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Abstract

A one-dimensional fractional one-phase Stefan problem with a tem-
perature boundary condition at the fixed face is considered by using the
Riemann–Liouville derivative. This formulation is more convenient than
the one given in Roscani and Santillan (Fract. Calc. Appl. Anal., 16, No
4 (2013), 802–815) and Tarzia and Ceretani (Fract. Calc. Appl. Anal., 20,
No 2 (2017), 399–421), because it allows us to work with Green’s identi-
ties (which does not apply when Caputo derivatives are considered). As a
main result, an integral relationship between the temperature and the free
boundary is obtained which is equivalent to the fractional Stefan condition.
Moreover, an exact solution of similarity type expressed in terms of Wright
functions is also given.
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1. Introduction

The free boundary problems for the one-dimensional diffusion equation
are problems linked to the processes of melting and freezing. In these
problems the diffusion, considered as a heat flow, is expressed in terms of
instantaneous local flow of temperature, and a latent heat-type condition
at the interface connecting the velocity of the free boundary and the heat
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flux of the temperatures in both phases. This kind of problems have been
widely studied in the last 50 years (see [1, 5, 8, 10, 13, 20, 29, 31, 32]).

In this paper a fractional Stefan problem is considered. That is, a prob-
lem governed by a fractional diffusion equation (FDE) with two unknown
functions: a two variables function u = u(x, t) and a free boundary s = s(t).

When the order of the FDE is less than 1, the process is called anoma-
lous diffusion and it has been studied by numerous authors [12, 14, 16,
18, 19, 22, 24, 39]. For example it has been observed that the behaviour
of proteins is subdiffusive due to molecular crowding [3]. Also, Mainardi
studied in [21] the application to the theory of linear viscoelasticity.

Fractional free boundary problems where studied in [2, 4, 15, 17, 28, 35]
and it has been observed that growth of frost on a cooled plate can be
superdiffusive [30]. Voller et al. [36] state that if we consider an ideal
non local flow and we replace it in a heat balance equation, we derive
in subdiffusion, modeled by a fractional diffusion equation involving the
fractional Caputo derivative in time of order α ∈ (0, 1). Following this
idea, we consider the non local flow given by

q = −k RL
0 D1−α

t

∂

∂x
u(x, t), (1.1)

in which the fractional derivative is the Riemann–Liouville derivative re-
spect on time of order 1− α (α ∈ (0, 1)) defined by

RL
0 D1−α

t

∂

∂x
u(x, t) =

1

Γ(α)

∂

∂t

∫ t

0

∂
∂xu(x, τ)

(t− τ)1−α
dτ, α ∈ (0, 1),

where Γ is the Gamma function defined by Γ(x) =
∫∞
0 wx−1e−wdw. Note

that the Fourier law

ql(x, t) = −k
∂

∂x
u(x, t) (1.2)

that says that the heat flux is proportional to the temperature gradient is
recovered when the value α = 1 is considered in (1.1).

Now, if we replace equation (1.1) in the heat balance equation, the
following fractional diffusion equation is obtained:

∂

∂t
u(x, t) = λ2 ∂

∂x

(
RL
0 D1−α

t

∂

∂x
u(x, t)

)
. (1.3)

The classical Stefan condition derived from the Rankine-Hugoniot condi-
tions in a one-phase Stefan problem is given by

d

dt
s(t) = ql(x, t)

∣∣∣
(s(t)−,t)

, 0 < t ≤ T. (1.4)

So, replacing the non local flux (1.1) in (1.4) we obtain the following “frac-
tional Stefan condition”:
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d

dt
s(t) = −k RL

0 D1−α
t

∂

∂x
u(x, t)

∣∣∣∣
(s(t)−,t)

, 0 < t ≤ T. (1.5)

Therefore, our problem is given by:

(i) ∂
∂tu(x, t) = λ2 ∂

∂x

(
RL
0 D1−α

t
∂
∂xu(x, t)

)
, 0 < x < s(t), 0 < t < T,

(ii) u(x, 0) = f(x), 0 ≤ x ≤ b = s(0),

(iii) u(0, t) = g(t), 0 < t ≤ T,

(iv) u(s(t), t) = 0, 0 < t ≤ T, C ≥ 0,

(v) d
dts(t) = −k RL

0 D1−α
t

∂
∂xu(x, t)

∣∣
(s(t)− ,t)

, 0 < t ≤ T,

(1.6)
where 0 < α < 1, f and g are non-negative continuous functions defined in
(0, T ].

It is interesting to remark that the classical subdiffusion equation is
given in terms of the Caputo derivative, that is

C
0 D

α
t u(x, t) = λ2 ∂2

∂x2
u(x, t). (1.7)

Equation (1.7) and (1.3) are closed linked (as we will see later). Although
equation (1.7) is the preferred choice due to the “blessings” of the Caputo
derivative, in this opportunity we have preferred to use equation (1.3) be-
cause it is allows us to work with classical Green identities. Recall that the
formulations given at the moment for fractional Green identities (see for
example [23]) are more complicated than the classical.

In the study of classical Stefan problems, the validity of a so called
integral Stefan relationship (which is equivalent to the Stefan condition
(1.4)), was demonstrated for temperature, heat flow, and convective con-
dition (a Robin type condition) at the fixed face x = 0 in [6], [7] and [33],
respectively. This integral relationship is fundamental to obtain results of
existence and uniqueness, continuous and monotonous dependence on data
and asymptotic behavior of the solution.

The purpose of this work is to obtain this integral condition for the
fractional Stefan problem (1.6), predicting future results of uniqueness or
asymptotic behavior of the free boundary. This result states that if the
pair {u, s} is a solution of problem (1.6), then (under certain conditions)
the following integral condition for the free boundary s(t) and the function
u(x, t) is verified:

s2(t) = b2 + 2

∫ t

0

RLD1−α
t g(τ)dτ + 2

∫ b

0
zf(z)dz − 2

∫ s(t)

0
zu(z, t)dz

−2

∫ t

0

RLD1−α
t u(x, t)

∣∣
(s(τ),τ)

dτ.

(1.8)
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The paper is present as follows. In Section 2 some basic concepts of
fractional calculus that will be used later are given. In Section 3 the in-
tegral relationship (3.18) is proved by using the Green’s Theorem and it
is also proved that, under certain hypothesis, this integral relationship is
equivalent to the fractional Stefan condition (1.5). Finally we present an
exact solution to a particular case of problem (1.6) in terms of the Wright
functions and the relationship already obtained is checked.

2. Preliminaries

2.1. Basics of Fractional Calculus.

Definition 2.1. Let [a, b] ⊂ R and α ∈ R
+ be such that n−1 < α ≤ n.

(1) If f ∈ L1[a, b] we define the fractional Riemann–Liouville integral
of order α as

aI
αf(t) =

1

Γ(α)

∫ t

a
(t− τ)α−1f(τ)dτ.

(2) If f ∈ ACn[a, b] =
{
f ∈ C(n−1) | f (n−1) is absolutely continuous

}
,

we define the fractional Riemann–Liouville derivative of order α as

RL
a Dαf(t) =

[
Dn

aI
n−αf

]
(t) =

1

Γ(n− α)

dn

dtn

∫ t

a
(t− τ)n−α−1f(τ)dτ.

(3) If f ∈ W n(a, b) =
{
f ∈ Cn(a, b] | f (n) ∈ L1[a, b]

}
we define the frac-

tional Caputo derivative of order α as

C
a D

αf(t) =

⎧⎨
⎩

1
Γ(n−α)

∫ t

a
(t− τ)n−α−1f (n)(τ)dτ n− 1 < α < n,

f (n)(t) α = n.

Lemma 2.1. The following properties involving the fractional integrals
and derivatives hold:

(1) The fractional Riemann–Liouville derivative operator is a left in-
verse of the fractional Riemann–Liouville integral of the same order
α ∈ R

+. If f ∈ L1[a, b], then

RL
a Dα

aI
αf(t) = f(t), a.e.

(2) The fractional Riemann–Liouville integral, in general, is not a left
inverse operator of the fractional derivative of Riemann–Liouville.

In particular, if 0 < α < 1, then

aI
α(RL

a Dαf)(t) = f(t)− aI
1−αf(a+)

Γ(α)(t − a)1−α
.
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(3) If f ∈ ACn[a, b], then

RL
a Dαf(t) =

n−1∑
k=0

f (k)(a)

Γ(1 + k − α)
(t− a)k−α + C

a D
αf(t).

Remark 2.1. It is known that if f and g are functions supported in
[0,∞), then the convolution of f and g is defined by

(f ∗ g)(t) =
∫ t

0
f(t− τ)g(τ)dτ.

Then if we consider a function f supported in [0,∞) and χα is the locally
integrable function defined by

χα(t) =

{
tα−1

Γ(α) if t > 0,

0 if t ≤ 0,
(2.1)

then we have the following properties:

0I
αf(t) = (χα ∗ f) (t), (2.2)

RL
0 Dαf(t) =

dn

dtn
(χn−α ∗ f) (t), (2.3)

C
0 D

αf(t) = (χn−α) ∗ dn

dtn
f(t). (2.4)

2.2. The special functions involved. In this subsection we give the def-
initions and properties of the special functions appearing in the explicit
solution that will be presented in the next section.

Definition 2.2. For every z ∈ C , ρ > −1 and β ∈ R the Wright
function is defined by

W (z; ρ;β) =
∞∑
k=0

zk

k!Γ(ρk + β)
. (2.5)

The Mainardi function [12] is a special case of the Wright function defined
by

Mρ(z) = W (−z,−ρ, 1−ρ) =

∞∑
n=0

(−z)n

n!Γ (−ρn+ 1− ρ)
, z ∈ C, ρ < 1. (2.6)

Remark 2.2. The function (2.5) was introduced by E.M. Wright at
the beginning of the XX Century, and he studied its asymptotic behaviour
in [37] and [38]. It is known that:

(1) The Wright function is an entire function if ρ > −1.
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(2) The derivative of the Wright function can be computed as

∂

∂z
W (z, ρ, β) = W (z, ρ, ρ+ β). (2.7)

(3) Some particular cases are:

Gaussian function: 1√
π
e−x2

= W
(−2x,−1

2 ,
1
2

)
= M1/2(2x);

Error function: erf (x) = 2√
π

∫ x

0
e−ξ2dξ = 1−W

(
−2x,−1

2
, 1

)
;

and the complementary erf function:

erfc (x) =
2√
π

∫ ∞

x
e−ξ2dξ = W

(
−2x,−1

2
, 1

)
.

(4)

lim
x→∞W

(
−x,−α

2
, β
)
= 0 for all α ∈ (0, 1), β > 0. (2.8)

The next two lemmas were proved in [26].

Lemma 2.2. If 0 < α < 1, then:

(1) Mα/2(x) is a positive and strictly decreasing positive function in

R
+ such that Mα/2(x) <

1
Γ(1−α

2 )
for all x > 0.

(2) W
(−x,−α

2 , 1
)
is a positive and strictly decreasing function in R

+

such that 0 < W
(−x,−α

2 , 1
)
< 1, for all x > 0.

(3) 1 −W
(−x,−α

2 , 1
)
is a positive and strictly increasing function in

R
+ such that 0 < 1−W

(−x,−α
2 , 1
)
< 1, for all x > 0.

Lemma 2.3. If x ∈ R
+
0 and α ∈ (0, 1) then:

(1) lim
α↗1

Mα/2 (2x) = M1/2(2x) =
e−x2√

π
;

(2) lim
α↗1

[
1−W

(−2x,−α
2 , 1
)]

= erf (x) .

3. The fractional Stefan Problem

Let us now study problem (1.6), which is the main goal of this pa-
per. The following two regions will be considered: ΩT = {(x, t)/0 < x <
s(t), 0 < t ≤ T} and ∂pΩT = {(0, t), 0 < t ≤ T} ∪ {(s(t), t), 0 < t ≤
T} ∪ {(x, 0), 0 ≤ x ≤ b}, where the latter is called parabolic boundary.

Definition 3.1. A pair {u, s} is a solution of problem (1.6) if

(1) u is defined in [0, b0]× [0, T ] where b0 := max{s(t), 0 ≤ t ≤ T}.
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(2) u ∈ C(DT ) ∩ C2
x(DT ), such that ux ∈ AC1

t ((0, T )) where
AC1

t ((0, T )) := {f(x, ·) : f ∈ AC1(0, T ) for every fixed x ∈ [0, b0]}.
(3) u is continuous in DT ∪ ∂pDT except perhaps at (0, 0) and (b, 0)

where

0 ≤ lim inf
(x,t)→(0,0)

u(x, t) ≤ lim sup
(x,t)→(0,0)

u(x, t) < +∞

and

0 ≤ lim inf
(x,t)→(b,0)

u(x, t) ≤ lim sup
(x,t)→(b,0)

u(x, t) < +∞.

(4) s ∈ C1(0, T ).
(5) There exists RL

0 D1−α
t

∂
∂xu(x, t)

∣∣
(s(t),t)

for all t ∈ (0, T ].

(6) u and s satisfy (1.6).

Remark 3.1. We request u to be defined in [0, b0] × [0, T ] since the
fractional derivative RL

0 D1−α
t

∂
∂xu(x, t) involves values

∂
∂xu(x, τ) for all τ in

[0, t], but we ask u to verify the FDE in the region ΩT .

Remark 3.2. Similar problems for the fractional derivative in the
Caputo sense were studied in [2, 25, 26, 27, 28, 34, 35, 36]. For example,
the formulation given in [26] for α ∈ (0, 1) is:

(i) CDα
t u(x, t) = λ2 ∂

∂x2u(x, t), 0 < x < s(t), 0 < t < T, λ > 0,
(ii) u(x, 0) = f(x), 0 ≤ x ≤ b = s(0),
(iii) u(0, t) = g(t), 0 < t ≤ T,
(iv) u(s(t), t) = 0, 0 < t ≤ T,
(v) CDαs(t) = −kux(s(t), t), 0 < t ≤ T.

(3.1)
We assert that problem (3.1) is similar to problem (1.6) because from

Lemma 1 it results that if u is a solution of the fractional diffusion equation
for the Caputo derivative (3.1− i), then u verifies the FDE (1.6 − i).

However, in general, the converse of the previous statement is not true
because the fractional integral of Riemann-Liouville is not the inverse op-
erator of the Riemann–Liouville derivative of equal order.

Also it is worth noting that if we apply the integral operator RL
0 D1−α

t

to both members of equation (3.1 − v), we get equation

d

dt
s(t) = −k RL

0 D1−α
t

[
∂

∂x
u(s(t), t)

]
, 0 < t ≤ T,

which is different to equation (1.5) unless α = 1.
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3.1. An exact solution. Without loss of generality, hereinafter the values
λ = 1 and k = 1 are taken.

Consider b = 0 and a constant boundary condition in (1.6−iii). Namely,
let the following fractional Stefan problem be:

(i) ∂
∂tu(x, t) =

∂
∂x

(
RL
0 D1−α

t
∂
∂xu(x, t)

)
, 0 < x < s(t), 0 < t < T,

(ii) u(0, t) = 1, 0 < t ≤ T,
(iii) u(s(t), t) = 0, 0 < t ≤ T, s(0) = 0

(iv) d
dts(t) = − RL

0 D1−α
t

∂
∂xu(x, t)

∣∣
(s(t),t)

, 0 < t ≤ T, 0 < α < 1.

(3.2)
In order to find an exact solution to problem (3.2), the next lemma

proved in [11] will be used:

Lemma 3.1. Let c(x, t) be a solution of the time–fractional diffusion
equation for the Caputo derivative (3.1 − i) such that:

For every (x, t), the function F (x, t) =

∫ ∞

x
c(ξ, t)dξ is well defined,

(3.3)

lim
x→∞

∂c

∂x
(x, t) = 0, (3.4)∣∣∣∣ ∂∂τ c(ξ, τ)

∣∣∣∣ ≤ g(ξ) ∈ L1(x,∞) , (3.5)

∂
∂τ c(ξ, τ)

(t− τ)α
∈ L1((x,∞) × (0, t)) . (3.6)

Then

∫ ∞

x
c(ξ, t)dξ is a solution to the time fractional diffusion equation for

the Caputo derivative (3.1− i).

Remark 3.3. The factor 2 appearing in the next functions (3.7) and
(3.8) was considered with the aim to recover the Gaussian and erf functions
when we make α ↗ 1 (according to Lemma 2.3).

Theorem 3.1. The pair given by

u(x, t) = 1− 1

1−W
(−2ξ,−α

2 , 1
) [1−W

(
− x

tα/2
,−α

2
, 1
)
], (3.7)

s(t) = 2ξtα/2, (3.8)

where ξ is the unique positive solution to the equation

2x
[
1−W

(
−2x,−α

2
, 1
)]

= 2xW
(
−2x,−α

2
, 1
)
+W

(
−2x,−α

2
, 1 +

α

2

)
,

(3.9)
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is a solution to problem (3.2).

P r o o f. We know that

u(x, t) = a+ b
[
1−W

(
− x

tα/2
,−α

2
, 1
)]

(3.10)

is a solution of fractional diffusion equation for the Caputo derivative (3.1−
i) for all a ∈ R, b ∈ R (see [19] or [28]). Then, applying Remark 3.2, it
results that u is a solution to equation (3.2− i).

From (3.2 − ii) we obtain

1 = u(0, t) = a+ b
[
1−W

(
0,−α

2
, 1
)]

= a, (3.11)

and from (3.2 − iii) we get

u(s(t), t) = 1 + b

[
1−W

(
− s(t)

tα/2
,−α

2
, 1

)]
= 0. (3.12)

Note that (3.12) must be verified for all t > 0, so we will ask for s(t) to be
proportional to tα/2, that is to say

s(t) = 2ξtα/2 for some ξ > 0. (3.13)

Replacing (3.13) in (3.12) and taking into account Lemma 2.2 it follows
that b = −k 1

1−W(−2ξ,−α
2
,1)

and then (3.7) holds.

With the aim of use the fractional Stefan condition (3.2 − iv), the
fractional derivative RL

0 D1−α
t

(
∂
∂xu(x, t)

)
must be computed.

From (2.8) and using estimates made in [11], it yields that, for every

x > 0, w1(x, t) = W
(
− x

tα/2 ,−α
2 , 1
)

is under the assumptions of Lemma

3.1. Clearly, w2(x, t) = x is a solution to the FDE (3.2 − i).
Then, using the linearity of the Caputo derivative [16] and the principle

of superposition we can state that the function defined by

v(x, t) =−
[
1− 1

1−W
(−2ξ,−α

2 , 1
)
]
x

+
tα/2

1−W
(−2ξ,−α

2 , 1
)W (

− x

tα/2
,−α

2
, 1 +

α

2

) (3.14)

is a solution of the FDE such that ∂v
∂x(x, t) = −u(x, t) for all x > 0, t > 0.

Hence

∂

∂t
v(x, t) =

∂

∂x

(
RL
0 D1−α

t

∂

∂x
v(x, t)

)
=

∂

∂x

(
RL
0 D1−α

t (−u(x, t))
)

= −RL
0 D1−α

t

∂

∂x
u(x, t), x > 0, t > 0.

(3.15)
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Differentiating v with respect to the t variable and using (3.15), it yields

−RL
0 D1−α

t

∂

∂x
u(x, t) =

1

1−W
(−2ξ,−α

2 , 1
) α
2

[x
t
W
(
− x

tα/2
,−α

2
, 1
)

+ tα/2−1W
(
− x

tα/2
,−α

2
, 1 +

α

2

)]
.

(3.16)

Replacing (3.13) and (3.16) into the fractional Stefan condition (3.2−iv)
it results that ξ must verify the following equation:

2x
[
1−W

(
−2x,−α

2
, 1
)]

= 2xW
(
−2x,−α

2
, 1
)
+W

(
−2x,−α

2
, 1 +

α

2

)
.

(3.17)
Define in R0 the functions

H(x) = x
[
1−W

(
−x,−α

2
, 1
)]

and
G(x) = xW

(
−x,−α

2
, 1
)
+W

(
−x,−α

2
, 1 +

α

2

)
.

From Lemma 2.2, H is an increasing function such that H(0) = 0. On the
other hand, G is a decreasing function in R

+ such that G(0) = 1
Γ(1+α

2 )
> 0

due to G′(x) = −xMα/2(x) < 0 for all x > 0 and α ∈ (0, 1). Then, we
can assert that there exists a unique positive solution ξ such that H(2ξ) =
G(2ξ). �

3.2. An integral relationship between u and s. The next theorem
provides an integral relationship between the free boundary s and function
u, obtained from the fractional Stefan condition (1.5).

Theorem 3.2. Let {u, s} be a solution of problem (1.6) such that
∂2

∂t∂xu(x, t) ∈ C1(ΩT ), g ∈ AC1(0, T ) and, RLD1−α
t g and

RLD1−α
t u(x, t)|(s(t),t) ∈ L1(a, b). Then the following integral relationship

for the free boundary s(t) and the function u(x, t)

s2(t) = b2 + 2

∫ t

0

RLD1−α
t g(τ)dτ + 2

∫ b

0
zf(z)dz − 2

∫ s(t)

0
zu(z, t)dz

−2

∫ t

0

RLD1−α
t u(x, t)

∣∣
(s(τ),τ)

dτ

(3.18)
is verified.

P r o o f. Recall the Green identity:∫
∂Ω

Pdt+Qdx =

∫∫
Ω
(Qt − Px) dA,
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where Ω is an open simply connected region, ∂Ω is a positively oriented,
piecewise smooth, simple closed curve, and the field F = (P,Q) is C1 in an
open set containing Ω.

Consider the functions P and Q defined by

P (x, t) = −xRLD1−α
t ux(x, t) +

RLD1−α
t u(x, t) (3.19)

Q(x, t) = −xu(x, t), (3.20)

and the region Ωε =
{
(x, τ) ∈ R

2 / ε < τ < t, 0 < x < s(τ)
}
, ε > 0.

Note that

RLD1−α
t ux(x, t) =

∂

∂t
I1−α
t (ux(x, t)) =

∂

∂t
(χ1−α(t) ∗ ux(x, t)) ,

where χα (defined in eq. (2.1) ) is an L1
loc function. Then the convolution

inherits all the properties of ux and, taking into account that u is under

the assumptions of Definition 3.1 and that ∂2

∂t∂xu(x, t) ∈ C1(ΩT ), the field
F has all the regularity required in Ωε.

Also, due to the regularity of the field F , the derivatives ∂/∂x and
RLD1−α

t commutes. Then, applying Green’s Theorem and taking into ac-
count that u verifies (1.6 − i), we get∫

∂Ωε

Pdτ +Qdx

=

∫
∂Ωε

[−xRLD1−α
t ux(x, τ) +

RLD1−α
t u(x, τ)

]
dτ − xu(x, t)dx

=

∫∫
Ωε

[
−xut(x, τ) +

RLD1−α
t ux(x, τ) + x

∂

∂x

(
RLD1−α

t ux(x, τ)
)

− ∂

∂x

(
RLD1−α

t u(x, τ)
)]

dτ dx

=

∫∫
Ωε

x
[
RLD1−α

t uxx(x, τ)− ut(x, τ)
]
dτ dx = 0.

(3.21)

Consider ∂Ωε = ∂Ωε1∪∂Ωε2∪∂Ωε3∪∂Ωε4 where ∂Ωε1 = {(0, τ), ε ≤ τ ≤ t},
∂Ωε2 = {(z, ε), 0 ≤ z ≤ s(ε)}, ∂Ωε3 = {(s(τ), τ), ε ≤ τ ≤ t} and ∂Ωε4 =
{(z, t), 0 ≤ z ≤ s(t)}. Integrating over the contour ∂Ωε (positively ori-
ented) we get:∫

∂Ωε1

Pdτ +Qdx =

∫ ε

t

RLD1−α
t u(0, τ)dτ = −

∫ t

ε

RLD1−α
t g(τ)dτ, (3.22)

∫
∂Ωε2

Pdτ +Qdx =

∫ s(ε)

0
−zu(z, ε)dz, (3.23)
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∫
∂Ωε3

Pdτ +Qdx =

∫ t

ε

[
−s(τ) RL

0 D1−α
t

∂

∂x
u(x, t)

∣∣∣∣
(s(τ),τ)

+RLD1−α
t u(x, t)|(s(τ),τ) − s(τ)u(s(τ), τ)s′(τ)

]
dτ

=

∫ t

ε
s(τ)s′(τ)dτ +

∫ t

ε

RLD1−α
t u(x, t)|(s(τ),τ) dτ

=
s2(t)

2
− s2(ε)

2
+

∫ t

ε

RLD1−α
t u(x, t)|(s(τ),τ) dτ,

(3.24)∫
∂Ωε4

Pdt+Qdx =

∫ s(t)

0
zu(z, t)dz. (3.25)

Combining (3.21), (3.22), (3.23), (3.24) and (3.25), it results that

−
∫ t

ε

RLD1−α
t g(τ)dτ −

∫ s(ε)

0
zu(z, ε)dz +

s2(t)

2
− s2(ε)

2

+

∫ t

ε

RLD1−α
t u(x, t)|(s(τ),τ) dτ +

∫ s(t)

0
zu(z, t)dz = 0.

(3.26)

Taking the limit when ε ↘ 0 we get the integral relationship (3.18), i.e. the
thesis holds. �

Remark 3.4. If we take α = 1 in the integral relationship (3.18) we
get

s2(t) = b2+2

∫ t

0
g(τ)dτ+2

∫ b

0
zf(z)dz−2

∫ s(t)

0
zu(z, t)dz−2

∫ t

0
u(s(τ), τ)dτ,

and using condition (1.6 − iii), it results that

s2(t) = b2 + 2

∫ t

0
g(τ)dτ + 2

∫ b

0
zf(z)dz − 2

∫ s(t)

0
zu(z, t)dz, (3.27)

where (3.27) is the classical integral relationship for the free boundary when
a classical Stefan problem is considered (see [5], Lemma 17.1.1).

It was also proven in [5] that condition (3.27) is equivalent to the Stefan
condition

d

dt
s(t) = − ∂

∂x
u(s(t), t), ∀ t > 0. (3.28)

Hence, it is natural to wonder if the “fractional Stefan condition” (1.5) and
the “fractional integral relationship” (3.18) are equivalent too.

Theorem 3.3. Let {u, s} be a solution of problem {(1.6− i), (1.6 − ii),

(1.6− iii), (1.6 − iv), (3.18)} such that ∂2

∂t∂xu(x, t) ∈ C1(ΩT ), g ∈ AC1(0, T ),
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RLD1−α
t g, RLD1−α

t u(x, t)|(s(t),t) ∈ L1(a, b) and s(t) > 0 for all t > 0. Then
functions s = s(t) and u = u(x, t) verify the fractional Stefan condition
(1.5).

P r o o f. Reasoning as in Theorem 3.2, we can state that the equalities
(3.21), (3.22), (3.23) and (3.24) hold. Then, taking the limit when ε ↘ 0
it results that

−
∫ t

0

RLD1−α
t g(τ)dτ −

∫ b

0
zf(z)dz −

∫ t

0
s(τ)RLD1−α

t

∂

∂x
u(x, t)

∣∣∣∣
(s(τ),τ)

dτ

+

∫ t

0

RLD1−α
t u(x, t)|(s(τ),τ) dτ +

∫ s(t)

0
zu(z, t)dz = 0.

(3.29)
Multiplying (3.29) by 2 and using hypothesis (3.18) it yields that

− 2

∫ t

0
s(τ)RLD1−α

t

∂

∂x
u(x, t)

∣∣∣∣
(s(τ),τ)

dτ = s2(t)− b2. (3.30)

Differentiating both sides of equation (3.30) whith respect to the t−variable
and being s(t) > 0 for all t > 0, the thesis holds. �

Remark 3.5. The hypothesis s(t) > 0 for all t > 0 in the previous
Theorem is not necessary in the classical Stefan problem. In fact, the
Stefan condition (3.28) join with the maximum principle imply that u is a
decreasing function of the x−variable for every t > 0, leading function s to
be a non-decreasing function of t.

However this simple tool can not be considered in this case, because
decreasing functions may have a positive Riemann-Liouvulle derivative. For
example, let α ∈ (0, 1) be and consider γ ∈ (0, 1) such that 0 < α − γ.
Function f(t) = t−γ , t > 0 is a decreasing function in R

+ and

RLD1−α(t−γ) =
Γ(−γ + 1)

Γ(−γ − (1− α) + 1)
t−γ+α−1 =

Γ(−γ + 1)

Γ(α− γ)
t−γ+α−1 > 0

for all t > 0.

3.3. Example. The solution (3.7), (3.8) to problem (3.2) given in Theorem
3.1 verify the integral relationship (3.18). In this case, g(t) = 1 for all t > 0,

b = 0, s(t) = 2ξtα/2 and u(x, t) = 1− 1
1−W(−2ξ,−α

2
,1)

[1−W
(
− x

tα/2 ,−α
2 , 1
)
]

where ξ is the unique solution to equation (3.9).

The fractional derivative of Riemann–Liouville of a constant is easy to
compute (see [24]) and it is given by
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RLD1−α
t 1 =

t0−(1−α)

Γ(0− (1− α) + 1)
=

tα−1

Γ(α)
. (3.31)

Integrating (3.31) from 0 to t, and using the Gamma function property
zΓ(z) = Γ(z + 1), we have∫ t

0

RLD1−α
t 1dτ =

tα

Γ(α+ 1)
. (3.32)

Applying two times Lemma 3.1 to function W
(
− x

tα/2 ,−α
2 , 1
)
, we get that

function w(x, t) = W
(
− x

tα/2 ,−α
2 , 1 + α

)
tα is a solution to the fractional

diffusion equation for the Caputo derivative (3.1 − i) and therefore is a

solution to (1.6 − i) such that ∂2

∂x2w(x, t) = W
(
− x

tα/2 ,−α
2 , 1
)
. Then

∂

∂t
w(x, t) = RLD1−α

t

∂2

∂x2
w(x, t) =RL D1−α

t W
(
− x

tα/2
,−α

2
, 1
)
. (3.33)

Using (3.33) and the linearity of the Riemann-Liouville derivative, it results
that

RLD1−α
t u(x, t) = RLD1−α

t

(
1− 1

1−W
(−2ξ,−α

2 , 1
)
)

+
1

1−W
(−2ξ,−α

2 , 1
) ∂

∂t
w(x, t). (3.34)

Hence

RLD1−α
t u(x, t)

∣∣
(2ξtα/2,t)

=

(
1− 1

1−W
(−2ξ,−α

2 , 1
)
)

tα−1

Γ(α)
+

tα−1

1−W
(−2ξ,−α

2 , 1
) [W (

−2ξ,−α

2
, 1 +

α

2

)
αξ +W

(
−2ξ,−α

2
, 1 + α

)
α
]
.

(3.35)

Integrating (3.35) from 0 to t,

∫ t

0

RLD1−α
t u(x, t)

∣∣
(2ξτα/2,τ)

dτ =

(
1− 1

1−W
(−2ξ,−α

2 , 1
)
)

tα

Γ(α+ 1)

× tα

1−W
(−2ξ,−α

2 , 1
) [W (

−2ξ,−α

2
, 1 +

α

2

)
ξ +W

(
−2ξ,−α

2
, 1 + α

)]
.

(3.36)

Integrating by parts, the next computation follows:

Authenticated | dtarzia@austral.edu.ar author's copy
Download Date | 11/5/18 10:43 PM



AN INTEGRAL RELATIONSHIP FOR A . . . 915

∫ 2ξtα/2

0
zu(z, t)dz = 2ξ2tα

(
1− 1

1−W
(−2ξ,−α

2 , 1
)
)

− W
(−2ξ,−α

2 , 1 + α
)

1−W
(−2ξ,−α

2 , 1
) tα − 2ξtα

1−W
(−2ξ,−α

2 , 1
)W (

−2ξ,−α

2
, 1 +

α

2

)

+
tα(

1−W
(−2ξ,−α

2 , 1
))

Γ(1 + α)
. (3.37)

Taking into account (3.32), (3.36) and (3.37), it follows that

2

∫ t

0

RLD1−α
t 1dτ − 2

∫ t

0

RLD1−α
t u(x, t)

∣∣
(2ξτα/2,τ)

− 2

∫ 2ξtα/2

0
zu(z, t)dz

= −4ξ2tα +
4ξ2tα

1−W
(−2ξ,−α

2 , 1
) + 2ξtαW

(−2ξ,−α
2 , 1 +

α
2

)
1−W

(−2ξ,−α
2 , 1
)

= 2ξtα

[
−2ξ +

2ξW
(−2ξ,−α

2 , 1 +
α
2

)
1−W

(−2ξ,−α
2 , 1
) +

1

1−W
(−2ξ,−α

2 , 1
)
]
. (3.38)

Finally, taking into account that ξ verify equation (3.9), it results that

2

∫ t

0

RLD1−α
t 1dτ − 2

∫ t

0

RLD1−α
t u(x, t)

∣∣
(2ξτα/2,τ)

− 2

∫ 2ξtα/2

0
zu(z, t)dz

= 4ξ2tα = s2(t), (3.39)

and the fractional integral relationship (3.18) is satisfied.

4. Conclusions

We have considered a fractional Stefan problem (1.6) by using the frac-
tional Riemann–Liouville derivative. We have obtained an integral relation-
ship between the fractional temperature and the fractional free boundary,
which is equivalent to the fractional Stefan condition. We have also shown
an exact solution to the fractional Stefan problem (3.2), which verifies the
integral relationship (3.18).
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Paraguay 1950, S2000FZF, Rosario, ARGENTINA

e-mail: sabrinaroscani@gmail.com
e-mail: dtarzia@austral.edu.ar Received: May 26, 2017

Please cite to this paper as published in:

Fract. Calc. Appl. Anal., Vol. 21, No 4 (2018), pp. 901–918,
DOI: 10.1515/fca-2018-0049 , at https://www.degruyter.com/view/j/fca

Authenticated | dtarzia@austral.edu.ar author's copy
Download Date | 11/5/18 10:43 PM

https://www.degruyter.com/view/j/fca

	1. Introduction
	2. Preliminaries
	2.1. Basics of Fractional Calculus
	2.2. The special functions involved

	3. The fractional Stefan Problem
	3.1. An exact solution
	3.2. An integral relationship between u and s
	3.3. Example

	4. Conclusions
	Acknowledgments
	References

