular to 

that axis are on a plane of isotropy. In such a case the constitutive tensor can be defined in terms of 5 

independent elasticity constants only. Using the Voight reduced notation (see Ting, 1996), the fourth-order 

constitutive tensor ��� (�, � = 1, … ,6) for a transversely isotropic material with the axis of symmetry 

coincident with the Cartesian axis �� can be expressed in terms of the five following elastic constants: ����� = ���,  ����� = ���,  ����� = ���,  ����� = ��� and  ����� = ��� .                                        (2) 

Due to the symmetry with respect to ��,  ��� = (��� − ���)/2. 
The coefficients of the constitutive tensor ��� can be written in terms of the elastic engineering constants as 

follows: 

��� =  (! − "#�)$(1 + ") ,   ��� =  (! + "′�)$(1 + ") , �13 =  "′$ ,   �33 =  (1 + ")$ , �44 = )′, 
                                         

(3) 

being:  

 $ = !(1 − ") − 2"#� and  ! =  / ′, 
                                         

(4) 
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where 

•   and  ′ are the Young’s moduli in the plane of isotropy and in the directions normal to it, respectively. 

• * is the Poisson’s ratio that represents the strain response in the plane of isotropy due to an action parallel 

to it; and *′ is the lateral strain response for the planes normal to the plane of isotropy. 

• )′ is the shear modulus for the planes normal to the planes of transverse isotropy.  

3 Elastic solution in the vicinity of 3D interface crack front 

Consider a three-dimensional crack front with a continuously turning tangent as depicted in Figure 1a. 

Define a local coordinate system �∗ at position ,, where the crack energy release rate is evaluated, given by ��∗ normal to the crack front, ��∗ normal to the crack plane, and ��∗ tangent to the crack front. 

The elastic solution at the neighbourhood of the interface crack front can be expressed using a double series 

expansion of the form: 

�(-, ., ,) = / / 0��1�(,)-234�5�(23)(.)�67�6� , 
                                       

(5) 

for 89(:;) ≤ 89(:=) when > < @. The symbol u in equation (5) is the displacement vector in cylindrical 

coordinates (see Figure 1a), 1�(,) is the Stress Intensity Factor (SIF) associated to exponent αi, and 5�(23)(.) 

is an angular function. The exponent and the angular function depend of the boundary conditions over the 

crack faces, solids angles of the materials and the material properties (see Omer and Yosibash, 2008). 

When � = 0 in equation (5), αi and 57(23)(.) yield the solution for the two-dimensional crack problem. For a 

crack in a homogenous material :� = :� = :� = 1/2, :� = 1 and the coefficients 1� are the well-known 

stress intensity factors (SIFs) KI, KII and KIII, respectively. For interface cracks the exponents αi are complex 

numbers where 89(:�) = 89(:�) = 89(:�) = 1/2 and 89(:�) = 1. The additional high order terms in 

Eq. (5) when � ≥ 1 are the so-called “shadow terms” not present in the two dimensional problem. The 

shadow terms are originated by variation of the SIFs along the crack front. 

4 The energy domain integral 

Following Natha and Moran (1993), the energy release rate, C(,), due to crack extension in its own plane 

along a three-dimensional crack front takes the form (see Figure 1b) 

C(,) = limG→7 I	(,) J KL ∙ N	� − ��� ∗ ��,	∗ O!�P�G(Q) , 
                                         

(6) 

where w is the strain energy density, RST ∗ and UT,V∗  are Cartesian components of stress and displacement 

derivatives expressed in the system W∗, XV(Y) are the components of the unit outward normal to the crack 

front in the crack  plane WZ∗ − W[∗ , \S is the unit vector normal to the contour ](Y) (which lies in the WZ∗ − W∗̂  

plane), and  _] is the differential of the arc length ] . It is worth noting that, although Eq. (6) comes from a 

two-dimensional analysis, it applies for a general three-dimensional case. This is because the three-

dimensional stress field along a crack front of arbitrary shape is the same to that governing a two-

dimensional plain strain problem (see Omer and Yosibash, 2008). Thus, the energy domain integral 

introduced in this section can be used for the solution of cracks of arbitrary shape in three-dimensions. 
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In order to derive the equivalent domain representation of Eq. (6), we consider a small segment `a of the 

crack front that lies in the WZ∗ − W[∗  plane as shown in Fig. 1b. Next we assume that the segment undergoes a 

virtual crack advance in the plane of the crack, and we define the magnitude of the advance at each point Y  

as bc(Y). Note that bc(Y) varies continuously along `a and it vanishes at each end of the segment. Now let 

C̅(,) = J C(,)Δf(,)P,gh
, 

                                       

(7) 

where i(Y) is the integral defined in Eq.(6). When i(Y) belongs to the point-wise energy release rate, ij 

gives the total energy released when the finite segment `a undergoes the virtual crack advance.  

The appropriate domain form of the point-wise crack-tip contour integral can be obtained from Eq. (7) by 

considering a tubular domain k surrounding the crack segment (see Figure 2). As it shown in the figure, the 

surface lm is formed by translating the contour ] along the segment  `a, and ln stands for the outer surface 

of k including the ends. Next an auxiliary vector function  o is introduced, which is sufficiently smooth in k 

and it is defined on the surfaces of  k as follows: 

@	 = p∆f(,) ∙ I	(,) on rs 0 on r7 t     
                                         

(8) 

Finally, in the limit as the tubular surface lm is shrunk onto the crack segment `a and in the absence of crack 

face tractions, we obtain the domain integral: 

  C̅(,) = J K��� ∗ ��,	∗ − L ∙ N	�O@	,�Pu.v  

                                         

(9) 

In absence of body forces the integral ij given in Eq. (9) reduces to the domain representation of the familiar 

J-integral. If it is assumed that i(Y) is constant along `a, it follows directly from Eq. (7) that: 

w(,) = C(,) = C̅
x Δf(,)P,gh

. 
                                         

(10) 

 

5 Boundary Element Analysis 

In order to account for the non homogeneous material properties, a multi-domain BEM formulation is used 

for the problem solution. The modelling strategy is illustrated in the schematic representation in Figure 3, for 

a model consisting of two subdomains, Ωy(�) and Ωyy(�), with external boundaries Γy(�) and Γyy(�), 

respectively. Both subdomains share a common interface Γyzyy(�), a portion of which is debonded and thus 

an interface crack is introduced. The subdomains possess a linear transversely isotropic material behaviour as 

it has been described in Section 2. The orientation of the material is specified using a local Cartesian 

system (��7, ��7, ��7) for each subdomain. In every case the direction of the symmetry axis of the material is 

chosen coincident with the direction ��7 (see Figure 3). In this way, it is possible to model interface cracks 

lying between laminates with arbitrary relative fibre orientations. 
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The standard BEM uses the displacement boundary integral equation to relate the displacement and traction 

fields, �(�) and {(�) over the model boundary in the global coordinate system (see Aliabadi, 2002): 

|�	(�#)��(�#) + J }�	(�, �#)��(�)dΓ� (�) = J ��	(�, �#){�(�)dΓ� (�), 
                                    

(11) 

where ��	K�, � ′O and }�	K�, � ′O are the displacement and traction fundamental solutions, respectively. The 

fundamental solutions account for the solution of i-th component of the displacement and traction fields, ��(�) and {�(�), at the field point,  �, due to the action of a unit load acting in the direction � at the source 

point, �′.  The symbol |�	 is the so-called jump term which depends on the local geometry at the source 

point, �′, only. There are several expressions for the fundamental solutions for a transversely isotropic 

materials, see for example Pan and Chou (1976) and Loloi (2000). However, these solutions could be 

cumbersome to implement into a BEM code because of the multiple cases they consider to account for all 

possible material configurations and the relative positions of the source and field points. On the other hand,  

Távara et al. (2008) have recently derived completely general and unique expressions valid for all possible 

configurations given in terms of real functions only (no difficulties with using complex functions).  The 

solutions due to Távara et al. (2008) have been used in this work.  

According to Távara et al. (2008), the displacement fundamental solutions when � ′ = 0 has the form 

�7(�) = 14π- �(�), (12) 

where - =  |�|, and the matrix �(�) is the modulation function of the displacement fundamental solution. 

The matrix �(�) is symmetric and it depends on the direction of - but not on its magnitude (see Figure 4). A 

relatively simple and general expression of  �(�) can be obtained using the auxiliary vector �� = (-��, 0, ��7), 

where -�� = �(��7)� + (��7)�; and the triad �!, �, ��/-� with ! = (|, 0, −�) and � = (0, 1, 0) where | = |�� � = ��7/-  and � = ��! � = -��/-, and the angle 0 ≤ � ≤ � , see Figure 4. For such a coordinate 

system only the coefficients ���(��) and ���(��) are non-zeros (see Appendix A). The general expression of 

the tensor �(�) for any x can be obtained by transformation of components:  ���(�) = Ω�	  Ωjs�	�(��),                           (13) 

where the rotation matrix ��� is  

��� = �cos . −sin . 0sin . cos . 00 0 1�. 

                                  

(14) 

The computation of the traction fundamental solution, }7(�), follows a similar procedure. The details can be 

found in Távara et al. (2008). 

Finally, the fundamental solutions ��	(�) and }�	(�) have to be transformed from the local coordinate 

system, (��7, ��7, ��7), to the global one in order to assemble the boundary integral equation (11). The 

fundamental solutions are transformed from the local coordinate system to the global one via the standard 

transformations for second order tensors (see Ting, 1996): ���(�) = f�	f�
�	
� (�)  

and  }��(�) = f�	f�
}	
� (�),                                

(15) 

52 Computational Methods in Fracture Mechanics

http://www.scientific.net/feedback/87227
http://www.scientific.net/feedback/87227


 

where f�	 is the transformation matrix. 

BEM models are discretized using 9-node quadrilateral elements. Continuous elements are used everywhere 

in the model, except at the intersections of the interface and the crack surfaces with model surface. In such 

cases one- and two-side discontinuous elements are used in order to avoid common nodes at the intersections 

(see Figure 5). It is worth noting that, although discontinuous elements are not strictly necessary to solve 

most of the practical bimaterial crack problems; they have been implemented in this work in order to develop 

a versatile and robust discretization strategy capable of dealing with general multiple subdomain problems 

(including the case of more than two subdomains sharing a single edge). At the same time, the 

implementation remains open to introduce further extensions to account for crack propagation which could 

require of the automatic model remeshing. 

The regular BEM integrals over continuous and discontinuous elements are evaluated using standard 

Gaussian quadrature. In the case of nearly singular integrals an adaptive element subdivision technique is 

also employed. On the other hand, the Cauchy principal value integrals and the free terms are evaluated 

using the rigid body motion approach (see Aliabadi, 2002). Singular integrals are computed using the 

variable transformation technique due to Lachat and Watson (1976).  

The equation (11) is applied to each of the subdomains while considering the orientation of the material as 

explained before. The equilibrium, {y = −{yy, and continuity, �y = �yy, conditions are enforced at the  nodes 

used to discretize the common interface Γyzyy.  The resultant system of equations is solved for the unknown 

traction and displacement nodal values after specifying the boundary conditions. It is worth noting that the 

implemented BEM code is not capable of detecting contact between the crack surfaces, and so, its 

application is restricted to open cracks only. For further details on the multi-domain BEM formulation and 

implementation the reader is referred to the book by Aliabadi (2002).  

The computation of the J-integral are included in the BEM code as a post-processing procedure, and so, it 

could be applied to the results from a particular model at a later stage. The required stresses, strains and 

derivatives of displacements at internal points are directly obtained from their boundary integral 

representations (Aliabadi, 2002):  

��,�(�#) = J ���,�(�, �′){�(�)dΓ� (�) − J }��,�(�, �#)��(�)dΓ� (�) 
(16) 

where �′ is the coordinate of the internal point, ���,�(�, �′) and }��,�(�, �#) are the derivatives of the 

fundamental displacement ���(�, �#)  and traction }��(�, �#)  fundamental solutions respectively (see Távara 

et al., 2009). The boundary � corresponds to that of the subdomain where the internal point �# lies on. 

Strains and stresses at internal points can then be easily computed using the definition of the infinitesimal 

strain tensor ��� = �� K��,� + ��,�O and the constitutive relationships in equation (1). 

On the other hand, the derivatives of the displacements, strains and displacements for boundary points are 

evaluated from the boundary displacements and tractions by means of a procedure similar to that usually 

used for finite elements. For further details the reader is referred to the paper by Ortiz and Cisilino (2005). 

 Finally, and in order to proceed with the J-integral computation, the resultant displacement derivatives, 

strains and stresses for both internal and boundary points are transformed to the local the crack-front 
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coordinate system (��∗, ��∗, ��∗) (see Section 4) using the standard transformation rule for second-order tensors 

(see Ting, 1996). 

6 J-integral Computation 

The computation of J-integral at any position Y on the crack front requires of the evaluation of a volume 

integral within closed domains that enclose a segment of the crack front `a (see equations 9 and 10). A 

natural choice here is to make Y coincident with the element nodes on the crack front, while `a is taken as 

the element or element sides at which points Y lies (on see Figure 6). The portion of the model domain in 

which the volume integrals are evaluated is discretized using 27-node cells. The cells are similar to the three-

dimensional finite elements and they are implemented using an isoparametric interpolation scheme, being 

their nodes the internal points of the BEM analysis. Thus, the values of stresses, RST∗ , strains,
 

�ST∗ , and 

displacements derivatives, US,�∗ , are interpolated by means of the cell interpolation functions, �S. Besides, 

the boundary mesh is designed to have a web shape around the crack front in order to build the integration 

volumes with the shape of cylinders. This is illustrated in Figure 7, where the frontal face of the model has 

been partially removed to show the crack and the integration domains. 

As it is depicted in Figure 6, three different cases are considered depending on whether the crack front 

position M is a mid-side node, it is shared by two elements, or it is located coincident with the external 

surface (surface node). If the node M is a mid-side node or surface node, `a (the segment of the crack front 

over which the J-integral is computed) spans over one element, connecting nodes M-1, M, and M+1 and 

nodes M-2, M-1 and M, respectively. On the other hand, if M is a shared node, `a spans over two elements, 

connecting nodes from M-2 to M+2. 

The function o is defined to vary quadratically in the directions tangential and normal to the crack front. This 

bi-quadratic definition of o has been employed with excellent results in the computation of EDI for a variety 

of problems in previous works (see Cisilino et al, 1998; Cisilino and Aliabadi, 1999; Ortiz and Cisilino, 2005 

and Balderrama et al., 2006 and 2008). Within this approach, and considering that the evaluation point Y is at 

the middle of the crack front segment `a, and �n is the radius of the integration domain, the function o is 

written as: 

@(�∗) = �1 − � ��∗��2  � ∙ ¡1 − ¢ --7£�¤ 
(17) 

where � is the distance from the crack front in the WZ∗ − W∗̂  plane as it is depicted in Figure 1. Function o is 

specified at all nodes within the integration volumes. Consistent with the isoparametric formulation, the      

q-values are interpolated using 

@ = / Ψ�¦��§
�¨� , (18) 

where �S are the shape functions defined within the volume cell and ©S are the nodal values for the ith node. 

From the definition of o (see equation 7), ©S = n if the ith node is on ln while for nodes inside V, ©S are 

given by interpolating between the nodal values on `a and ln. 
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Following standard manipulations the derivatives of o are: 

@	,� = / / ∂Ψ«∂¬

�


¨�
∂¬
∂�� ¦��§

�¨� , (19) 

where ­V are the coordinates in the cell isoparametric space and ®­V ®W¯⁄  is the Jacobian matrix of the 

transformation. 

Finally, if Gaussian integration is used, the discretized form of expression (9) is  

C̅(,) = / / ±K��� ∗ ��,	∗ − ��� ∗ ��� ∗ N	�O@	,�P9{ ²∂��∂¬	³´;
�

;¨�µ¶··¸ «¹ v L;, (20) 

where � is the number of Gaussian points per cell, and º» are the weighting factors. 

 

7 Application Examples 

7.1 Thick tension bimaterial plate with a centre interface crack 

A thick bimaterial plate containing a through crack on the interface is considered in the first example. A 

schematic representation of the problem geometry, dimensions and boundary conditions are depicted in 

Figure 8. Model discretization is similar to that depicted in Figure 7. It consists of 658 elements and 

2855 nodes. Eighteen elements are placed along the crack front, and a total of 126 elements are used in the 

crack discretization. Five rings of cells with normalized radii r/a = 0.1, 0.2, 0.3, 0.44 and 0.64 are 

accommodated around the crack front for J computations. With this purpose 648 cells and 6438 nodes are 

employed. 

In order to validate the code and to allow comparisons with other results from the bibliography, the problem 

was solved first for homogeneous cases, this is, the material elastic constants and orientations were set the 

same for both subdomains. The first case is that of an isotropic homogeneous plate with material elastic 

properties E=E’=100 GPa, ν=ν’=0.3 and µ’=0.5E/(1+ν). Computed J values along the crack front are 

presented in Figure 9, where the origin of the normalized coordinate, z/t=0, corresponds to the specimen mid-

plane (see Figure 8b). The reference values are those reported by Raju and Newman (1977) for a 

homogeneous centre cracked specimen and presented in a polynomial form by Aliabadi (1996). Since 

reference results are reported in terms of the mode-I stress intensity factors, KI, they have been converted to 

J values using the expression (see for example Anderson, 2005) w = 1y�  ¼⁄  (21) 

where ½j = ½ KZ − ¾^O⁄  for the plane strain condition. It is worth mentioning that the reference results are 

reported in terms of stress intensity factors with an accuracy of 5%. So that, when they are converted into 

J values using expression (21), the error bound is increased to around 10%. The accuracy of the reference 

J results is indicated in Figure 9 using the error bars. Data in Figure 9 are normalized with respect to the 

J value for a crack in a infinite homogenous plate under plane strain condition, ¿n = R^Àc ½j⁄ . Excellent 

agreement is found between the reference and computed results throughout the specimen thickness. 

Computed results are well within the error bounds of the reference results. Results of similar accuracy were 

obtained using a single-domain dual boundary element method (DBEM) in a previous work by Cisilino, 

et al. (1998). 
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For the next two homogeneous cases the direction of the axis of symmetry, W[n, is chosen to be parallel to the 

crack plane, this is, coincident with the global directions x  and z, respectively. For these cases the material 

elastic constants are chosen the same to those of the laminated used by Ariza and Dominguez (2004b). The 

five independent values of the coefficients of the tensor ]ST (see equation 3) are C�� = 5.37 GPa,   C�� = 1.34 GPa,   C�� = 3.35 GPa,   C�� = 251.168 GPa , and C�� = 5 GPa.   (22) 

The associated elastic properties are: E= 5 GPa, E´= 247.83 GPa, ν=0.245,  ν´= 0.01  and µ´= 2.5. The 

material orientation is specified for each subdomain by means of the angles (Ç, È, É) which define the 

orientation of
 
W[n, the material axis of symmetry, with respect to the global coordinate system (W, Ê, Ë). In this 

way, for the material axis of symmetry oriented in the direction global direction x, the orientation angles are 

are 0°/90°/90°, while for the material axis of symmetry oriented in the global direction z, the angles are 

90°/90°/0°.  

Computed results along the crack front are presented in Figure 10. In other to compare with other results, 

data in Figure 10 is presented in terms of normalized stress intensity factors,  ÌÍ Ìn⁄ , where Ìn = R√Àc. 

To compute the stress intensity factors from the J results, the problem was assimilated to a two-dimensional 

one in the xy plane. Stress intensity factors were computed from the J results using the expressions (see 

Chu and Hong, 1990), w� = f��1y� + f��1y1yy + f��1yy� and  w� = Ï��1y� + Ï��1y1yy + Ï��1yy� , (23) 

where the coefficients a and b depend on the elastic material properties and the material orientation. The 

coefficients cZ^, c^^ and the three coefficients Ð are zero when one of the principal axes of  the material is 

parallel to the crack plane. Thus, for the cases considered in this work w� = f��1y�. (24) 

The values for the coefficient cZZ as a function of the ratio between the Young modulus in the xy plane, ½W ½Ê⁄ ,  are reported in Table 1. 

It can be seen in Figure 10 that with the only exceptions of the regions next to the lateral faces of the 

specimen (say, |Ë m⁄ | > 0.45) where the boundary layer effect takes place, the stress intensity factor value is 

nearly constant along the crack front. Also plotted in Figure 10 there are two sets of results computed using a 

two-dimensional high-resolution finite element model. The finite element model was solved using Abaqus 

(2009), and it was discretized using a fine regular mesh consisting of 9,600 8-node biquadratic, plane stress 

elements (CPS8R). The stress intensity factors were computed using an Abaqus built-in facility. The 

resultant normalized stress intensity factors are ÌÍ Ìn⁄ = Z. Z^Ò and ÌÍ Ìn⁄ = Z. ZÓÒ for the material axis 

of symmetry oriented in the global directions x and z, respectively. The difference between the BEM and 

FEM results is less than 2%. 

The final case consists in a heterogeneous plate with the axis of symmetry of the material oriented in the 

global directions z and y for the subdomains I and II, respectively; this is, 90°/90°/0°  for the subdomain I 

and 90°/0°/90° for the subdomain II. The material elastic properties are the same of the previous cases. 

Computed results are presented in Table 2. The results are normalized with respect to  ¿n = R^Àc ½′⁄ . It can 

be seen that J value is nearly constant along the complete crack front.  Besides, the path independence is 

found excellent with a standard deviation of around 5% for the results computed using the domains with 

radii � c⁄ ≥ n. ^n. The only exceptions are the positions next to the lateral face of the specimen, where the 
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boundary layer effect takes place and the applicability of the J-integral is not strictly valid. The smallest 

integration domains with � c⁄ = n. Zn do not provide accurate results. This is attributed to the fact that these 

domains are discretized using a single cell in the radial direction. Similar behaviours were found in previous 

works by the authors (see for example Cisilino et al., 1998 and Ortiz and Cisilino, 2005).    

 

7.2 Bimaterial laminate with an edge interface crack 

It is considered in this example the analysis of an edge crack in a bimaterial laminate. The model geometry 

and discretization are depicted in Figure 11. Model dimensions are: crack length a=10 mm, specimen width 

b=4a, height h=a and thickness 2t=1.5a.  Material properties are the same used by Ariza and Dominguez 

(2004b) and reported in Equation (22) in the previous example. The discretization of the model is that 

illustrated in Figure 7, using 596 elements.  Five rings of cells with normalized radii r/a = 0.05, 0.1, 0.15, 

0.22 and 0.32 are accommodated around the crack front for the J computations. Five hundred and four cells 

are used in the construction of the integration domains. 

The model was solved for a number of relative orientations of the axis of symmetry of the material in both 

subdomains. The computed results are reported in Figure 12. J-results in Figure 12 are normalized with 

respect to  ¿n = R^Àc ½′⁄ . It can be seen that when one of the principal axes of the material is specified 

perpendicular to the crack front direction for both subdomains, the J-integral results along the crack front are 

symmetric with respect to the specimen mid-plane (z/t=0). These are the cases for the results labelled 

90°/90°/0°-90°/90°/0° and 0°/90°/90°-90°/90°/0° in the figure. On the other hand, when the orientation of the 

principal axes of the material are arbitrary in at least one of the two subdomains, the J-integral results along 

the crack front are not symmetric with respect to the specimen mid-plane. The extreme values for the           

J-integral are attained at the free surface. 

 

7.3 A circumferential interface crack in a cylindrical bimaterial bar 

The last example consists in a cylindrical bimaterial bar containing a circumferential crack subjected to 

remote axial tension σ , see Figure 13a.  The radius of the bar is b=5a and its height h=24a, being a the 

crack depth. A total of 684 elements are employed in the model discretization. Four rings of cells with radii 

r/a = 0.25, 0.5, 0.75 and 1 are accommodated around the crack front for the J computations. Integration 

domains are constructed using 672 cells. The model discretization is illustrated in Figure 13b. Material 

properties are the same reported in Equation 22 for a previous example. 

The problem was solved considering different material orientations. The results are reported in Figure 14. In 

every case the results are normalized with respect to ¿n = R^Àc/½′. The first solution is for an isotropic 

homogeneous material and it was used with validation purposes. The J result is constant along the complete 

crack front. The difference between the computed result and that reported by Murakami and Okazaki (1976) 

is 5% (it is worth noting that the reported precision for the reference solution is 3%). The second solution is 

for a homogeneous transversely-isotropic case, with the material symmetry axis specified coincident with the 

direction y for both subdomains (results labeled 90°/0°/90°-90°/0°/90° in Figure 14). Once again, and as it 

was expected, the computed J values are constant along the complete crack front. In the third case the 

orientation of the material axis of symmetry are different in each subdomain: for the subdomain I the 
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material axis of symmetry is oriented in the z-direction, while for the subdomain II it is oriented in the y-

direction (results labelled 90°/90/0°-90°/0°/90° in Figure 14). The J results exhibit a periodic variation along 

the crack front. Minimum values occur in the positions coincident with the direction of the z-axis, while the 

maximums are in the positions coincident with the direction of the x-axis. In the last case, the orientation of 

the material axis of symmetry is specified in the x-direction for both subdomains (results labelled 0°/90/90°-

0°/90°/90° in Figure 14). As for the previous case, the  J results exhibit a periodic variation along the crack 

front. However, in this case minimum values occur in the positions coincident with the direction of the x-

axis, while the maximums are in the positions coincident with the direction of the z-axis. 

 

8 Conclusions 

A boundary element methodology for the analysis of three-dimensional interface cracks in transversely 

isotropic bimaterials has been presented in this paper. The analysis is addressed using a multidomain BEM 

formulation in order to account for the different material properties at both sides of the crack. The J-integral 

is computed along the crack front using the Energy Domain Integral (EDI) methodology. This is 

implemented as a post-processing technique, and so, it can be applied to the results from a particular model 

at a later stage. The implementation takes advantage of the efficiency of the boundary integral equation to 

directly obtain the required displacement derivatives, stress and strain fields from their boundary integral 

representations.  

The efficiency and accuracy of the proposed implementation has been addressed by analysing a number of 

examples with straight and curved crack fronts. The computed results compared very well with those 

reported in the literature for benchmark problems. Besides, the implemented algorithm allowed studying the 

effect of the relative orientations of the materials on both sides of the crack on the J integral values.  

Maximum errors and dependence of the computed results with the integration paths occur for surface cracks 

at the intersection of the crack front with a free surface. In this sense it is worth noting that the formulation of 

EDI methodology used in this work is based on the assumption that the near-crack tip fields asymptote to the 

plane strain fields along the crack front. But it turns out that this assumption does not hold at the intersection 

of the crack front and a free surface, and so the proposed methodology is not strictly applicable. This 

problem remains unsolved in this work. Following previous work (Cisilino and Ortiz, 2005), alternative 

approaches for the selection of the auxiliary function o for the implementation of the EDI could be explored 

to improve the accuracy of the computations. 
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Appendix A 

Non-zero components of the tensor Ô(WÕ): 

ÔZZ = ZÖ××È[ + ÖÒÒa^ + Ö[[Ø^ÖZZÖÒÒÙÚ − ÛX 

, 

(A1) 

Ô^^ = ZÖZZÙ + ÛX, 
, 

(A2) 

Ô[[ = ZÙÚ ±Ú + a^ÖÒÒ + Ø^ÖZZ´, (A3) 

��� = (C�� + C��)�|C��C��Üℎ , (A4) 

Þ� = ±C��|� + C����C�� ´�/�, (A5) 

ℎ = ±|� + ,��|�C��C�� + C����C�� ´�/�, (A6) 

Ü = ±2(ℎ + |�) + ,��C��C��´�/�, (A7) 

I = Ü(ℎ + ÜÞ� + Þ��), (A8) , = C��C�� − C��� − 2C��C��, (A9) 

 

where = cos � = ��/- , � = sin � = -��/- and the angle � is indicated in Figure 4.  
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Figure 1: (a) Definition of the local orthogonal Cartesian coordinates at 

point η on the crack front, (b) Virtual crack front advance. 
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Figure 2: Tubular domain surrounding a segment of the 

crack front. 
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Figure 3: Schematic two-dimensional representation of the multi-domain 

BEM model with an interface crack. 
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Figure 5: Model discretization strategy using continuous and 
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Figure 6: Schematic of the crack front region illustrating 
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Figure 7: (a) Problem geometry, (b) Boundary Element discretization,  

(c) Integration domains. 
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Figure 8: (a) Schematic representation of the thick tension plate with 

a centre interface crack, (b) Model dimensions. 
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Figure 9: Normalized J-integral results along the crack front for 

the homogeneous isotropic centre crack specimen. 
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Figure 10: Normalized SIF results along the crack front for the 

homogeneous transversely-isotropic centre crack specimen. 
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Figure 11: Bimaterial laminate with an edge crack (deformed geometry) 
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Figure 12: Normalized J-integral  results along the crack front of 

the edge crack in the ply. 
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(b) 

Figure 13: External circumferential interface crack in a cylindrical bimaterial bar, 

(a) model geometry and dimensions, (b) model discretization (deformed mesh) 
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Table 1: Resulting values for the coefficients a11 and Young Modulus ratios used to compute stress intensity 

factors from the J results.  

Case 11a  
x yE E  

Material symmetry in x- direction 0.112 10
-9 

49.57 

Material symmetry in z- direction 0.2 10
-9 

1 

 

 

Table 2: Normalized J-integral results for the heterogeneous plate as a function of the integration domain 

size. The results for the smallest integration domains, r/a=1 (shaded column in the table) are excluded for the 

computation of the average value and the STD. 

 

z/t 
r/a 

Average STD 
0.10 0.20 0.30 0.44 0.64 

0.000 25.6382 30.4503 30.7658 30.7658 30.6081 30.5613 0.49 

0.042 25.6382 30.4503 30.7658 30.7658 30.6081 30.5566 0.49 

0.083 25.6382 30.4503 30.7658 30.7658 30.6081 30.5512 0.49 

0.125 25.6382 30.4503 30.7658 30.7658 30.6081 30.5452 0.49 

0.167 25.6382 30.4503 30.7658 30.7658 30.6081 30.5384 0.49 

0.192 25.6382 30.4503 30.6869 30.7658 30.6081 30.5306 0.44 

0.217 25.6382 30.4503 30.6869 30.7658 30.6081 30.5231 0.44 

0.242 25.6382 30.4503 30.6869 30.7658 30.6081 30.5144 0.44 

0.267 25.6382 30.4503 30.6869 30.7658 30.6081 30.5041 0.44 

0.292 25.6382 30.4503 30.6869 30.7658 30.6081 30.4917 0.44 

0.317 25.6382 30.3714 30.6869 30.6869 30.5292 30.4766 0.50 

0.342 25.6382 30.3714 30.6081 30.6869 30.4503 30.4651 0.47 

0.367 25.6382 30.3714 30.6081 30.6081 30.4503 30.4559 0.39 

0.400 25.5593 30.3714 30.6081 30.6081 30.4503 30.4470 0.39 

0.433 25.5593 30.2925 30.6081 30.6081 30.4503 30.4345 0.50 

0.450 25.5593 30.2925 30.5292 30.6081 30.4503 30.4207 0.44 

0.467 25.4804 30.2925 30.6869 30.7658 30.6869 30.4043 0.70 

0.483 25.0071 29.9770 30.7658 31.1603 31.2391 30.3024 1.91 

0.500 23.5871 28.5570 29.7403 30.3714 30.6081 29.8192 3.08 

 

 

 

Key Engineering Materials Vol. 454 77

http://www.scientific.net/feedback/87227
http://www.scientific.net/feedback/87227


Computational Methods in Fracture Mechanics 
doi:10.4028/www.scientific.net/KEM.454 
 
Boundary Element Analysis of Three-Dimensional Interface Cracks in Transversely
Isotropic Bimaterials Using the Energy Domain Integral 
doi:10.4028/www.scientific.net/KEM.454.47

http://www.scientific.net/feedback/87227
http://www.scientific.net/feedback/87227

