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Classical-trajectory calculations of the electronic stopping

cross-section for low-energy H and H
+ projectiles by H2-molecules.
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A model that enables the classical-trajectory simulation of the interaction between an atomic
particle and a target containing one or more electrons is devised. It makes use of the so-called
Gaussian kernel approximation (GKA) and ad hoc potentials. In this way, the most relevant
quantum properties of the electron can be preserved and, at the same time, still using classical
mechanics to solve the response of the electronic system to the presence of a moving, heavy
charge. As a first step to assessing the proposed model we calculate the electronic stopping
cross section for 1keV to 20 keV Protons and Hydrogen impinging upon atomic and molecular
Hydrogen targets. The results show a fairly good agreement between experiments and previous
theoretical calculations over the entire bombarding energy studied in this paper.

Keywords: stopping power; classical Monte-Carlo; Molecular-Dynamics; numerical
simulation;

PACS: 34.50.Bw; 34.10.+x; 02.70.Ss; 07.05.Tp

1. Introduction

The interaction of ions and atomic species with atomic, molecular and solid targets
is an important issue in a number of scientific and technological problems (1). It
is not a surprise, therefore, that a huge amount of experimental and theoretical
works have been accumulated on this subject matter over the years. In spite of
this, however, the problem posed by the interaction between a moving ion and an
atom or a molecule remains without being solved by exact analytical procedures
and, so far, these cases can be handled only by resorting to approximate methods.
Among these approaches, computer-simulations have proven to be attractive al-

ternatives. This is so, to a large extent, because they are capable of attacking
a number of cases starting from simple assumptions. Computer simulations are
grouped into quantum or classical. In quantum simulations the interaction process
is solved by solving the Schrödinger equation, whereas, in classical ones the motion
of all particles in the system, including electrons, are described by the Newton
equations. Obviously, quantum approaches are more accurate than classical calcu-
lations but, the latter have not completely abandoned because classical simulations
are both conceptually and numerically simpler than the quantum counterpart.
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Computer simulations of systems containing one classical electron appear to be
fairly accurate (2). However, when more than one electron are present a difficulty
appears. This comes from the well-known fact that two classical electrons orbiting
around a nucleus is an unstable system. Several attempts at solving such a difficulty
have been proposed. The so-called Heisenberg core (3–5) cleverly solved such a
problem. However, as pointed out in Ref.(6), the Heisenberg-core leads to bound
states where electrons occupy a sort of crystalline structure and have no internal
motion. The Author of such a paper resolved this shortcoming by using the energy-
bounded approach, which basically consisted in using a constraint potential that
prevents autoionization without forcing electrons to stay at rest.
Following a similar approach, calculations of the ionization and capture cross-

sections of targets containing more than one electron were recently reported (7, 8).
There, stability against autoionization is achieved by assuming that electrons are
represented by density distributions. In order to numerically perform such calcu-
lations however, they use two approaches: one relies on the so-called Gaussian

kernel approximation (GKA) whereas in the other, called average collective repul-

sion (ACR), the electron-electron repulsion is obtained by taking an average over
the positions occupied by each electron on different trajectories, see Ref. (8) for
details. Remarkably, the so-calculated cross-sections exhibited a superb agreement
with experimental data.
Encouraged by these results, we calculate the stopping cross-sections H2 for 1

to 20 keV H+ and H projectiles using the GKA. Differences exist, however, be-
tween the present calculations and those in Ref.(8). In the first place, we introduce
a quantum potential which mimics the kinetic energy associated with the spatial

extent of the electron and, secondly, a binding potential is also used, as it is nec-
essary in order to account for the bonding states that may occur between two
approaching nuclei. The present calculations, however, are expected to work well
only within a range of energy going, approximately, from 1 to 25 keV/nucleus. A
lower limit applies since we ignore the recoiling of the target nuclei and the use of
the so-called straight-line approximation for the projectile trajectory. The upper
limit stems from ours using of the GKA even for the electron-nuclei interaction,
which precludes large energy transfers between projectile and electrons and so, the
stopping cross sections so calculated would underestimate data for bombarding
energies greater than, say, 25 keV.
This paper is organized as follows: in Section 2 we outline the theoretical assump-

tions used in the present calculations. The results of the computer simulations are
presented in Section 3, where they are also compared with previous similar theo-
retical calculations and experimental data. Finally, Section 4 contains a summary
and the concluding remarks. It must be mentioned that, unless otherwise stated,
atomic units are used throughout this paper.

2. Theoretical background

We assume that the electron can be described by a Gaussian-distributed “fluid”
, i.e. the Gaussian kernel approximation (GKA) in Ref. (8). As a consequence, if
one has a set of M -electrons, the probability of finding one electron at (r, dr3) is
given by expression

ρ(r, t) =

M
∑

i=1

1

(
√
2πσi)3

exp

[

−(r− ri)
2

2σ2
i

]

. (1)
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Within this approximation, the center of the Gaussian peak ri and its width σi
are the variables which describe the i-th electron. Furthermore, since such electrons
are assumed to be distinguishable, each Gaussian will be linked to the same electron
all along calculations.
In order to obtain the equation governing the dynamics of such Gaussians, we

have to write the corresponding kinetic and potential energy of the electrons in
Eq.(1) in the field of nuclear charges and those of the electrons themselves.
In the first place, one can use the fluids’ continuity equation to find the velocity

field of each Gaussian in Eq.(1), the result being vi = ṙi + (r − ri)σ̇i/σi, where
ṙi = dri/dt, and σ̇i = dσi/dt. Accordingly, the mean kinetic energy of the electrons
thus becomes

T =
1

2

∑

i

(

ṙ2i + 3σ̇2
i

)

, (2)

Secondly the Coulomb energy of a negatively charged distribution given by Eq.(1)
in the presence of point-like nuclear charges can be readily obtained. For compu-
tational purposes however we can approximate them by the expression

V (C) = −
∑

i,n

Zn
√

r2i,n + αC σ2
i

+
∑

i,j<i

1
√

r2i,j + αC σ2
i,j

. (3)

In the equation above Zn denotes the atomic number of nucleus n-th, ri,j = |ri − rj |
and ri,n = |ri −Rn|, where Rn is the vector position of the n-th nucleus. Similarly,

σi,j =
√

σ2
i + σ2

j , and αC =
√

π/2.

In addition to the Coulomb, we must introduce a quantum potential in order to
provide our classical particles with most relevant quantum properties, namely the
one arising from the uncertainty principle that prevents electrons from falling into
the atomic nucleus and that of Pauli’s exclusion principle. With such a purpose,
we assume the following approximation

V (Q) = V
(Q)
1 + V

(Q)
2 , (4)

where,

V
(Q)
1 = C

(Q)
1

∑

i

σ−2
i , (5)

and,

V
(Q)
2 = C

(Q)
2

∑

i,j<i

gi,j
{

r2i,j + (σi − σj)
2+

τ2
[

(σ̇i − σ̇j)
2 + (vi − vj)

2
]}

−3/2
, (6)

where
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Figure 1. Potential energy of a Gaussian (black line) and that of a point-like (gray line) electron in the
field of two, equal nuclear charges, i.e. “1” and “2”. E0 denotes the total energy of the electron.

gi,j =

{

1 if i− j mod 2 = 0
0 otherwise

(7)

mod being the modulo function, i.e. x mod a = the remainder of the division of x

by a. Notice that C
(Q)
1 , C

(Q)
2 and τ are the three parameter entering the proposed

quantum potential.

Observe that V
(Q)
1 approximates the expectation value of the kinetic energy,

namely 1
2∆, for a quantum state described by a Gaussian wave function. Similarly,

the potential V
(Q)
2 accounts for the Pauli’s exclusion principle. In fact, V

(Q)
2 tends

to infinity when two Gaussians approach to the same point in the position-velocity
space though, function gi,j ensures that this potential applies to electrons which
have the same parity. That is to say, odd electrons are assumed to have all the
same spin and different from those of the even ones.
It is clear that the advantage of using the Gaussian approximation stems from

the fact that the electron may have zero kinetic-energy, that is to say has no
motion, and at the same time it may remain without falling into the nuclear field.
Unfortunately however, this approach has an undesirable consequence which can
be explained by using the sketch in Fig.1. There, one can readily see that, as the
nuclei get closer than, say, R, a point-like electron, with total energy E0, is free
to move along the two nuclei, whereas a Gaussian electron, with same energy, will
remain sitting over nuclei “1” or “2” without moving at all. It is obvious that
Gaussian electrons will have a reduced probability of transitioning to and from an
approaching atom and, expectedly, this may have noticeable consequences on the
stopping calculations.
In order to approximately solve this problem we introduce the following binding

potential

V (b) = −C(b)
∑

i

∑

n,m<n

√

Zn Zm ×

fb (Rn,m/σi)
√

∣

∣ri − 1
2(Rn +Rm)

∣

∣

2
+ αC σ2

i

, (8)

where,
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fb(x) =

{

16x2 (xcut − x)2 /x4cut if 0 ≤ x < xcut
0 otherwise

(9)

In the expression above xcut is the cut-off coefficient, which together with C(b)

constitute the two, free parameters entering the binding potential.
One can easily realize that V (b) lowers the potential energy between two ap-

proaching atoms, giving rise to the formation of bonds and increasing the possibil-
ity of electronic transitions during collision. Similarly, function fb forces the binding
potential to become different form zero only within a limited range of internuclear
separations. That is, Vb = 0 for Rn,m = 0 and Rn,m > xcutσi.
It is worth observing that the binding potential (8) is similar to those introduced

by Tersoff (9) and Brenner (10) in order to account for chemical bonds in Molec-
ular Dynamics simulations. Actually, expression (8) is more general than those in
the previously mentioned reference because V (b) also includes the electrons, but
the proposed binding potential, however, is far from being so studied as those in
Refs. (9, 10). Actually, expression (9) has been checked only for two approaching
Hydrogen therefore, it may not necessarily work for different nuclei.
Having arrived at this point, it must be noticed that we started assuming Gaus-

sians, however, in writing the potential functions (3-8) we have used an heuristic
approach rather than adhering to the model of Gaussian electrons. Therefore, to
be consistent with this fact, in the following we wont use the term Gaussian any
more and refer to them just as “particles” or, simply, electrons.
Once we have the kinetic and potential functions, the problem of the interaction

of a atomic projectile with an atomic or molecular target can be readily solved.
To this end, we wrote a computer code which, apart from handling the various
procedures necessary to simulate the collision process, carries out the integration
of the Newton’s equation of motion, i.e. Eqs.(1-8), by using the ordinary differential
equation integration routine (ODEINT) from Ref.(11).
In the first place, the computer code sets-up the target and the projectile by

furnishing them with the proper number of particles. Then, particles are allowed to
move with a certain frictional force so that they will find a minimum of the potential
energy. In this part of the calculation projectile is at rest and well separated from
target so that projectile and target interactions are negligible.
Secondly, the equations of motion of all the particles in the system are numerically

solved. In this way, the code determines the position of all the particles in the
system during the range of time that is relevant to the stopping process. As was
already mentioned, projectile is obliged to moving along a straight line at constant
velocity, whereas the target nuclei are kept at rest during passage of the projectile.
Figure 2 shows a schematics of the model calculation.
Finally, integration stops when projectile is moving away form target and the

state of all electrons can be unambiguously determined, that is, electrons should
be either ionized, captured or bound to the target. At this point, one history of the
computer simulation has finished. Then, the energy transferred to the electrons, i.e.
∆E, is obtained by taking the difference between the total energy of the particles at
the end and that at the beginning of the history. It should be mentioned that before
launching a new history both projectile and target are randomly rotated around one
of their nucleus, if more than one. As a consequence, all these histories constitute
independent events and so, by repeating K-times such histories we can obtain
the mean energy-loss of the projectile as the arithmetic mean Q(p) = K−1

∑

∆Ek,
whereK stands for the number of histories and p is the impact parameter. Similarly,
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Figure 2. Schematics view of the collision between a +Z1 charged nucleus interacting with a +Z2 nuclear
charge surrounded by two spherical clouds representing the electrons. p denotes the impact parameter and
v the projectile velocity.

the electronic stopping cross-section thus becomes

Se = π

∫

∞

0
dp2Q(p) . (10)

This integral is performed by numerical means, i.e. by sampling p over the relevant
range of impact parameters, where the number of points in the sample depends on
the statistical uncertainty one would like to achieve, which is typical of the order
of five percent.
The results of calculating the electronic stopping cross-section using the proce-

dure described here will be discussed in the following section.

3. Results

Before going into stopping calculations however, we have to find a sensible set of
values for the parameters entering the model. To this end, we use the standard least-

square minimization procedure and, in the first place, parameters C
(Q)
1 and C

(Q)
2

are calculated by fitting the successive ionization potential data to those calculated
using the present model. To be more precise, the successive ionization potentials
of Z2 = 1,.. 5 atoms are calculated and fit to experimental data in Ref.(12). The

results of such a fitting yield C
(Q)
1 = 0.305 and C

(Q)
2 = 0.653 . A comparison of

our calculations with data is depicted in Fig.3. As one can see, the proposed model
reproduce the ionization energies remarkably well. In fact, calculations deviate from
data less than five percent, all along the twenty five experimental results used in
the fitting.
Next, we set xcut = 6 and calculate C(b) and αb by fitting the potential en-

ergy curves for H+
2 and H2 molecules in Ref.(13). The results of such calculations

produce C(b)= 0.2 . Figure 4 shows the energy curves in Ref.(13) and those of
the present calculations. As one can readily see, the agreement with data is fairly
good. For the two cases, the binding energy and the internuclear separation at the

Page 6 of 16

URL: http:/mc.manuscriptcentral.com/grad

Radiation Effects and Defects in Solids

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



For Peer Review
 O

nly

April 4, 2013 10:53 Radiation Effects and Defects in Solids GAUSS1PREDS

Radiation Effects and Defects in Solids 7

Figure 3. Successive ionization energies for Z=1-5 atoms. Full symbols: experimental data from Ref.(12);
open symbols: calculations in this work.

Table 1. Calculated values of the binding energy and inter-

nuclear separation at the minimum of the potential energy.

Reference values from Ref.(13) appear enclosed in square

brackets.

Molecule H+

2
H2

Binding energy (EH) 0.11 [0.103] 0.17 [0.166]
Equilibrium distance (a0) 1.8 [2.00] 1.6 [1.40]

minimum energy are described with a fair degree of accuracy. In Table 3 we show
the binding energies and the equilibrium positions for the H+

2 - and H2-molecule
obtained using our model and, for a comparison, those in Ref. (13) are also shown
enclosed within brackets. As one can see, the binding energy and the equilibrium
distance obtained in this paper and those in Ref.(13) are fairly similar. The worst
case is that of the equilibrium distance for the Hydrogen molecule which differs
from calculations by approximately 14%.
With regard to parameter τ we have set it to unity all along the present calcu-

lations, however, since we limited ourselves to low velocities such a parameter is
rather irrelevant in this paper. Actually, we may conclude that, within the range of
bombarding energy considered in the present calculations, τ has nearly no effects
on the stopping calculations.
Going to the stopping cross section calculations, firstly, we compare our results

with the theoretical calculations in Ref. (14). Notice that the results in such a
publication can be regarded as reference values, because they were obtained using
quantum simulations.
Figure 5 shows the results of the stopping according to Ref.(14) and those in

this paper. Remarkably, our classical model compare reasonably well with such
quantum-based calculations. In fact, our results appear to reproduce satisfactorily
well the main features of the stopping cross section for the three colliding pairs.
Curiously however, discrepancy is notoriously large for the case of H+ on atomic
Hydrogen and for bombarding energies larger than 5 keV. In this case, our results
are observed not to increase as faster as those in Ref. (14), i.e. dotted line in
Fig.5. Such a deviation however is hard to understand, since the lack of a long
range potential, as that of Coulomb, leads to fast neutral particles to have smaller
stopping than charged ones at same velocity.
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Figure 4. Potential energy of H+

2
and H2 molecules. Continuous lines: theoretical results from Ref.(13).

Open symbols: results of the present calculations.

Figure 5. Theoretically calculated stopping cross sections. Lines: Cabrera-Trujillo et al. (14). Calculations
in this paper are denoted by open symbols.

A comparison of our calculations with experimental data in figure 6 shows that,
for neutral Hydrogen, the stopping obtained from our classical model reproduce
experiments remarkably well. The results for protons, however, though not too
different from data, show a different slope. This is quite reasonable though, since,
at the bombarding energies in such a figure, the neutral fraction of Hydrogen in
a H2 gas is of the order of 80% or larger (15). Therefore, atomic Hydrogen are
supposedly the dominant species in the beam and so, measurements, within such
a bombarding range, should be determined by the stopping of atomic Hydrogen.
Finally, it is important mentioning that one of the worst case, computationally

speaking, i.e. that of 1 keV H0 on H2, the code needs approximately 3000 histories
in order to produce a stopping cross section with a 5% relative error, and this takes
of the order of 500 seconds, total time, running on a desktop PC equipped with a
x86 family, 2.2GHz processor. The computer code was written in FORTRAN 77,
compiled and run using MS-Developer Studio (20), and the resulting executable
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Figure 6. Stopping cross section. Small symbols: experimental results from Refs. (17) (⋆), (18) (•), and
(19) (�) . Calculations in this paper are denoted by lines.

file has a size of the order of 240 kB.

4. Summary and Conclusions

A model calculation is proposed that allows one to numerically simulate, using
classical mechanics, the interaction between 1 - 20 keV H+ and H0 projectiles
and atomic and molecular Hydrogen targets. It is based on the assumption that
electrons are Gaussian distributions of charge and three ad hoc potentials which,
to some extent, account for the uncertainty and Pauli exclusion principles, and a
binding potential.
It should be noticed that, although the present model was initially conceived

for Gaussian electrons, we have actually followed a heuristic approach rather than
sticking strictly to Gaussian electrons. As a consequence, the basics assumptions in
this model are not the Gaussian electrons, but the expressions used for the kinetic
and potential energies in Eqs.(2-9).
The results in this paper show that this approach appears to be capable of

reproducing the successive ionization energies of multi-electronic atoms, and the
potential energies of the ground state for the H+

2 and H2 molecules with an ac-
ceptable degree of accuracy. We also calculate the stopping cross section atomic
and molecular Hydrogen for 1 to 20 keV protons and atomic Hydrogen projectiles.
The results show a fairly good agreement with previous theoretical study of the
same colliding pairs as well as with experimental data. The proposed approach
is theoretically simple and very efficient in terms of computer resources. Conse-
quently, we dare suggest that this approach constitutes a promising alternative for
computer simulating the collision between atomic or molecular particles, carrying
several electrons, by using the classical dynamics equations.
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Potential energy of a Gaussian (black line) and that of a point-like (gray line)  electron in the field of two, 
equal nuclear charges, i.e. ``1'' and ``2''. $E_0$ denotes the total energy of the electron.  
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Schematics view of the collision between a +Z$_1$ charged nucleus interacting with a +Z$_2$ nuclear 
charge surrounded by two spherical clouds representing the electrons. $p$ denotes the impact parameter 

and $v$ the projectile velocity.  
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Successive ionization energies for $Z$=1-5 atoms. Full symbols: experimental data from Ref.\cite{CRC}; 
open symbols: calculations in this work.  
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Potential energy of H$^+_2$ and H$_2$ molecules. Continuous lines: theoretical results from 
Ref.\cite{Sharp71}. Open symbols: results of the present calculations.  
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Theoretically calculated stopping cross sections. Lines: Cabrera-Trujillo et al. \cite{CT2003}. Calculations in 

this paper are denoted by open symbols.  
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