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1. Introduction

The Kondo effect has been subject of an intense research for 
several decades. It is considered a paradigmatic example of 
a strongly correlated system in condensed matter physics  
[1, 2]. Generally speaking, it arises when the free electrons 
of a metallic host screen the magnetic moment of an impurity 
below a characteristic temperature, the Kondo temperature 
TK. Originally observed in dilute magnetic alloys, the Kondo 
effect has reappeared more recently in transport measurements 
through semiconducting [3–9] or molecular [10–13] quantum 
dots and also when magnetic molecules are deposited on clean 
metallic surfaces [14–22].

The high resolution and atomic control of the scanning tun-
neling microscope (STM) [23–25] allows experimentalists to 
deposit different magnetic molecules over metallic surfaces 

opening the scenario for studying a large class of realizations 
of the Kondo phenomena [14–22]. The differential conduct-
ance G(V) = dI/dV  as a function of the sample bias V , where 
I is the current flowing through the STM (described in more 
detail in section 4.2) provides information in the low-energy 
electronic structure of the system. This technique is called 
scanning tunneling spectroscopy (STS).

While the simplest scenario is the screening of the spin 1/2 
by a single screening channel, in the last years the research 
on Kondo systems has been extended to systems in which 
in addition to the spin degeneracy, there is also degen-
eracy in other orbital degree of freedom, leading usually 
to a higher symmetry of the model, such as the SU(4) one  
[17, 26–49]. The presence of both orbital and spin degrees of 
freedom can trigger exotic environments for developing the 
Kondo physics. For instance, the underscreening (partially 
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compensated molecular magnetic moment) [11, 12, 49, 50] 
and overscreening (over compensated molecular magnetic 
moment) [46, 49] can be found. Some examples of totally 
compensated systems with SU(4) symmetry are quantum dots 
in carbon nanotubes [30–37], silicon nanowires [38], and the 
low-energy physics of iron phthalocyanine (FePc) molecules 
deposited on a Au(1 1 1) surface at the top position [17, 40, 47, 
48]. The latter system is the subject of the present study.

Minamitani et  al [17] investigated the Kondo effect for 
FePc molecules on Au(1 1 1) for two different situations. 
Experimentally and with theoretical support, the authors found 
that at low energies, the system shows an example of both 
SU(2) and SU(4) Kondo effect depending on the degeneracy 
of the 3dxz and 3dyz orbitals of Fe (denoted as π orbitals), that 
hybridize with the conduction states of Au. The difference arises 
in the two possible places for the molecule when it is deposited 
on the surface, bridge and on-top respectively. In the on-top 
position, the π orbitals are degenerate leading to an SU(4) sym-
metry while the bridge configuration breaks the degeneracy 
reducing the symmetry to the usual spin SU(2) one. In addi-
tion, there is a third orbital involved, the 3dz2, which is present 
for both geometries. The electronic structure calculations using 
the method called LDA+U indicates that the valence of Fe 
can be approximately described as  +2 with an electronic con-
figuration d2

xyd1
z2 d3

π, and spin S  =  1 [17, 51]. Thus, taking into 
account the partially filled orbitals, the physical picture corre-
sponds to one z2 and one π localized holes forming an impurity 
spin S  =  1 screened by three different conduction channels. 
The on-top configuration is more exotic due to the low-energy 
SU(4) Kondo effect for the degenerate π orbitals, which leads 
to a narrow dip or Fano–Kondo antiresonance in the differential 
conductance G(V) at low sample bias V . In addition, this struc-
ture is mounted on a broad peak (or Fano–Kondo resonance) 
in G(V) ascribed to a usual SU(2) Kondo effect for the 3dz2  
orbital, that hybridizes more strongly with the corresponding 
conduction states of the same symmetry. The widths of both 
featurs are related to the two different Kondo temperatures. 
Thus, there is a two-stage Kondo effect.

Based on the scenario described above, Minamitani et al 
used the numerical renormalization group (NRG) to study a 
low-energy effective SU(4) Anderson model for one π hole, to 
study the second stage of the Kondo effect as the temperature 
is lowered, assuming that a first stage (the screening of the 
spin at the 3dz2  orbital) has already taken place at high temper-
atures. Later studies of the system, in particular for a lattice of 
FePc molecules, also took a similar approach, leaving aside 
the first stage of the Kondo effect [40, 47, 48]. One reason 
for this is that the NRG, which is a very accurate technique 
to calculate the spectral density near the Fermi level, loses 
acc uracy as the number of channel increases due to the expo-
nential increase of the Hilbert space at each NRG iteration  
(a factor 4n at each iteration, where n is the number of chan-
nels). An NRG calculation with three channels has been done, 
but using extra symmetries that are absent here [52].

The aim of the present work is to study an Anderson model 
that describes the system including the three orbitals which 
are partially filled, to describe fully the two-stage Kondo 

effect that screens the spin 1, and to compare with the differ-
ential conductance G(V) observed by STS. When considering 
this full model, the anisotropy D of the spin 1, might play a 
role. In fact experiments in which the FePc molecule is raised 
by the STM weakening the hybridization with the substrate 
show a drastic change in G(V) induced by D [22]. In addi-
tion, a recent calculation for the spin 1, two-channel Kondo 
model shows that the system has a quantum phase transition 
to a non-Landau Fermi liquid with unexpected behavior of 
the spectral density of the localized sates (a dip that violates 
the ordinary Friedel sum rule but satisfies a generalized one) 
for an aniso tropy larger then a critical value Dc ∼ 3 times the 
Kondo temperature [53]. However, the Kondo temperature of 
the first stage is near 200 K, while D ∼ 8.7 meV  =101 K. 
Therefore, we assume that the anisotropy is not important for 
the experiments of [17] and take D  =  0 in what follows.

Based on the above discussion, in this work we study a 
three-channel Anderson model that hybridizes two degenerate 
triplets (corresponding to one hole in a localized π orbital and 
another one in the z2 orbital) with three doublets (one hole 
in any of the three localized orbitals) via conduction chan-
nels corresponding to states of the Au substrate with the same 
symmetry as the localized orbitals. We start from an analysis 
of the strong coupling limit of the model (which usually cor-
responds to the zero-temperature fixed point in an NRG treat-
ment). We conclude that the ground state of the system is 
a  non-degenerate singlet, which means that the system is a 
Fermi liquid for arbitrary parameters. This result justifies the 
use of slave-boson techniques appropriate for Fermi liquids 
[48, 56, 57]. We develop a generalization of the slave-boson 
mean-field approximation (SBMFA) technique, that correctly 
describes the low energy physics at zero temperature, and 
obtain the spectral densities of the impurity orbitals involved. 
Using this information, we calculate G(V) of the STS spectr-
oscopy, as a function of several parameters that correspond to 
the hybridization of the different localized orbitals with the 
conduction electrons and the tip, and also hopping elements 
between the tip and conduction electrons of different sym-
metries. For reasonable parameters, we provide a quanti tative 
description of the experiment for the FePc molecule in the 
on-top position, where both a broad Fano–Kondo peak and 
a narrow dip are present. The main features of the observed 
line-shape are determined by the different ratios of the hybrid-
ization of the STM tip with the molecular states and the con-
duction electrons. Besides, we show that the width of both 
resonances describing the Kondo temperatures cannot be 
treated separately but each scale depends on the other.

This work is organized as follows. In section 2 we present 
the model used and describe its parameters and the limits in 
which one of the hybridizations is turned off. The nature of 
the ground state is clarified by the exact solution in the strong-
coupling limit of the model presented in section 3. In section 4 
we describe the SBMFA used and the equations  that deter-
mine the differential conductance G(V). In section 5 we show 
the resulting G(V) and analyze the behavior of the two Kondo 
scales under changes in the hybridizations. Section 6 contains 
a summary and a discussion.

J. Phys.: Condens. Matter 30 (2018) 374003
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2. Model, limiting cases and parameters

2.1. Model

Motivated by the experiment of Minamitani et al explained in 
the previous section, we describe the molecule in the on-top 
position by an Anderson model containing the essential ingre-
dients of the problem. We restrict the model to only two 
magn etic configurations. The ground state corresponds to the 
3d6 configuration of Fe and has one hole in the 3dz2  orbital and 
another in a π orbital (either 3dxz or 3dyz) forming a triplet. The 
other orbitals are either full or empty. Due to the orbital degree 
of freedom this configuration is six-fold degenerate. The other 
3d7 configuration has a hole in either the 3dz2  orbital (two-
fold spin degenerate) or in a π orbital (four-fold degenerate). 
We denote the two spin triplets by |xz, z2; M〉 and |yz, z2; M〉, 
where M is the spin-1 projection, and the three spin doubles 
by |xz;σ〉, |yz;σ〉 and with the |z2;σ〉 where σ is the spin-1/2 
projection. Both configurations are mixed via hybridization 
with the conduction bands.

The model reads as follows

H = Hmol + Hband + Hmix,

Hmol = Eπ

∑
πσ

|π;σ〉〈π;σ|+ Ez

∑
σ

|z2;σ〉〈z2;σ|+ E2

∑
πM

|π, z2; M〉〈π, z2; M|

Hband =
∑
kνσ

εkνσc†kνσckνσ

Hmix =
∑
πk

∑
σσ′M

tπ〈
1
2

1
2
σ σ′|1 M〉

(
c†kπσ|z

2;σ′〉〈π, z2; M|+ H.c.
)

−
∑
πk

∑
σσ′M

tz〈
1
2

1
2
σ σ′|1 M〉

(
c†kzσ|π;σ′〉〈π, z2; M|+ H.c.

)
.

 

(1)

In the molecular part Hmol, Eπ represents the energy of the 
two degenerated doublets |π;σ〉, Ez is the energy of the dou-
blet |z2;σ〉, and E2 is the energy of the two degenerate trip-
lets |π, z2; M〉. Hband represents the three conduction bands, 
one with symmetry z2 and two degenerate bands with sym-
metry xz and yz (εk xz σ = εk yz σ which we denote as εkπσ). 
Hmix describes the mixing Hamiltonian. The first term of it 
couples the triplets |π, z2; M〉 and the doublets |z2;σ〉 creating 
(annihilating) a hole in the conduction band c†kπσ  (ckπσ) with 
symmetry 3dxz or 3dyz and spin σ. These states mix with a 
hopping matrix element tπ which by symmetry is identical for 
both π orbitals. The factor 〈 1

2
1
2 σ σ|1 M〉 denotes the corre-

sponding Clebsch–Gordan coefficient. The last term repre-
sents the hopping that mixes the states |π, z2; M〉 and |π;σ〉 
creating or annihilating a hole in the conduction band with the 
same symmetry.

As it is apparent from the Hamiltonian, the model is a 
three-channel Anderson Hamiltonian, for an orbitally degen-
erate spin 1 hybridized with three doublets. In the Kondo limit 
of large and negative E2, the model corresponds to a three-
channel, orbitally degenerate S  =  1 Kondo model. In absence 
of this orbital degeneracy one would expect overscreening of 
the spin by the three channels and non-Fermi liquid behavior 

[49, 54]. However, as we show in the next section, the ground 
state corresponds to compensated screening, leading to a 
Fermi liquid ground state.

In addition to the usual spin SU(2) symmetry, the model 
has also orbital SU(2) symmetry due to the degeneracy of 
the π orbitals. The total symmetry SU(2)  ×  SU(2) is smaller 
than the SU(4) symmetry in the absence of the z2 due to the 
symmetry-breaking effect of the Hund term JH which favors 
the triplet states. The exclusions of singlet states in the model 
is equivalent to take JH → ∞ and since only two neighboring 
configurations are included also U → ∞. We believe that 
these are not essential approximations while they simplify 
greatly our calculations.

2.2. Limits for some channels frozen (tπ = 0 or tz  =  0)

A particular limit of the model is tπ = 0. In this limit the 
charge and the orbital degree of freedom of the π orbitals 
is frozen. In other words if a hole is put in the xz orbital it 
remains there. One would expect that the physics is the same 

as the usual spin-1/2 Anderson model. However this is not the 
case because the spin at the π orbitals is not frozen due to the 
Hund exchange with the mobile z2 hole. The model becomes 
equivalent to the Anderson model that mixes a configuration 
with spin s  =  1/2 with another with spin s  +  1/2 through one 
channel. This model has been solved exactly for arbitrary s 
by Bethe ansatz [58]. One of the results is that in the Kondo 
limit

TBA
K ∼ ∆exp

[
π(2s + 1)Ed

2∆

]
, (2)

where Δ is half the resonant level width and Ed is the energy 
necessary to take a hole from the Fermi energy (which we 
set at zero) and bring it to the molecule. The factor (2s + 1) 
already shows that the problem cannot be separated in two dif-
ferent Kondo effects for π and z2 electrons. We will later show 
that the difference is more than a factor 2 in the exponent. In 
the present case Ed = E2 − Eπ and ∆ = ∆z = πρzt2

z  where ρz 
is the density of conduction states with symmetry z2 per given 
spin assumed constant. Then

TK(tπ = 0) ∼ ∆zexp
[
π(E2 − Eπ)

∆z

]
. (3)

J. Phys.: Condens. Matter 30 (2018) 374003
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In the other limit tz  =  0, in the Kondo regime, one would 
have the usual SU(4) Kondo model in the absence of Hund 
rules for which the Kondo temperature has a factor 1/2 in the 
exponent as compared to the SU(2) case [2, 36]. However we 
expect that in this case also the Hund rules introduce a factor 
2. This leads to

TK(tz = 0) ∼ ∆πexp
[
π(E2 − Ez)

2∆π

]
, (4)

where ∆π = πρπt2
π and ρπ is the density of xz (or yz) orbitals 

per given spin.

2.3. Discussion on the parameters

The parameters of the model can be chosen as the energy dif-
ferences E2 − Eπ and E2 − Ez , and the resonant level half 
widths ∆π = πρπt2

π and ∆z = πρzt2
z  introduced above. These 

∆ν will be determined to fit the observed Kondo temperatures 
in the STS experiments, as described in section  5. Without 
loss of generality we can take the energy of the ground state 
configuration E2  =  0.

In order to establish a constraint for the other two ener-
gies, we have solved exactly a model that contains all interac-
tions inside the 3d shell for two holes. Specifically we have 
taken the general form of the Coulomb interaction in this 
shell assuming spherical symmetry (described for example in 
[55]) eliminating all terms with either xy or x2 − y2 orbitals 
which are absent in the model. We have used the values of 
the Coulomb integrals F2  =  0.16 eV, F4  =  0.011 eV (as in 
[55]) which are reasonable values for all 3d transition metals. 
Instead, the value of F0 which determines the Coulomb repul-
sion U depends on the particular system, but fortunately does 
not affect energy differences within a given configuration with 
fixed number of particles. We obtain the following necessary 
condition in order that the ground state be a triplet with one 
hole in the z2 orbital and another hole in a π orbital:

0.63 eV < Eπ − Ez < 1.33 eV. (5)

If the difference is larger, the ground state is a singlet whose 
main component has two z2 holes. If it is smaller, the ground 
state becomes a xz, yz triplet. Therefore it seems reasonable to 
fix Eπ = Ez + 1 eV. We also choose (arbitrarily) Ez − E2 = 1 
eV. The main conclusions are nor affected by this choice.

Therefore for the rest of the work we take E2  =  0, Ez  =  1 eV 
and Eπ = 2 eV.

3. Strong-coupling limit

In this section, we discuss the limit of infinite hybridization 
tν → ∞ (ν = π or z2) of the model. For a general Anderson 
model with hybridization V  or Kondo model with exchange 
J, the limit V → ∞ or J → ∞ corresponds to the strong-cou-
pling fixed point (SCFP) in a renormalization-group treatment  
[59–61], which determines the low-energy behavior of the 
system. It can also be viewed as the narrow-band limit of 
the model with all band energies equal to the Fermi energy, 
and therefore in an appropriate base the localized molec-
ular orbitals, which we denote as dν  only hybridize with a 

conduction electron orbital cν of the same symmetry. The 
resulting finite system can be diagonalized and the result 
brings useful information on the ground state of the full system 
[62–64]. For example for a Fermi liquid, the ground state of 
the SCFP and of the full system is a non degenerate singlet, 
while in the two-channel Kondo model, the ground state of the 
SCFP is a doublet and the SCFP is unstable, indicating that 
the full system is a non-Fermi liquid [65, 66].

We begin discussing a highly symmetric case, adding to the 
model also the xz, yz triplet and choosing Eπ = Ez = E2 + E, 
tπ = tz = t. It is convenient to use creation operators for angular 
momentum 1 and projection m corresponding to the localized 
orbitals as follows

d†
±1σ ↔ (±|xz,σ〉 − i|yz,σ〉) /

√
2

d†
0σ ↔ |z2,σ〉,

 

(6)

and similarly for the conduction operators cmσ.
For any E, the ground state is a linear combination of a state 

that has two d electrons and another one with one d electrons. 
The former coincides with the ground state in the Kondo limit 
E � t and is

|e2〉 =
1
3

∑
m>m′

[
d†

m↑d†
m′↑c†m↑c†m′↑ +

1
2
(
d†

m↑d†
m′↓ + d†

m↓d†
m′↑

)

(
c†m↑c†m′↓ + c†m↓c†m′↑

)
+ d†

m↓d†
m′↓c†m↓c†m′↓

]
|F〉,

 

(7)

where |F〉 =
∏

mσ c†mσ|0〉 is the full shell of conduction 
electrons.

The ground state energy is Eg = E/2 −
√

E2/4 + 9t2 .
The state |e2〉 is an orbital and spin singlet. It is interesting 

to note that it has a similar structure as the strong coupling 
limit of the SU(6) Kondo model for two localized particles 
[64]. In fact it corresponds to the latter state projected over 
localized triplets.

When the xz, yz triplet is eliminated, returning to our orig-
inal model, the ground state in the strong-coupling limit has 
the same structure as before, eliminating the term with m  =  1 
and m′ = −1 in the sum in equation  (7). The ground state 
energy is now Eg = E/2 −

√
E2/4 + 6t2 .

We have explored other ratios of the hoppings and find 
that the ground state is always a non-degenerate spin singlet. 
Therefore, we are confident that the system is a Fermi liquid, 
for which our slave-boson method is reliable.

4. Formalism

In this section  we explain the formalism used to solve the 
problem and the equations  that determine the scanning tun-
neling spectroscopy (STS).

4.1. Slave bosons in mean-field approximation (SBMFA)

After the Fermi liquid nature of the ground state was estab-
lished, we develop a SBMFA treatment of the model following 
a similar approach as in [56, 57]. This approach consists of 

J. Phys.: Condens. Matter 30 (2018) 374003
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introducing bosonic operators for each of the states in the fer-
mionic description. In this representation, we can write the 
doublets using bosons s†πσ which correspond to the singly 
occupied states

|π;σ〉 ↔ f †πσs†πσ|0〉
|z2;σ〉 ↔ f †zσs†zσ|0〉,

 
(8)

where f †πσ ( f †zσ) is a fermionic hole operator with π (z2) sym-
metry. The triplets are represented using bosons b†

πM for 
doubly occupied states with symmetry π and spin projection 
M

|π, z2; 1〉 ↔ b†π1f †π↑f †z↑|0〉

|π, z2; 0〉 ↔ 1√
2

b†π0

(
f †π↑f †z↓ + f †π↓f †z↑

)
|0〉

|π, z2;−1〉 ↔ b†π−1f †π↓f †z↓|0〉.
 

(9)

The Hamiltonian in this representation takes the form

H = Eπ

∑
πσ

s†πσsπσ + Ez

∑
σ

s†zσszσ + E2

∑
πM

b†
πMbπM +

∑
kνσ

εkνσc†kνσckνσ

+ tπ
∑
πσ

[
f †πσcπσ

(
b†
π2σszσ +

1√
2

b†π0szσ̄

)
Oπ + H.c.

]

+ tz
∑
πσ

[
f †zσczσ

(
b†
π2σsπσ +

1√
2

b†π0sπσ̄

)
Oz + H.c.

]
,

 

(10)

with the following constraints to restrict the bosonic Hilbert 
space to the physical subspace

1 =
∑
σ

(∑
π

s†πσsπσ + s†zσszσ

)
+
∑
πM

b†
πMbπM ,

f †πσfπσ = s†πσsπσ + b†
π2σbπ2σ +

1
2

b†π0bπ0,

f †zσfzσ = s†zσszσ +
∑
π

(
b†
π2σbπ2σ +

1
2

b†π0bπ0

)
.

 

(11)

Above the subscripts σ̄ mean spin projection opposite to σ, 
and Oν  are operators equivalent to the identity in the relevant 
subspace but introduced (as in previous works [48, 56]) to 
lead to the correct limits of the Kondo temperatures (equations 
(3) and (4)) in the mean-field approximation (MFA):

Oν =

(
1 − Aν

∑
πM

b†
πMbπM

)−1/2

. (12)

In the MFA, the bosonic operators are replaced by num-
bers. Taking into account that (because of the expected sym-
metry of the ground state derived from the strong-coupling 
limit discussed in the previous section) the bosonic numbers 
do not depend on spin projection or the specific π orbital, we 
replace s†πσ → s̃π  , s†zσ → s̃z , and b†

πM → b̃. Using this and the 
first equation (11) we can express b̃π in terms of the bosons 
s̃π , and ̃sz:

b̃ =

(
1 − 4s̃2

π − 2s̃2
z

6

)1/2

, (13)

and the other two constraints take the form f †πσfπσ = 1/4 − s̃2
z/2 

and f †zσfzσ = 1/2 − 2s̃2
π. Then in MFA the Hamiltonian can be 

written as

HMFA = E2 + 4(Eπ − E2)s̃2
π + 2(Ez − E2)s̃2

z +
∑
kνσ

εkνσc†kνσckνσ

+ λπ

∑
πσ

(
f †πσfπσ − 1

4
+

s̃2
z

2

)
+ λz

∑
σ

(
f †zσfzσ − 1

2
+ 2s̃2

π

)

+ t̃π
∑
πσ

(
f †πσcπσ + H.c.

)
+ t̃z

∑
πσ

(
f †zσczσ + H.c.

)
,

 

(14)

where λν are Lagrange multipliers and

t̃π =

(
1 +

1√
2

)
b̃s̃z

(
1 − 6Aπ b̃2

)−1/2
tπ ,

t̃z = 2
(

1 +
1√
2

)
b̃s̃π

(
1 − 6Azb̃2

)−1/2
tz,

 

(15)

where b̃ is given by equation (13).
HMFA is an effective non-interacting Hamiltonian, and 

the values of s̃ν  and λν are obtained minimizing the energy 
(we restrict to zero temperature). Assuming constant density 
of conduction states ρν  extending from  −D to D, where the 
Fermi energy lies at zero, the Green functions of the pseudo-
fermions take a simple form

Gf vσ(ω) = 〈〈 fνσ; f †νσ〉〉 =
1

ω − λν + i∆̃ν

, (16)

where the half width of the resonance is

∆̃ν = πρν t̃2
ν , (17)

and is a measure of the corresponding Kondo scale.
Using these Green functions, the change in energy after 

adding the impurity can be evaluated easily as in similar prob-
lems using the SBMFA [2, 48]. The result is

∆E = E2 − λπ − λz + 4 (Eπ − E2 + λz) s̃2
π + 2 (Ez − E2 + λπ) s̃2

z

+
4
π

[
−∆̃π +

∆̃π

2
ln

(
λ2
π + ∆̃2

π

D2

)
+ λπarctan

(
∆̃π

λπ

)]

+
2
π

[
−∆̃z +

∆̃z

2
ln

(
λ2

z + ∆̃2
z

D2

)
+ λzarctan

(
∆̃z

λz

)]
.

 

(18)

Minimizing equation  (18) with respect to the Lagrange 
multipliers we obtain

λπ =
∆̃π

tan
[
π
4 (1 − 2s̃2

z )
] ,

λz =
∆̃z

tan
[
π
2 (1 − 4s̃2

π)
] ,

 

(19)

while minimization with respect to ̃s2
ν  gives

−4(Eπ − E2 + λz) =
2
π

∂∆̃π

∂s̃2
π

ln

(
∆̃2

π + λ2
π

D2

)
+

1
π

∂∆̃z

∂s̃2
π

ln

(
∆̃2

z + λ2
z

D2

)

−2(Ez − E2 + λπ) =
2
π

∂∆̃π

∂s̃2
z
ln

(
∆̃2

π + λ2
π

D2

)
+

1
π

∂∆̃z

∂s̃2
z
ln

(
∆̃2

z + λ2
z

D2

)
.

 
(20)
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Replacing (19) in (20) one obtains a system of two equa-
tions from which both s̃2

ν  are determined. From this solution, 
equations (13), (15)–(17), the Green functions that determine 
the STS spectrum (as described in the next section) can be 
calculated.

It remains to determine the coefficients Aν  of the operators 
Oν  in equation (12). If the constraints were evaluated exactly, 
the operators Oν  in the Hamiltonian equation (10) are equiva-
lent to the identity, because the operators at the left of Oν  can 
only act on states with one occupied sνσ boson and therefore 
the number of all bπM bosons is zero due to the first constraint 
equation (11). Similarly, the operators at the right of Oν  create 
a state with one occupied sνσ boson. However, in mean-field 
Oν  is different from 1 and we choose it in order to reproduce 
the Kondo temperature in the two limits tν → 0 discussed pre-
viously (equations (3) and (4)). For tπ = 0, ∆̃π = 0, all states 
have at least one hole in a π orbital and therefore ̃sz = 0. Then, 
the second equation (20) becomes irrelevant and the first one 
can be solved analytically in the Kondo limit ̃sx → 0 for which 
also λx → 0 (see equation (19)). Using equations (13), (15), 
(17), and ∆ν = πρν t2

ν we obtain

∆̃z(tπ = 0) = Dexp


π(E2 − Ex)

2∆z

6 (1 − Az)(
1 + 1/

√
2
)2


 . (21)

In order to have the same exponent as equation (3) one should 
have

Az = 1 −

(
1 + 1/

√
2
)2

3
� 0.0286. (22)

Proceeding in a similar way for tz = ∆̃z = s̃x = 0, s̃z → 0 
for which λx → ∆̃π (see equation (19)), from the first equa-
tions (20) and equations (13), (15), (17), we obtain

∆̃π(tz = 0) =
D√

2
exp


π(E2 − Ez)

2∆z

6 (1 − Az)(
1 + 1/

√
2
)2


 , (23)

and comparing the exponent with equation (4) one obtains

Aπ = 1 −

(
1 + 1/

√
2
)2

6
� 0.5143. (24)

4.2. The STS intensity

In this section, we explain the formalism to calculate the differ-
ential conductance G(V) = dI/dV  defined as the derivative of 
the current I flowing through the tip of the scanning tunneling 
microscope with respect to the sample bias V . Except for a 
proportionality constant that depends on the position of the 
STM tip, we can write [67]

G(V) =
∑
νσ

ανρtνσ(−eV), (25)

where the αν are coefficients and ρtνσ(ω) is the spectral den-
sity of the mixed state tνσ (defined below) sensed by the tip for 

each symmetry ν and spin σ. The spectral density is evaluated 
at energy ω = −eV . The minus sign is because we are using 
the representation in terms of holes rather than electrons. The 
creation operator for a hole in the state tνσ is

t†νσ = Dνd†
νσ + Cν(Rt)c†νσ(Rt), (26)

where c†νσ(Rt) creates a hole in the Wannier function of the 
conduction electrons at the position of the STM tip Rt [67] and 
Dν  and Cν(Rt) are coefficients assumed real proportional to 
the hopping between the tip and the localized and conduction 
states respectively.

The spectral density of the t operator is given by the corre-
sponding Green’s function

ρtνσ(ω) =
1

2πi
[Gtνσ(ω − iε)− Gtνσ(ω + iε)], (27)

and using equations  of motion, Gtνσ can be related with 
the Green’s function for the d electrons Gdνσ(ω), and the 
unperturbed Green’s functions for conduction electrons 
G0

cνσ(Ri, Rj,ω). For the particular case in which the tip is 
above the impurity (Rt = Ri) one has [67]

Gtνσ(ω) = [Cν(Rt)]
2G0

cνσ(Ri, Ri,ω)(ω) + ∆Gtνσ(ω),

∆Gtνσ(ω) = F2(ω)Gdνσ(ω),

F(ω) = Cν(Rt)tνG0
cνσ(Ri, Ri,ω) + Dν .

 
(28)

Assuming a constant density of conduction states ρν  extending 
from  −D to D one has

G0
cνσ(Ri, Ri,ω) = ρν

[
ln
(
ω + D
ω − D

)]
. (29)

Note that ImG0
cνσ(Ri, Ri,ω + iε) = −πρν  if |ω| < D.

Using these results, symmetry, and the fact that the Green’s 
function Gdνσ(ω) is proportional to the corresponding one 
Gfνσ(ω) for the pseudofermion operators fνσ described in 
the previous section, the change in G(V) after introducing the 
impurity can be written in the form

∆G(V) ∼ −Im
{

Bπ (ln[(ω + D)/(ω − D)] + pπ)
2 Gfπσ(ω)

+ Bz (ln[(ω + D)/(ω − D)] + pz)
2 Gfzσ(ω)

}
,

 (30)
with ω = −eV , where Bν , pν  are four parameters that depend 
on the hopping between the tip and the different localized and 
conduction states.

5. Numerical results

In this section we present the numerical results for the STS 
of an FePc molecule on Au(1 1 1) at the top position, and dis-
cuss the resulting two Kondo scales in the problem and their 
dependence on the parameters.

In figure  1 we present the differential conductance 
G(V) = dI/dV  obtained from the formalism of the SBMFA 
explained in the previous section, using ∆ν, Bν , and pν  as 
free parameters to search for a quantitative agreement with the 
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STS experiments of Minamitani et al [17]. The other param-
eters are Exz = Eyz = 2 eV, Ez  =  1 eV, and E2  =  0 eV. The 
values ∆̃π = 0.611 meV and ∆̃z = 20.4 meV that result from 
the SBMFA represent the two energy scales (Kondo temper-
atures) for the screening of the spin of the localized π and z2 
orbitals respectively.

The parameters Bν , and pν  obtained from the fit indicate 
the following hierarchy of the different orbitals in decreasing 
order of hopping to the tip 3dz, cz, cπ, 3dπ. The dominance of 
3dz is to be expected. These orbitals point in the z direction 
where the tip lies, and in the system under consideration, they 
have the same symmetry as 4s orbitals that have a large spatial 
extent and could mediate the tip-3dz hopping. The presence of 
a dip (rather than a peak) in the contribution of the π orbitals 
indicate than the tip-cπ hopping is more important than the 
tip-3dπ one. This result was also found in a system of Co on 
Ag(1 1 1) [68].

Following a similar procedure as for the experimental data 
[17], we find that G(V) can be very well fit by the sum of two 
Fano functions:

G(V) = Fπ(eV) + Fz(eV),

Fν(ω) = Iν
(qν + εν(ω))

2

1 + εν(ω)2 ,

εν(ω) = (ω − ε0
ν)/Γν .

 (31)

From the fit we obtain except (for an irrelevant prefactor)

Iπ = 16.6, qπ = 0.436, ε0
π = −0.618 meV, Γπ = 0.611 meV,

Iz = 7.13, qz = −1.13, ε0
z = −1.23 meV, Γz = 20.4 meV.

 (32)

The corresponding values reported in [17] for Fano fits directly 
to the experimental results are

qπ = 0.45, ε0
π = −0.19 meV, Γπ = 0.61 meV,

qz = −1.14, ε0
z = −9.62 meV, Γz = 20.0 meV.

 (33)

Both sets of values agree in general. In particular the Γν  
agree with the width of the resonances (Kondo temperatures 

Figure 1. Bottom blue curve: total contribution of the impurity to 
the differential conductance ∆G(V) (equation (30) as a function 
of the sample bias V . The top red curve with a narrow dip is 
the contribution of the orbitals with symmetry π. The middle 
green curve is the contribution of the orbitals with symmetry 
z2. Parameters are ∆π = 0.20 eV, ∆z = 1.12 eV, Bπ = 0.32, 
pπ = 0.078, Bz  =  0.21, pz  =  −0.95. Dashed black lines are fits 
obtained using Fano functions (see text).

Figure 2. Change in the Kondo temperature ∆̃ν as a function 
of ∆π = πρπt2

π for ∆z = 1.12 eV. Here ν denotes π = (xz, yz) 
(blue circles) and z2 (red squares) symmetries. The black dashed 
line is the corresponding variation of ∆̃π in the case in which the 
hybridization of 3dz orbital with the conduction electrons is zero 
(tz  =  0 eV). The inset shows the results in log scale.

Figure 3. Same as figure 2 as a function of ∆z = πρzt2
z  for 

∆π = 0.20 eV. The black dashed line is the corresponding variation 
of ∆̃z when tπ = 0 eV.
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obtained in the SBMFA (∆̃π = 0.611 meV and ∆̃z = 20.4 
meV). The discrepancy in ε0

π which determines the position 
of the dip can be corrected including the configuration with 
three holes in the SBMFA treatment [48] and is a minor detail  
for the present study. The discrepancy in ε0

z  might be related 
with the choice of excitation energies in our model (it seems 
that the experiment is more in the intermediate valence 
regime) and also the effect of neglected configurations.

In figure 2 we show how the two Kondo temperatures vary 
as the hybridization between localized and conduction elec-
trons with symmetry π is changed. Naively one might expect 
that ∆̃z remains constant, while ∆̃π increases exponentially. 
The first statement is true only when ∆π is at least one order 
of magnitude less than ∆z. For larger ∆π, the Kondo scale for 
symmetry z2 decreases considerably, being more than an order 
of magnitude smaller for comparable ∆ν. Concerning the 
Kondo scale for π symmetry, for small ∆π it is several orders 
of magnitude smaller than that expected for an SU(4) model 
including only π orbitals. Only for comparable ∆ν these two 
energy scales agree. This is important for the parameters that 
explain the STS of FePc on Au(1 1 1), because although for 
comparable ∆ν, the Kondo temperature of the SU(4) model 
is much larger that for the SU(2) one due to a factor 1/2 in the 
exponent (see equations (3) and (4)), and another factor near 
1/2 due to the different excitation energies (numerator in these 
equations), the Kondo temperature for the π orbitals is more 
than order of magnitude smaller than for the z2 orbitals.

In figure  3 we show the effect of changing the magni-
tude of the hybridization of z2 states on both Kondo scales. 
As expected, the competition between the different channels 
affects the Kondo scales similarly as in the previous case.

6. Summary and discussion

We have studied a generalized Anderson model in which two 
orbitally degenerate triplets are hybridized with three higher 
energy doublets, two of them orbitally degenerate through 
three conduction channels. The model contains the basic 
ingredients to discuss the physics of an isolated iron phtha-
locyanine (FePc) molecule deposited on the Au(1 1 1) surface 
at the top position. The degenerate triplets contain one hole 
in the Fe 3d orbital with z2 symmetry an another one in one 
of the degenerate 3d π orbitals (either xz or yz). The doublets 
have one hole in any of the three orbitals. The different chan-
nels correspond to the three different symmetries.

The observed differential conductance in scanning tun-
neling spectroscopy consists in one broad peak ascribed to the 
Kondo effect in the z2 channel with an energy scale of about 
200 K and a narrow dip due to the Kondo effect in the π chan-
nels with an energy scale of about 7 K. Our results from the 
exact solution of the model in the strong-coupling limit and 
a slave-boson mean-field approximation in the general case, 
are consistent with this two-stage Kondo effect and a Fermi 
liquid ground state. The observed spectrum indicates that the 
tip of the scanning tunneling microscope has a larger hopping 
with the 3d z2 states of Fe, a smaller hopping with the 3d π 
orbitals, and intermediate with the conduction electrons. An 

explanation of the dip in terms on a non-Landau Fermi liquid 
driven by anisotropy seems unlikely in this system.

Previous models for the experimental system, included only 
the π orbitals to describe the low-energy dip in an effective 
SU(4) model. However, we find that the Hund rules, which 
reduce the symmetry to SU(2)×SU(2) lead to a considerable 
decrease of both Kondo temperatures and in addition, both 
stages of the Kondo effect compete and when the parameters 
are changed to strengthen one of them, the other is weakened. 
It would be of interest to study this competition and the mutual 
dependence of both energy scales by alternative methods.
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