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1Instituto de Investigaciones en Ingeniera Eléctrica – CONICET, Universidad Nacional del Sur, Avda Alem 1253,
8000 Baha Blanca, Argentina
2Department of Signal Processing and Acoustics, Aalto University School of Electrical Engineering, P.O. Box 13000,
FIN-00076 Aalto, Finland
E-mail: cschmidt@uns.edu.ar; chiri80@gmail.com

Abstract: The authors present a post-compensation technique for continuous-time (CT) SD modulators based on efficient finite-
order Volterra models. At first, the authors develop a behavioural model for a CT sigma–delta modulator (SDM). This model
includes non-linear and non-ideal behaviour and leads to a finite Volterra representation of the SDM. Then, they derive and
discuss two novel compensation blocks that are special cases of Volterra models. These models, a memory polynomial (MP)
and a modified generalised memory polynomial (MGMP), can be interpreted as generalisations of classical block-based non-
linear models, like Hammerstein and Wiener systems, respectively. The authors show that the MGMP compensator offers a
better distortion cancellation because of the inclusion of cross-terms at the output of the model, at the price of increasing
complexity. Simulation results, based on a transistor level circuit model for the SDM, show a good agreement between the
SDM and the developed models. In addition, the authors also verify good performance of the proposed compensators.
1 Introduction

Recently, the need for high-resolution analogue-to-digital
converters (ADCs) with low power consumption, especially
for mobile applications, has drawn much attention towards
sigma–delta architectures for signal conversion. Such
devices combine low-resolution quantisation with
oversampling and noise shaping in order to reduce the in-
band noise and thus increase the dynamic range. In
particular, continuous-time (CT) sigma–delta modulators
(SDMs) seem to be an attractive choice because of their
inherent anti-aliasing properties and low circuit complexity,
among other advantages [1]. Sigma–delta structures have
been proposed for many applications, including DVB-T
(digital video broadcasting-terrestrial) [2–4] and bluetooth
[5]. In addition, they provide a flexible choice between
resolution and bandwith, which makes them suitable for
multi-standard transceiver architectures combining for
example global system for mobile communications (GSM)/
wireless local area network (WLAN)/bluetooth [6, 7].

Despite of the attractive properties, circuit non-ideal
behaviour degrades the overall performance resulting in
harmonic distortion and increased in-band noise, which
reduces the effective number of bits in the converter. A
possible solution to reduce this distortion is the use of model-
based digital post-compensation techniques. These techniques
are generally based on application of another distortion to the
digital output of the converter that would cancel out the
original distortions present in the device output [8, 9], and
they involve two steps. First, the post-compensator is trained
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(off-line) using measurement data from the CT SDM; then, it
is on-line implemented at the output of the converter. This
methodology involves some extra digital processing, that is a
few multiplications and additions in the digital domain to
obtain the corrected output sample.

In order to obtain an adequate structure for the compensator
it is first necessary to understand the non-ideal behaviour of
CT SDMs. Several partial studies have been performed in
the literature. For example, the issue of the non-linearity in
the integrator is considered in [10–12] modelling the
quantiser effects as an additive noise source. In [11, 12] a
Volterra model is developed following the additive noise
assumption for SDMs with multibit quantisation. In other
line, in [13] the non-ideal effects on the digital-to-analogue
converter (DAC) are addressed and in [14] a new
interpretation on the quantiser effects is discussed.
However, none of the mentioned works offer a complete
description of the SDM including all these effects jointly.

In this work, we propose efficient finite Volterra-based
post-compensation schemes for this type of converters in
order to maintain a low complexity for the necessary on-
line processing. In order to achieve this, we first develop a
behavioural model for such devices by studying the
different elements composing the modulator and
considering all their effects on the system. Since the
behavioural model represents in general weak non-
linearities, it is possible to consider a finite Volterra model
to capture all the mentioned characteristics. This Volterra
model allows to design and use a post-compensation model
and the corresponding parameter estimation techniques.
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The present work is organised as follows. In Section 2, a
novel behavioural model for an SDM is introduced. Then,
efficient finite Volterra models for the system and the novel
post-compensator schemes are described in Sections 3 and
4, respectively. Simulation results are presented in Section
5. Finally, conclusions are discussed in Section 6.

2 Behavioural SDM model

The general hypothesis behind a post-compensation strategy
using a finite Volterra model considers that the SDM
behaviour is well described by a weak non-linear system. In
this section we study the non-linear effects present in an
SDM in order to test the validity of this hypothesis. We
start from the ideal SDM shown in Fig. 1 consisting of
three blocks (integrator, quantiser and digital-to-analogue
converter) connected in a feedback loop. In the following
subsections we consider a model for each block introducing
the real effects that preclude SDM ideal behaviour, with the
aim of finding an equivalent block oriented model,
illustrated in Fig. 2, that represents the non-ideal SDM. In
the diagram P (.) and N(.) represent weak static non-
linearities and I(s) and H(s) represent linear [finite impulse
response (FIR)] dynamic blocks.

2.1 Integrator non-linearities

One of the main factors that limit the maximum achievable
signal to noise ratio (SNR) in a sigma–delta analogue-to-
digital converter (SDC) is the non-linearity in the integrator
[10]. This performance degradation is most significant in
the case of CT SDCs, as switched capacitor circuits suffer
from effects such as capacitor mismatch and switch non-
ideal behaviour.

The linearity of the integrator is limited by the effect of the
non-linear trans-conductance of the operational amplifier
which appears in the output integrator current [11]. From
this point of view, CT integrators can be approximated as a
cascade of a static non-linear operator and an ideal
integrator device [10]. In the case of fully differential
architectures, which is usually used for amplifiers to
implement the integrator, the even terms can be neglected
because of the common mode rejection ratio. Assuming this
structure here, the non-linear operator will contain only odd
terms [11, 12].

In general, it can be assumed that a third-order non-
linearity is sufficient to capture the main non-linear effects

Fig. 1 Block diagram of an ideal CT SDM

Fig. 2 Equivalent block diagram of a CT SDM replacing all
elements with their corresponding models
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in the integrator [11, 12]. Thus, we can assume that the
static non-linear operator is given by

f (x) = ax − bx3 (1)

where x is the input signal to the integator, and a and b are
constants depending on the trans-conductance of the
transistors used in the integrator. A block diagram of the
CT SDM, including the non-ideal integrator, could be
obtained replacing P (.) by f (x) in Fig. 2. The derivation of
(1), for different integrator architectures, can be found in [12].

2.2 Model for non-ideal behaviour of the
feedback DAC

Any first-order binary SDC architecture includes a single bit
DAC in the feedback loop. This device introduces non-ideal
effects that have to be taken into account when a precise
model is required. In order to analyse these effects, we
present a model based on the results presented in [13].

Given a differential binary signal y(n) at the input of a
single-bit DAC, we can define its output as

y(t) =
∑1

n=−1

y0(n)h(t − nT ) (2)

where T is the clock period, y0(n) is defined as

y0(n) = +Vref if y(n) ≥ 0
−Vref if y(n) , 0

{
(3)

with Vref as the reference voltage for the DAC, and

h(t) = 1 if 0 , t , T
0 otherwise

{
(4)

is an ideal sample and holds device for the DAC.
This model can be modified to include the additional

effects that exist in real circuits, such as propagation delays
and non-instantaneous swing between positive and negative
reference voltages. To that purpose, the function h(t) in (4)
can be replaced by a first-order filter response, generating
an exponential voltage settling at the output of the DAC,
that is

h(t) = 1 − e−t/t (5)

which has the following Laplace transform

H(s) = 1

1 + st
(6)

where t is the time constant of the circuit, determined by the
slew rate of the transistors that limits the time response of the
DAC. Note that the actual response of the DAC is still linear.

2.3 Linearisation of the quantiser

In a single-bit first-order CT SDM, the one-bit quantiser
(usually a comparator) can be modelled using the sign
function, which is strongly non-linear. However, as will be
discussed in this section, the noise shaping of the
quantisation noise and the feedback nature of the SDM
linearise the quantiser in the signal bandwidth [14]. In fact,
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little quantisation noise occurs in the signal band, and out-of-
band quantisation noise is filtered out by the decimation filter.

The non-linearity of a static transfer function can be
drastically reduced using an additive dither signal (in the
field of signal processing, a dither signal is a pseudo-
random noise added at the input of an ADC in order to
de-correlate the quantisation noise from the analogue input
signal to it [1]. On the other side, the same technique
is used in control of non-linear systems but the objective is
different. In this case, a high-frequency sinusoidal signal
is used to change the behaviour of a non-linearity in such a
way that an averaging effect takes place. This is due to the
convolution between the non-linearity and the amplitude
distribution of the sinusoidal signal [15]. It can be shown
that the non-linear element, usually a strong or
discontinuous non-linearity, behaves as a smoother non-
linear element in the lower frequency range. In this section,
we use the second interpretation of dithering) at the input of
the non-linear element [14]. For this purpose, the dithering
signal must satisfy the condition of having a fundamental
frequency much higher than the input signal bandwidth.
However, in the case of discrete time non-linear systems,
the output contains sub-harmonics of the dither signal that
can overlap in the signal band. This effect is called noise
injection of the dither signal [14].

In open loop, the dither signal effect is such that the
quantiser is less non-linear in the input signal bandwidth. If
the dither signal is a sinusoid of amplitude Ad, and its
frequency is much higher than the input signal bandwidth,
then the output signal (after a low-pass filter) can be written
as [14]

ylp = 2

p
sin−1 x

Ad

( )
≃ 2

pAd

x, x ≪ Ad (7)

Therefore the dither signal linearises the quantiser in the
signal bandwidth. If the noise injection of the dither signal
is negligible, then this model is an open-loop equivalent to
a single-bit SDM. Owing to the feedback structure, the
noise injection can be further reduced by means of a high
gain loop filter at the signal bandwidth. The integrator in
the direct signal path of an SDM fits such description.

In order to generate a dither signal, an oscillator consisting
of a high dynamic gain followed by a static non-linear
element is needed. That is the case of the integrator
followed by a comparator in a single-bit CT SDM. Hence,
in an SDM, the quantiser input contains a dithering signal.
As a general conclusion, the quantiser model can be well
described by a weakly static non-linear system. Hence, if
x(t) is the input to the comparator, we can model its output
with an pth-order polynomial

b[x(t)] = x(t) + k1x2(t) + · · · + kp−1xp(t) (8)

where the ki (i ¼ 1, . . . , p 2 1) are the polynomial
coefficients. As suggested by (7), the output of the
comparator is almost linear, and then p ≤ 3 should suffice.

In the case of a SDM with a multibit quantiser, the usual
assumption is that the multibit ADC in the forward path can
be replaced by an additive noise source [1, 11, 12]. This
noise source is assumed to be white with uniform
distribution on the interval 2LSB/2 to +LSB/2, where
LSB is the quantisation step. However, this is still an
approximation for high-resolution ADCs. If we consider a
low-resolution multibit quantiser, that is up to 4 bits (which
1798
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is usually the case in SDMs), then another approach should
be considered.

Let us consider an SDM with a multibit quantiser. Hence,
assuming a flash (for example, a flash ADC is a natural choice
because of the high sampling rate of the system and the low-
resolution required [16]) B-bit quantiser with thermometric
coding, the output of the multibit DAC at the feedback
branch can be written as

y(t) = b0(t) + b1(t) + · · · + bB(t) (9)

where bi is the ith bit corresponding to the output of
comparator i, with different reference voltages for each
i ¼ 1, 2, . . . , B. Since a single-bit quantiser in an SDM is
linearised in the band of interest (and therefore it can be
modelled with a weakly static non-linearity), each bit bi in
(9) can be represented arbitrarily well with a polynomial
such as the one represented in (8). Then, y(t) can be
represented as a sum of polynomials, which in turn is a
polynomial as well. Therefore the multibit quantiser can
also be modelled as a weakly static non-linear system.

2.4 Complete behavioural model

The integrator in the SDM, as discussed in Section 2.1, can be
replaced by a third-order polynomial P (.) followed by an
ideal integrator [i.e. a linear filter I(s)]. Also, the DAC in
the feedback loop (Section 2.2) can be represented by a
filtered version of the output signal y(t) through a linear
filter H(s). In addition, the quantiser can be considered
almost linear in the signal bandwidth, and so we can model
it with a weak static non-linearity N(.) (Section 2.3).

Hence, the inclusion of non-ideal effects in the block
diagram of Fig. 1 leads to the complete behavioural model
depicted in Fig. 2. Note that aging and temperature
dependencies are not considered at the moment such that
the parameters of the SDC remain constant. Based on the
behavioural model we consider the design of efficient non-
linearities post-compensation techniques in next sections.

3 Volterra model of a CT SDC

It is well-known that systems presenting weak non-linearities,
as the one described in Fig. 2, allow for a Volterra
representation. Moreover, discrete-time systems with fading
memory can be approximated arbitrarily well by a discrete-
time Volterra model (DTVM), if adequate orders are chosen
[17–19]. In general, the output of a DTVM, at instant k,
can be expressed as [18]

y(k) = F(y(k − 1), . . . , y(k − p), u(k − 1), . . . , u(k − q))

(10)

where the choice of the function F(.) and the parameters p
and q define the model.

In the case of the system depicted in Fig. 2, an equivalent
Volterra representation can be formulated as follows. First,
we consider that the CT SDC can be approximated
arbitrarily well by a discrete-time system with a sufficiently
high sampling rate. In fact, this is the case of interest since
the signals are sampled at the comparator with a relatively
high over-sampling ratio (OSR). Then, we assume, without
loss of generality, that I(s) and H(s) are linear systems with
finite memory. This is justified, because the output of
physical systems does not depend on the infinitely remote
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 15, pp. 1796–1804
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past. Thus, we consider a length MI for I(s) and a memory of
MH for H(s).

Also, it is possible to assume that signal components that
have already passed through the feedback path will not re-
enter the loop (a similar approach was used in [14] to
model the dynamic nonlinearities in a radio frequency
power amplifier). This assumption is based on two facts.
On the one hand, the non-linearity P (.) will mix up some
of these components to higher frequencies out of the band
of interest. On the other hand, the remaining components
would be so far away in the past that their effect can be
considered negligible on the present output y(n). Therefore
the system will also have a finite memory M such that
M � MI + MH. This is confirmed by the fact that the output
of real physical systems do not depend on the infinitely
remote past and so fading memory can be assumed. On the
other hand, the non-linear effects of the system are
frequency dependent and vanish when the excitation is
removed.

Since that this system present finite memory, we choose
p ¼ 0 in (10), that is, non-linear FIR systems and focusing
on the family of analytic continuous functions F(.) (which
can be expanded into Taylor series), it is possible to define
DTVMs analogous to the CT Volterra models. In such a
case, the integrals are replaced by discrete convolution
sums and the system response becomes

y(k) = y1(k) + y2(k) + y3(k) + · · · (11)

where the first term, given by

y1(k) =
∑1
i=0

a1(i)u(k − i) (12)

corresponds to the linear convolution model, and the higher-
order terms can be written as

y2(k) =
∑1
i=0

∑1
j=0

a2(i, j)u(k − i)u(k − j) (13)

y3(k) =
∑1
i=0

∑1
j=0

∑1
l=0

a3(i, j, l)u(k − i)u(k − j)u(k − l) (14)

and so on.
Furthermore, any non-linear function can be approximated

by a polynomial of sufficiently high-order giving rise finite
DTVMs, which are the simplest among all Volterra models.
Finite DTVMs are composed of a moving average linear
model of order M and a polynomial non-linearity of degree
N. For the SISO case, the input–output relationship of such
systems is given by

y(k) = y0 +
∑N

n=1

vn
M (k) (15)

where

vn
M (k) =

∑M
i1=0

· · ·
∑M
in=0

an(i1, . . . , in)u(k − i1) · · · u(k − in)

(16)

At this point, we can extract further information about the
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 15, pp. 1796–1804
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Volterra representation of the SDM structure in Fig. 2. As
previously mentioned, the linear filter in the feedback path
generates cross-terms of the input signal to the output.
Also, the feedback system with Hammerstein–Wiener
model in the forward path suggests that a more general
model than Hammerstein–Wiener is needed to represent the
SDM. Finally, there are two different linear filters, that is
I(s) and H(s), so a model with at least two linear dynamics
is be required.

4 Post-compensation of SDM

The post-compensation scheme proposed in this work is
illustrated in Fig. 3, where the SDM block represents the
real device under test (DUT) and the ideal SDM is the one
represented by Fig. 1. The signal u(t) feeds both, the ideal
SDM and the DUT, and the output y(n) of the real device is
applied to the input of the post-compensator. Then, the
post-compensator is a system such that its output ŷI (n)
minimises the error e(n) for a certain criterion when
compared to the output of the ideal SDM. From this point
of view, the compensator should include information of the
inverse of the SDM and of the ideal SDM.

The signal yI(n) from Fig. 3 must be known a priori in order
to train the post-compensator. This information could be
obtained by simulation of an ideal SDM. Nevertheless, it is
also possible to generate it directly with a digital signal
generator, and apply it to the DUT input after a high-
quality DAC as shown in Fig. 4. This procedure can be
easily carried out in a practical implementation, and allows
for periodical training if needed. Both approaches are
equivalent and have been widely used for ADC error
correction [20, 21].

Since the DUT can be approximated by the real SDM of
Fig. 2, it can be represented by a Volterra model (as
discussed in Section 3). Now, it is known that it can also be
p-linearised with a Volterra system of similar complexity
[17]. From the analysis of Section 3, we know that the
Volterra representation for the SDM is more general than a
Hammerstein or a Wiener model. We also know that more
than one linear dynamic is needed to represent it. Thus, the
choice of a model for the compensator should be more
complex than Hammerstein or Wiener models.

Our first approach is to examine the performance of a
memory polynomial (MP) model for the compensator, as
the illustrated in Fig. 5. This model is a generalisation of a
Hammerstein system [22], where multiple linear filters are
allowed after the static non-linearity. Assuming an Nth-
order polynomial and an FIR filter of length M, the

Fig. 3 Post-compensation scheme

Fig. 4 Ideal signal generation
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compensator output is given by

ŷMP
I (k) =

∑N

n=1

∑M−1

m=0

anmyn(k − m)

( )
(17)

where y(k) is the output of the SDC, ŷMP
I is the output of the

compesator and anm are the parameters of the compensator.
This structure has the advantage that the output signal is
linear in the unknown parameters (i.e. the terms anm),
which renders efficient parameter estimation possible
through least-squares methods [23].

As an alternative to the MP model, we introduce a modified
generalised memory polynomial (MGMP). It can be shown
that in this case, the input–output relationship of the model is

ŷMGMP
I (k) =

∑N

n=1

∑M−1

m=0

anmy(k − m)

( )n

(18)

This model is the transposed of the block diagram shown in
Fig. 5, with the power terms after the FIR filter in each
parallel branch. Note that this model includes cross-terms
among the samples y(k 2 m). This is clear from the fact that
for a given n, the power terms in brackets at the left-hand
side of (18) can be possed as

∑M−1

m=0

anmy(k − m)

( )n

/
∑M−1

m1=0

∑M−1

m2=m1

· · ·

∑M−1

mn=mn−1

anm1
· · ·anmn

y(k − m1) · · · y(k − mn) (19)

Both MP and MGMP models are special cases of finite
Volterra models [18, 22]. The model described by (18) is a
generalisation of a Wiener model different to the GMP
derived in [22]. Note that the MGMP model includes cross-
terms at the output in the same way as the Volterra model
for the real SDM. Thus, MGMP model is expected to
outperform the MP as compensator. Expression (18) can
also be represented in matrix form and the parameters can
be jointly estimated by least squares (LS) in a similar way
to that of [24] for a Wiener model. However, an over-
parametrisation is needed to force linearity in the unknown
parameters and solve equations in matrix form.

4.1 Parameter estimation of the compensators

Once the model structure has been chosen, the issue of
parameter estimation arises. The values of the model
parameters must be estimated in such a way that a given
error criterion is minimised.

Fig. 5 Nth-order MP
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We can distinguish two phases of operation for each kind
of compensator block. The first one is the ‘training mode’,
in which the parameters of the model are estimated by
minimisation of the error between its output and a reference
value (as shown in Fig. 4). The second is the “running
mode”, where the chosen parameters are used to predict the
desired output of the model.

Let us define the reference value yI(k), which is the desired
output of the compesator. This reference value is generated
separately by simulation of an ideal SDM, using the test
input signal u(t) (Fig. 3) and written in vectorial form as

yI = [yI (M + 1) yI (M + 2) · · · yI (L)]T (20)

where L data points will be used for the training.
In general, the output of the compensator can be written as

ŷI = Yff (21)

where Yf is the matrix of observation data for a sequence of L
data points

Yf = [yf(M + 1) yf(M + 2) · · · yf(L)]T (22)

composed by the regressor vectors, and

f = [fT
1 f

T
2 · · ·fT

N ]T (23)

are the vector of parameters to be estimated.
The regressor and the parameter vectors are a function of

the output of the DUT ( y(k)) when it is excited by the input
u(t) and depend on the structure of the model. For the MP
model

yf(k) = [y(k) y(k − 1) · · · y(k − M ) · · · yN (k − M − 1)]T

(24)

and

fn = [ân0 ân1 · · · ânM ]T (25)

For the MGMP model, considering different parameters for
each product of original parameters (ani) for n ¼ 1, 2, . . . ,
N and i ¼ 0, 1, . . . , M, the over-parameterised vectors can
be defined as

yf(k) = [y(k) · · · y(k − M − 1) y2(k) y(k)y(k − 1) · · ·

y2(k − M − 1) y2(k)y(k − 1) · · · yN (k − M − 1)]T

(26)

and

fn = [an
n0 a

n−1
n0 an1 · · ·an0an1 · · ·ann · · ·an

nM ]T (27)

Then, in the training phase the parameters can be estimated
through LS, that is, minimising the squared error defined as

f̂ = arg min
f

eTe = arg min
f

(yI − Yff̂ )T(yI − Yff̂ ) (28)

where the solution is given as

f̂ = (Y T
fYf)−1Y T

f yI (29)
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In order to ensure the invertibility of the term Y T
fYf the

condition of persistent excitation should be satisfied.
In the running phase, the predicted output is

ŷI = Yff̂ (30)

In the case of MGMP, the vector of parameters involves∑N
n=1 Mn terms. However, note that the permutations of the

cross-terms products have the same values. Thus, they can
be grouped without loss of generality as suggested in (19)
by the sums indexes. This reduces the amount of
parameters to

∑N
n=1 (M + n)!/(M !n!), although it is still

higher than the amount required for the MP (which is MN).
From (27), we see that there are elements in each fn

such that fn( j) ¼ (ani)
n. Thus, the parameters ani can be

extracted from f̂ as follows. f1 are the coefficients for the
first filter. In general, for n ¼ 2, . . . , N and i ¼ 0, . . .,
M 2 1, we can obtain ani as the nth root of those elements
in f̂ such that fn( j) ¼ (ani)

n. Note that this approach will
give the exact MGMP coefficients if the system behaviour
is well described by the model and is not corrupted by
noise. Then, f can be constructed from the obtained ani

and compared to f̂ in order to verify this statement. Other
methods for coefficient extraction in over-parameterised
systems can be found in [24] and the references therein.

Its worth mentioning that the parameter estimation process
is done only during the training mode. Thus, although the
training mode takes more computing time for the MGMP,
the complexity of implementation in the running mode
remains equal for both approaches (as long as the order of
the polynomial and the length of the FIR filters are the
same). Note that if no parameter separation is performed,
then f from (27) are simply the coefficients for the more
general finite DTVM described by (15). In that case, the
complexity during both operation modes is similar to that
of the MGMP in the training phase.

5 Validation and discussion

In order to validate the behavioural model presented in
Section 2, a circuit model of a CT SDM is simulated in
Spice. This circuit model is also used to generate input–
output data for the design of two different post-
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 15, pp. 1796–1804
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compensators and for the estimation of the parameters
involved.

5.1 Circuit model of a SDM

The proposed post-compensation method is calibrated using
signals obtained from a transistor level circuit model by
transient simulations in Spice. This provides realistic
simulation data, leading to general and reliable results when
evaluating compensation performance. It also allows to
verify which compensation model fits better the physical
phenomena that cause the non-ideal behaviour.

The circuit model of a first-order CT SDM is shown in
Fig. 6. Higher order architectures can be obtained by
combining several first-order SDMs into a MASH structure,
with the advantage that the inherent stability of a first-order
modulator is preserved [1].

Our DUT has a sampling frequency of 100 MS/s, over a
bandwidth from DC to 1 MHz, determining an over-
sampling ratio OSR . 50 and a resolution of over 7 bits.
Return-to-zero coding is used in the feedback loop, which
is known to reduce errors in the modulation [1]. A latch
outside the loop codes the signal in non-return-to-zero
format. The architecture is fully differential and the design
uses 180 nm complementary metal-oxide-semiconductor
(CMOS) technology with the transistor model provided by
manufacturer MOSIS.

In our simulation studies, different sinusoidal single-tone
(ST) and multi-tone (MT) input signals are used to excite
the circuit, as usually found in the literature [20, 21, 25].

5.2 Behavioural model simulation

The simulation of the behavioural model of a CT SDM
presented in Section 2 is based on the modification of an
ideal SDM. First, we introduce the third-order polynomial
of (1) preceding the ideal integrator. Then, an FIR filter is
used to model the feedback DAC. For that case, a first-
order discrete-time filter impulse response can be written as

v(k) =
∑1
l=0

plu(k − l) (31)

which is clearly an IIR filter. However, since |p| , 1, the
Fig. 6 Circuit model of a SDM simulated in Spice

Architecture is fully differential and uses 180 nm CMOS technology
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response can be truncated and a good approximation is
obtained by a FIR filter with just a few taps.

Fig. 7 shows the simulated output spectrum of an ideal
SDM (top), the circuit model (below), and the behavioural
model using just a delay to represent the feedback DAC
and a two tap FIR filters (bottom). The addition of the FIR
filter clearly models the raise in the noise floor and some
high-frequency peaks that are not present when using a
single delay to model the DAC, when compared to the
circuit model output spectrum.

5.3 Simulation results

The performance of the compensation method was simulated
in MATLAB for different sets of input–output signals
provided by the circuit model of the SDM. An ideal SDM
was simulated in MATLAB both to estimate the parameters
of the compensators and to measure their performance
through the generation of the signal yI. The input signal
used to excite this ideal modulator is imported to MATLAB
from the circuit simulator software, so the output of both
models can be compared.

Fig. 8 shows the reduction in mean squared error (MSE) as
a function of FIR order M for the case of a ST input signal, a
200 kHz sinusoid. The identification of the compensation
block was first performed for different polynomial order N
keeping a fixed filter order M, and the MSE in prediction∑

(yI − ŷI )
2 was analysed [17].

When using an MP model as compensator, see (17), we see
that the MSE reduction for N ¼ 2 is more than an order of

Fig. 7 Output spectrum

a Ideal SDM
b Circuit model
c Behavioural model with DAC represented by a delay
d Behavioural model with DAC represented by a two tap FIR filters
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magnitude. Then, for a fixed value of N the MSE was
computed as a function of M. Again, a large reduction in
the measured error is observed for M ≥ 5. The same
procedure was carried out to evaluate the performance of
the MGMP model described in (18) and (19). In the case of
the MGMP, the compensation performance was evaluated
using the parameter vector f̂ from (29) before coefficient
extraction. A comparison with the MP model is done in
Table 1.

Fig. 9 shows the spectrum of the input ST signal and the
output of the DUT before and after compensation using
both an MP and an MGMP as compensators. It is clear that
after compensation all harmonics are significantly reduced.
Furthermore, the signal to noise and distorsion (SINAD)
ratio was computed for the DUT before and after
compensation, and compared to the theoretical result for
SNR of an ideal distorsionless SDM, showing a close to
ideal behaviour for the compensated SDC (Table 1).

In all cases the parameters chosen for comparing the
performance were N ¼ 2 and M ¼ 9. We consider a longer
length for the FIR filters because higher frequency signal
components (above the 200 kHz tone of the previous
example) introduce longer memory effects. This results in
the estimation of P1 ¼ 18 parameters for the MP and
P2 ¼ 54 joint parameters for the MGMP. Thus, the training
requires P2

1 + P1(L − P1) and P2
2 + P2(L − P2)

multiplications for the MP and for the MGMP, respectively,
when computing the post-compensation block. Here, L is
the length of the training sequence, which has to be larger
than Pi for the estimate to be unbiased. However, this
processing is done by LS off-line.

In the running mode, the extra digital processing required is
NM multiplications and NM 2 1 additions in order to
compute the corrected output sample, where M is the length
of the FIR filters and N is the order of the polynomial.
However, this requires low aditional computational power

Fig. 8 LSE in training (full line) and running (dashed line) phases
as a function of M for a polynomial order of 2

Table 1 LSE and improvement in SINAD and SFDR for ST

and MT analysis (N ¼ 2, M ¼ 9)

ST(MP) ST(MGMP) MT(MP) MT(MGMP)

LSE 2.2 × 1025 2 × 1025 4.5 × 1024 3.1 × 1025

SNR, dB 69 69 – –

SINADbc, dB 34.2 34.2 – –

SINADac, dB 68.5 68.3 – –

SFDRimp, dB 26 26 17 22

parameters 18 54 18 54
IET Microw. Antennas Propag., 2011, Vol. 5, Iss. 15, pp. 1796–1804
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since most DSP processors today have very efficient vector
multipliers and are optimised for FIR filter calulations (e.g.
see [26]).

The tests using ST signals show that a large improvement
can be obtained by compensation using both models, but it
is not clear which one offers a better representation for the
dynamics of the system. For this purpose, a more general
signal has to be used as excitation for the circuit model of
the SDM. Therefore we chose a MT signal with four tones
at 100, 200, 400 and 800 kHz. This signal does not only
cover most of the signal bandwidth but frequencies are
chosen in such a way that harmonics because of different
frequency components do not overlap.

Fig. 10 shows the spectrum of the input signal and the
output of the DUT before and after compensation using
both models. We see that both models achieve a good
cancellation of harmonic distortion. However, the MSE is
an order of magnitude lower for the MGMP (see Table 1).
The spurius free dynamic range (SFDR) improvement
obtained with the MGMP is about 7 dB higher than that of
the MP. This can be explained by the presence of cross-
terms in the MGMP, which allows to model the dynamics
of the system in more detail. These cross-terms arise from
the linearisation of (18). Thus, the number of estimated
parameters increases dramatically because of the over-
parametrisation (19). Therefore there is a trade-off between
accuracy and complexity.

Finally, some additional tests have been performed to
evaluate the robustness of the post-compensators when

Fig. 9 Spectrum of the input signal (full line) and the output of the
DUT before (dashed line) and after compensation (MP: dot–dash;
GMP: dots)

Fig. 10 Spectrum of the input signal (full line) and the output of
the DUT before (dashed line) and after compensation (MP: dot–dash;
GMP: dots)
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sampling signals somewhat different to those used in the
training phase are applied. For this purpose, we test
the compensator performance in terms of SFDR when the
sampling signal has a frequency shift of 5 and 10% in each
frequency component compared with the MT signal used for
training. In adition, we also test the compensator
performance when sampling a different multi-tone signal
(DMS) composed of four tones in 200, 300, 500 and
700 kHz (while the tones used in the training mode were
100, 200, 400 and 800 kHz). The results are shown in Table 2.

From these results we see that there is still an improvement
in all cases when using an MP as compensator, even if it is
lower when sampled and training signals differ. In the case
of the MGMP, the improvement in SFDR is more sensitive
to mismatch between the sampled and training signals. This
is not surprising, since the MGMP has more parameters that
the MP compensation, allowing some degree of
overtraining. However, no deterioration in the performance
occur even in the worst case.

6 Conclusions

A complete behavioural model of a CT first-order SDM is
presented in this work. This model includes the main non-
linear and non-ideal effects that degrade the performance of
the system. The validity of this model is evaluated
comparing its behaviour with a circuit model simulated in
Spice, showing good agreement between the mathematical
expressions and the circuit output. The resulting dynamic
model is weakly non-linear, which allows for a Volterra
representation of it. This also means that the system can be
p-linearised with a Volterra model of similar complexity,
which leads to the development of post-compensators
belonging to this family. The insight provided by the
behavioural model excludes the use of simple Hammerstein
and Wiener box models for the compensation block. Thus,
two post-compensators that are generalisations of them are
developed and tested. The performance of such compensators
is then evaluated and compared by simulations in MATLAB,
using the usual metrics for ADCs as SFDR, SINAD and
MSE. As expected, the MGMP results in better cancellation
of distortion when a more general input signal is used to
excite the circuit at the cost of higher complexity and more
sensitivity to missmatches between training and sampled
signals. Although a training is needed to obtain the model
parameters, it can be performed previously off-line. This
result in a low complexity implementation composed of a
few FIR filters and a low-order polynomial that can be coded
in a small sized table.
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