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Abstract
The prevalence of Parkinson’s disease, which affects millions of people worldwide, is increasing due to the aging population. 
In addition to the classic motor symptoms caused by the death of dopaminergic neurons, Parkinson’s disease encompasses 
a wide range of nonmotor symptoms. Although novel disease-modifying medications that slow or stop Parkinson’s disease 
progression are being developed, drug repurposing, which is the use of existing drugs that have passed numerous toxicity 
and clinical safety tests for new indications, can be used to identify treatment compounds. This strategy has revealed that 
tetracyclines are promising candidates for the treatment of Parkinson’s disease. Tetracyclines, which are neuroprotective, 
inhibit proinflammatory molecule production, matrix metalloproteinase activity, mitochondrial dysfunction, protein mis-
folding/aggregation, and microglial activation. Two commonly used semisynthetic second-generation tetracycline deriva-
tives, minocycline and doxycycline, exhibit effective neuroprotective activity in experimental models of neurodegenera-
tive/ neuropsychiatric diseases and no substantial toxicity. Moreover, novel synthetic tetracyclines with different biological 
properties due to chemical tuning are now available. In this review, we discuss the multiple effects and clinical properties 
of tetracyclines and their potential use in Parkinson’s disease treatment. In addition, we examine the hypothesis that the 
anti-inflammatory activities of tetracyclines regulate inflammasome signaling. Based on their excellent safety profiles in 
humans from their use for over 50 years as antibiotics, we propose the repurposing of tetracyclines, a multitarget antibiotic, 
to treat Parkinson’s disease.
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Introduction

Patients with Parkinson’s disease (PD), which is a chronic 
neurological disorder caused by the loss of dopaminergic 
neurons in the substantia nigra pars compacta and their 
terminals in the striatum, exhibit decreased striatal dopa-
mine, which results in the classical PD motor symptoms 
of bradykinesia, rigidity, and tremor. Nondopaminergic 
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neurons also degenerate during the evolution of the disease 
and account for the dopamine-resistant symptoms, including 
olfactory dysfunction, autonomic dysfunction, sleep disor-
der, pain, and sensory problems (Rodríguez-Violante et al. 
2017). Several factors at the cellular level are thought to 
underlie the neuronal demise in PD. These include oxida-
tive stress, mitochondrial and lysosomal dysfunction, apop-
tosis, the formation of a pathologic species of aggregated 
α-synuclein protein, and inflammatory changes (Bi et al. 
2013; Olanow 2007). Thus, PD clearly involves multifacto-
rial characteristics.

PD has an inflammatory component, which has been con-
firmed by postmortem brain studies of patients with PD, 
serum and cerebrospinal fluid cytokine analyses, and exami-
nations of risk factor associations with cytokine and major 
histocompatibility complex polymorphisms (Frank-Cannon 
et al. 2009; Hirsch and Hunot 2009; Lee et al. 2009; Tansey 
and Goldberg 2010). Epidemiological studies of anti-inflam-
matory therapies (Hirsch and Hunot 2009; McGeer and 
McGeer 2008) have indicated a reduced risk of PD among 
long-term users of nonsteroidal anti-inflammatory drugs 
(Chen et al. 2003; Ton et al. 2006). However, the results 
of anti-inflammatory therapies are inconsistent as some 
nonsteroidal anti-inflammatory drugs have been shown to 
exacerbate neurodegeneration (Lleo et al. 2007). Moreover, 
anti-inflammatory efficacy has not been reproduced in all 
clinical trials (Bartels et al. 2010). These findings suggest 
that multitarget drugs are more appropriate than treatment 
with anti-inflammatories alone.

Consistent with the multifactorial origin of PD, patho-
genic interactions among the diverse pathologic mechanisms 
underlying the development of the disease have been pro-
posed to enhance neuronal death. Thus, the release of aggre-
gated α-synuclein from neurons might activate microglia 
and trigger the production of proinflammatory mediators 
and neurotoxic factors, which then lead to neuronal dam-
age (Codolo et al. 2013; Santa-Cecilia et al. 2016). Among 
these proinflammatory mediators is interleukin (IL)-1 beta 
(IL-1β), which is one of the most abundant and strongest 
proinflammatory cytokines (Codolo et al. 2013). The syn-
thesis of IL-1β is induced by fibrillar α-synuclein through an 
interaction with the toll-like receptor-2. Furthermore, IL-1β 
secretion involves the activation of the nucleotide-binding 
domain and leucine-rich repeat-containing family, pyrin 
domain-containing-3 (NLRP3) inflammasome (Codolo et al. 
2013).

Inflammasomes are multiprotein complexes that play a 
central role in inflammatory immune responses. They are 
primed by the mitogen-activated protein kinase (MAPK) 
and nuclear factor-kappa B (NF-κB) pathways and acti-
vated by several damage-associated molecular patterns 
and pathogen-associated molecular patterns (Kauppinen 
et al. 2013). Inflammasomes are critical in regulating the 

maturation of the proinflammatory IL-18 and IL-1β (Codolo 
et al. 2013; Lin and Zhang 2017). Interestingly, Codolo et al. 
(2013) have found that only fibrillar α-synuclein induces the 
release of IL-1β by monocytes after activation of the NLRP3 
inflammasome.

Unfortunately, only symptomatic treatments are available 
for PD, and no cure nor disease-modifying drug currently 
exists (Kowal et al. 2013). Although several pharmacologi-
cal compounds improve nigrostriatal pathway function and 
alleviate the motor and nonmotor symptoms of the disease, 
these compounds do not slow disease progression (Schapira 
2005). Indeed, the effects of dopamine replacement therapy 
with L-3,4-dihydroxyphenylalanine (L-DOPA), which is the 
most efficient treatment of the PD motor symptoms (Fahn 
2008; Olanow 2008), tend to decrease with time. Longer 
L-DOPA treatments are accompanied by motor and/or psy-
chiatric side effects that are extremely discomforting for the 
patients. Therefore, future drug research and development 
must focus on finding compounds that slow dopaminergic 
neurodegeneration and impede illness progression (LeWitt 
and Nyholm 2004; Schapira et al. 2006). Despite the huge 
efforts and resources already invested, the development of 
new neuroprotective drugs has high rates of failure. In fact, 
several promising drugs have failed once they reached clini-
cal trials mainly due to safety issues, including unexpected 
clinical side effects and/or tolerability (Ashburn and Thor 
2004; Cha et al. 2018). Therefore, drug repurposing might 
be useful for overcoming this bottleneck in PD treatment by 
avoiding future derailments due to appearance of toxicities 
that were not predicted by the preclinical research.

In addition to their antimicrobial properties, tetracyclines 
are antibiotics that may protect against neurodegenerative 
(Blum et al. 2004; Forloni et al. 2009; Noble et al. 2009a, 
b; Ruzza et al. 2014; Stoilova et al. 2013) and neuropsy-
chiatric (Keller et al. 2013) diseases. These drugs exhibit 
an array of brain protective functions (Gordon et al. 2012; 
Moon et al. 2012), including the reduction of neuroinflam-
matory processes (Gordon et al. 2012; Noble et al. 2009a, 
b; Nordstrom et al. 1998; Sultan et al. 2013) and prevention 
of mitochondrial-mediated cytochrome c release, glutamate 
neurotoxicity, and oxidative stress (Kim and Suh 2009; Mao 
et al. 2005; Rothstein et al. 2005; Tomiyama et al. 1996a). In 
addition, they are effective inhibitors of metalloproteinases 
(Cathcart and Cao 2015; Cho et al. 2009; Lee et al. 2009), 
tumor progression (Amin et al. 1997), and angiogenesis 
induction (Furst 1998). Importantly, subantimicrobial doses 
of tetracyclines have been successfully used for the treatment 
of acne vulgaris, rosacea, and periodontal disease without 
serious side effects on the patient’s health, which suggests 
the safety of antibiotic therapy (Skidmore et al. 2003). Inter-
estingly, Egeberg et al. (2016) have reported that increased 
tetracycline use in rosacea treatment is associated with a 
small but appreciable reduction in the risk of developing PD, 
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which suggests that tetracyclines have potential for treating 
PD.

Clinically, the off-target effects of drugs are critically 
important. Drug repositioning or repurposing is an attractive 
alternative (Ashburn and Thor 2004; Johnston et al. 2018; 
Stock et al. 2013) to de novo drug development. Specifi-
cally, drug repositioning reduces development risk because 
repositioning candidates have usually already been through 
several stages of clinical development and therefore have 
well-known safety and pharmacokinetic profiles (Papap-
etropoulos and Szabo 2018). De novo drug discovery and 
development, which begins with an idea and continues until 
the drug is marketed, is a 10–17-year process (Ashburn and 
Thor 2004; Cha et al. 2018). Thus, drug repurposing may 
be key for the faster development of neuroprotective treat-
ments against PD.

The aim of the present review was to carefully compile 
evidence of the potential effects of tetracyclines in the treat-
ment and/or prevention of PD. Here, we briefly examine the 
chemical structure, mechanisms of action, and properties 
of tetracyclines that may result in neuroprotection. Finally, 
we will summarize the available data on the preclinical and 
clinical testing of tetracyclines.

The structure–activity relationship 
of tetracycline

Tetracycline, which is a natural fermentation product of the 
soil bacterium Streptomyces aureofaciens was discovered 
by Benjamin Duggar in (1948). The first tetracycline to be 
chemically purified was chlortetracycline in 1954 (Griffin 
et al. 2010; Sapadin and Fleischmajer 2006). The mecha-
nisms of action underlying the antibiotic properties of tet-
racyclines are related to their ability to bind to the bacterial 
30S ribosomal subunit, which then halts protein translation. 
Upon binding to the ribosome, tetracyclines allosterically 
inhibit the binding of the amino acyl-tRNA at the accep-
tor site, which then prevents assembly of the translational 
machinery (Connamacher and Mandel 1965; for review, see; 
Nelson and Levy 2011).

Currently, the following three groups of tetracyclines 
exist: tetracycline natural products, tetracycline semisyn-
thetic compounds, and chemically modified tetracyclines 
(CMTs; Golub et al. 1992; Nelson 1998; for review, see; 
Swamy et al. 2015). All tetracyclines consist of a linear-
fused tetracyclic nucleus (rings designated a–d in Fig. 1), 
which is an important feature in its antibacterial activity. 
The ring structure is surrounded by upper and lower periph-
eral zones that contain various chemical functional groups 
(Martin 1985). The dimethylamine group at the C4 carbon 
on the upper half is necessary for its antimicrobial activity 
(Fig. 1). Interference with this region reduces or eliminates 

the effectiveness of the drug as an antibiotic (Golub et al. 
1998). The lower peripheral region contains functional 
groups that are responsible for the chelation of metal ions 
(Fig. 1; Bahrami et al. 2012).

Chemical modifications have produced the following 
two newer semisynthetic second-generation tetracyclines: 
6-deoxy-5-hydroxytetracycline [doxycycline (DOX)] and 
7-dimethylamino-6-demethyl-6-deoxytetracycline [mino-
cycline (MIN)]. DOX and MIN, which are most commonly 
used clinically as antibiotics, are characterized by reduced 
toxicity, enhanced antibacterial activity, longer half-lives, 
superior tissue fluid penetration, easier penetration of the 
blood–brain barrier (Domercq and Matute 2004), and rapid 
and complete absorption, even in aging individuals (Sande 
and Mandell 1985). DOX is indicated for a variety of infec-
tions, including anthrax, chlamydia, community-acquired 

Fig. 1  Chemical structure and activity relationship of tetracycline, 
DOX, MIN and CMT-3. Tetracycline molecules are all comprised by 
a linear-fused tetracyclic nucleus (rings designated a–d), an impor-
tant feature for the antibacterial activity. Modifying the upper periph-
eral zone (positions C7 through C9 of the D ring) led to the synthesis 
of molecules with higher activity. The lower peripheral region con-
tains functional groups that are responsible for inhibition of protein 
aggregation and chelation of metal ions. This feature has an influence 
on both their antimicrobial and pharmacokinetic properties (Socias 
et al. 2018; for review see; Bahrami et al. 2012; Chopra and Roberts 
2001). Modification of the lower peripheral region reduces both anti-
biotic and nonantibiotic properties (Nelson 1998)
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pneumonia, Lyme disease, cholera, syphilis, Yersinia pestis 
(plague), periodontal infections, severe acne, and malaria. 
MIN, which is used more often, also displays broad-spec-
trum efficacy and is indicated for many of the same infec-
tions as DOX (Joshi and Miller 1997). However, the effects 
of MIN and DOX in the central nervous system are not fully 
understood nor have they been characterized.

A new family of interesting CMT compounds has been 
chemically modified to eliminate their antimicrobial activi-
ties while retaining their anticollagenase activities (Golub 
et al. 1992, 1998, 1999). Currently, more than eight CMTs 
are available (Gu et al. 2011). Among them, CMT-1, CMT-3, 
and CMT-8 have been tested in medical applications. CMT-3 
[6-demethyl-6-deoxy-4-de(dimethylamino)-tetracycline] is 
the only CMT that has been tested in clinical trials on cancer 
patients (Agnihotri and Gaur 2012). CMTs do not produce 
major side effects compared to antimicrobial tetracycline 
therapy, and their administration in experimental animals 
does not produce tetracycline-resistant microorganisms in 
the oral and gut flora (Golub et al. 1991).

The pleiotropic properties of CMT-3 provide impressive 
therapeutic potential for reducing excessive connective tis-
sue breakdown during various pathologic processes, includ-
ing those in inflammatory diseases (Chu et al. 2007; Dezube 
et al. 2006; Fingleton 2003; Greenwald 1998). CMT-3 inhib-
its lipopolysaccharide (LPS)-induced microglia activation 
and cytokine expression in the brain (Edan et al. 2013). 
Because CMT-3 is highly lipophilic, it is expected to cross 
the blood–brain barrier and therefore affect cells within the 
brain (Chen et al. 2000; Edan et al. 2013).

The nonantimicrobial properties 
of tetracyclines

A wide spectrum of effects of tetracyclines in the nervous 
system can be attributed to their nonantibiotic properties 
(Sapadin and Fleischmajer 2006). These properties are listed 
below.

Matrix metalloproteinase (MMP) inhibition

MMPs are produced by inflammatory and connective tissue 
cells. The inhibition of MMPs is beneficial in many patho-
logical conditions in which the MMP-mediated proteoly-
sis of the extracellular matrix contributes to inflammation, 
which has been shown in animal model studies of stroke, 
neurodegeneration, neuroimmunity, and neuroinfection 
(Plane et al. 2010). Tetracyclines are thought to exert their 
antiproteolytic effects both through the direct inhibition of 
MMPs activity and the inhibition of their expression (Grif-
fin et al. 2010). Because MMP transcription is induced by 
numerous proinflammatory cytokines and growth factors, 

including IL-1, IL-6, tumor necrosis factor-alpha (TNF-α), 
and epidermal growth factor, the upstream signaling cas-
cades that induce MMP expression are probably important 
targets of tetracyclines (Hanemaaijer et al. 1998).

Reactive oxygen species (ROS) scavenging

The increased production of ROS under many pathologi-
cal conditions results in oxidative destruction or the dys-
function of many cellular constituents. The neuroprotec-
tive roles of DOX and MIN have been attributed to their 
ability to scavenge ROS and free radicals (Bahrami et al. 
2012; Garcia-Martinez et al. 2010; Nikodemova et al. 2006; 
Plane et al. 2006). MIN has been shown to directly scavenge 
ROS in several cell-free mixed-radical assays (Kraus et al. 
2005). Additionally, MIN is very effective for quenching 
 H2O2 and scavenging superoxide and peroxynitrite through 
direct interactions with these free radicals (Kraus et al. 2005; 
Whiteman and Halliwell 1997).

MIN and DOX inhibit oxidative stress by also attenuat-
ing the expression of inducible nitric oxide (NO) synthase 
(iNOS; Amin et al. 1997). NO reacts with oxygen radicals 
and forms cytotoxic species, such as peroxynitrite. Tetracy-
clines can act on this enzyme at the transcriptional and/or 
translational level, which accounts for the observations of 
decreased protein levels and specific activity of the enzyme 
and the subsequent reduction in NO production (Amin et al. 
1997; DeClerck et al. 1994; Rifkin et al. 1994).

Antiapoptotic effects

A key event in the execution of the apoptotic cascade is the 
activation of caspases, which are a family of cysteine pro-
teases. Tetracyclines possess antiapoptotic properties that 
result in reductions in the expression of caspase-1 and/or 
caspase-3. In addition, MIN enhances the effects of B-cell 
lymphoma-2 (Bcl-2), which protects cells against apoptosis 
(Jordan et al. 2007; Wang et al. 2010).

Anti‑inflammatory effects

The downregulated expression of proinflammatory media-
tors is a well-characterized and common effect of all tet-
racyclines, especially MIN and DOX (Golub et al. 1998). 
Reports have shown that tetracycline, DOX, and MIN 
decrease inflammations of various etiologies (Bahrami et al. 
2012). Thus, tetracyclines attenuate both innate and adaptive 
immune responses (Griffin et al. 2010).

MIN and DOX exert their anti-inflammatory effects in the 
brain by modulating glial cells. Microglial activation occurs 
in most neurodegenerative diseases and results in the release 
of proinflammatory mediators and other injury response fac-
tors that compromise cell viability (Domercq and Matute 
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2004). By reducing microglial activation, tetracyclines 
reduce the transcription of downstream proinflammatory 
mediators, such as caspase-1, iNOS, and cyclooxygenase 2, 
and the subsequent release of IL-1β, NO, and prostaglandin 
 E2, which are associated with neuronal cell death (Domercq 
and Matute 2004; Orsucci et al. 2009). In addition, MIN 
attenuates the p38 MAPK cascade, which reduces inflam-
matory cytokine synthesis (Bahrami et al. 2012; Tikka and 
Koistinaho 2001; Wu et al. 2002; Yrjanheikki et al. 1998).

MIN and, to a lesser extent, DOX inhibit phospholipase 
 A2 (Pruzanski et al. 1992) and neutrophil migration (Esterly 
et al. 1984) and adherence (Gabler and Creamer 1991). 
In addition, DOX reduces mitogen-induced proliferative 
responses of lymphocytes (Thong and Ferrante 1979).

Furthermore, DOX (Cox et al. 2010) and MINO (Tama-
rgo et al. 1991) inhibit angiogenesis, which occurs also in 
neurodegenerative diseases (for review see Bradaric et al. 
2012).

Regarding the neuroinflammation induced by α-synuclein, 
Codolo et al. (2013) have suggested that blocking IL-1β 
activity may be a valuable alternative to reducing and/or 
stopping α-synuclein-triggered immune responses because 
this cytokine is the final product of the NLRP3 inflamma-
some. Thus, DOX exerts strong anti-inflammatory actions 
on microglial cells and ceases the production of inflamma-
tory mediators by suppressing the NF-κB and p38 MAPK 
pathways. Moreover, DOX strongly restricts the production/
release of IL-1β and TNF-α (Santa-Cecilia et al. 2016) and 
diminishes the increase in TNF-α and IL-1β mRNA tran-
scripts observed in LPS-stimulated BV-2 cells (Cho et al. 
2009).

Protein antiaggregation activity

Neurodegenerative diseases can be classified according to 
their predominant protein aggregates (Maiti et al. 2014). An 
important hallmark of neurodegenerative disorders, includ-
ing PD and Alzheimer’s disease, is the intraneuronal (tau or 
α-synuclein) and extracellular [amyloid beta (Aβ) peptide] 
accumulation of misfolded proteins. The evidence suggests 
that α-synuclein is involved in the pathogenesis of several 
disorders through the promotion of the fibrilization of tau 
and Aβ as well as the phosphorylation of tau (Wong and 
Krainc 2017).

In the postmortem brains, specifically the substantia nigra 
and striatum, of patients with PD, increased α-synuclein 
accumulation has been observed in mitochondria (Subra-
maniam et al. 2014). In turn, the mitochondrial dysfunction 
caused by α-synuclein might induce the enhanced produc-
tion of ROS, which appears to modulate α-synuclein oli-
gomerization and cytotoxicity (Brahmachari et al. 2016). 
Recently, Socias et al. (2018) have analyzed the antiamy-
loidogenic effects of different antibiotics on well-known 

disease-associated proteins. Their results suggested that a 
specific structural motif in tetracyclines is key for the inhi-
bition of protein amyloid aggregation (Socias et al. 2018) 
and that the oxidation products of antibiotics with additional 
hydroxyl groups on their rings further inhibit α-synuclein 
fibrillation (Fig. 1). DOX also induces the remodeling of 
α-synuclein oligomers into off-pathway nontoxic and non-
seeding species. Interestingly, this remodeling process is 
only effective on the early species in the aggregation process 
(González-Lizárraga et al. 2017).

Protection against mitochondrial dysfunction

Mitochondrial dysfunction has also been implicated in mul-
tifactorial age-related diseases, including PD (Andreux et al. 
2013). Garcia-Martinez et al. (2010) have postulated that 
mitochondria are pharmacological targets of MIN. When 
MIN is added to isolated mitochondria, it decreases the 
mitochondrial inner membrane potential, which might pre-
vent mitochondrial permeability, transition pore opening, 
and the subsequent release of cytochrome c. In addition, 
MIN decreases the voltage dependence in a concentration-
dependent manner, which alters the permeability of the mito-
chondrial outer membrane (Garcia-Martinez et al. 2010). 
These transmembrane potential changes might contribute 
to the various cytoprotective mechanisms described above.

The pituitary adenylate cyclase‑activating 
polypeptide (PACAP), histone methylation, and poly 
(ADP‑ribose) polymerase‑1 (PARP‑1): new targets 
for the neuroprotective effects of tetracyclines?

The pituitary adenylate cyclase-activating polypeptide 
receptor 1 (PAC1R) is located in the central and periph-
eral nervous systems, in which it mediates antiapoptotic 
(Seaborn et al. 2011), anti-inflammatory (Martínez et al. 
2006), and neuroprotective (Bourgault et al. 2009) effects. 
DOX, which is a positive allosteric modulator of PAC1, 
enhances the activation of this receptor in vivo (Yu et al. 
2016). Therefore, PAC1 may be the source of yet another 
neuroprotective function of DOX, which suggests that the 
anti-inflammatory effects of DOX interact with the functions 
of PAC1 (Reglodi et al. 2017).

The activation of PARP-1 by DNA damage promotes 
both cell death and inflammation. Alano et al. (2006) have 
reported that the enzymatic activity of PARP-1 is directly 
inhibited by MIN, DOX, and other tetracycline derivatives 
that have neuroprotective and anti-inflammatory actions. The 
neuroprotective and anti-inflammatory effects of tetracycline 
derivatives may be attributable to PARP-1 inhibition, par-
ticularly under conditions in which cell death is mediated 
primarily by PARP-1 activation. MIN has a beneficial effect 
on DNA damage, which might be due to its ability to inhibit 
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PARP-1 activation. In addition, MIN might regulate the lev-
els of histone methylation, which is partially explained by its 
ability to regulate histone methyltransferases or demethyl-
ases (Wang et al. 2017).

In summary, it is unclear whether tetracyclines have one 
or several modes of action. Despite this question and con-
sidering the wide range of protective effects reported in dif-
ferent models of various brain diseases, MIN and DOX are 
considered potential therapeutic agents in the treatment of 
neurodegenerative disorders (Noble et al. 2009a, b; Yong 
et al. 2004).

Doxycycline and minocycline in Parkinson’s 
disease

Tetracycline derivatives, which have slowly been recog-
nized as a genre of drugs with pleiotropic properties, have 
become an alternative form of therapy in neurodegenerative 
disorders in which inflammation contributes to disease pro-
gression (Reglodi et al. 2015; Socias et al. 2018). Indeed, 
this class of drugs has been reported to exert unique effects 
on complex pathologies (Griffin et al. 2010). The literature 
contains 242 clinical trials of MIN and 262 clinical trials 
of DOX in many types of systemic diseases. In particular, 
these clinical trials involve patients and/or experimental 
models related to numerous neurological conditions, includ-
ing schizophrenia, Alzheimer’s disease, amyotrophic lateral 
sclerosis, Huntington’s disease, PD, and autism (Supplemen-
tary Table 1; Gordon et al. 2007; Kelly et al. 2015; Loeb 
et al. 2004; Molloy et al. 2013; Parashos et al. 2014; Pardo 
et al. 2013; Zhang et al. 2003). Here, we review the evidence 
for the protective actions of MIN and DOX in PD.

Minocycline

The neuroprotective effects of MIN in PD experimental 
models have been reported since 2001. In 1-methyl-4-phe-
nyl-1,2,3,6-tetrahydropyridine (MPTP) models of PD, MIN 
prevents dopaminergic nigrostriatal neurodegeneration (Du 
et al. 2001; He et al. 2001; Wu et al. 2002). In addition, 
MIN decreases MPTP-mediated nitrotyrosine formation and 
inhibits MPTP-induced microglial activation, which pre-
vents the production of microglia-derived proinflammatory 
factors, including IL-1β, ROS, and NO (Wu et al. 2002). It 
also inhibits MPP + mediated iNOS expression in vivo and 
potently blocks NO-induced neurotoxicity in vitro (Du et al. 
2001).

The neuroprotective effects of MIN have also been 
observed after chronic rotenone toxicity in wild-type rodents 
(Radad et al. 2010), parkin null mice (Casarejos et al. 2006), 
and PD model Drosophila (Faust et al. 2009). In addition, 
MIN administration has been shown to reduce the number 

of apomorphine-induced rotations in 6-hydroxydopamine 
(6-OHDA)-lesioned rats, the loss of tyrosine hydroxylase-
positive cells, increasing the size and fiber density of the 
remaining nigral cells (Quintero et al. 2006). Moreover, MIN 
exhibits protective effects on nigrostriatal dopaminergic neu-
rodegeneration in the Weaver mouse, which has a mutation 
in the gene encoding for the G-protein-activated inward rec-
tifier potassium channel 2 (Peng et al. 2006).

To investigate the effects of anti-inflammatory treatments 
on regeneration, Worlitzer et al. (2013) administered MIN 
for 14 weeks starting 2–3 weeks after injections of 6-OHDA 
in a mouse model of PD. MIN treatment induced functional 
regeneration that was dopaminergic neuron activity-depend-
ent. Anti-inflammatory treatment after the degeneration of 
dopaminergic neurons in the substantia nigra increased the 
activity of adult neural stem cells in the subventricular zone, 
which resulted in the generation of neuroblasts that migrated 
deeply into the lesioned striatum. These newly generated 
cells differentiated into mature striatal oligodendrocytes. 
These results suggested that oligodendrogenesis was respon-
sible, at least in part, for the behavioral improvements in the 
PD symptoms due to the increased stability and efficiency of 
axonal function in the remaining ipsilateral and/or crossing 
contralateral dopaminergic neurons (Worlitzer et al. 2013).

Interestingly, MIN prevents N-methyl d-aspartate 
(NMDA) glutamate receptor-induced neuronal death by 
inhibiting the activation and proliferation of microglia cells 
in culture (Tikka and Koistinaho 2001). Those authors also 
showed that MIN inhibits the NMDA-induced activation of 
p38 MAPK and a specific p38 MAPK inhibitor, while not 
that of a p44/42 MAPK inhibitor, in microglial cells, which 
then reduces NMDA toxicity.

Nonetheless, conflicting evidence for the efficacy of 
MIN has been reported in animal models of PD (Sriram 
et al. 2006; Yang et al. 2003). MIN has variable and even 
harmful effects in MPTP models due to the exacerbation of 
the MPTP-induced damage to dopaminergic neurons both 
in vitro and in vivo (Yang et al. 2003). Additional uncer-
tainty results from the apparent lack of robust therapeutic 
efficacy of MIN in clinical trials in which MIN-treated 
patients with PD exhibited trends for worse Unified Par-
kinson’s Disease Rating Scale scores compared to placebo-
treated controls (Gordon et al. 2007). In contrast, another 
trial showed additive neuroprotective effects of MIN when 
it was combined with creatine, which has been shown to 
reduce PD progression in patients (NINDS NET-PD, 2006). 
Thus, several questions on the efficacy of MIN as a viable 
PD treatment remain.

Doxycycline

DOX is a highly effective and inexpensive antibiotic with a 
broad therapeutic spectrum and exceptional bioavailability. 
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Not surprisingly, DOX is included in the World Health 
Organization’s List of Essential Medicines needed for basic 
health care systems (http://www.who.int/medic ines/publi 
catio ns/essen tialm edici nes/en/; Perez-Trallero and Iglesias 
2003). DOX was immediately popular after its use was 
approved by the Food and Drug Administration in 1967 
because of its simplified once (or twice)-a-day dosage regi-
men compared to the four-times-a-day dosing schedule of 
tetracycline. In addition, DOX presents minimal side effects, 
even after its long-term administration (Gompels et al. 2006; 
Langevitz et al. 1992; Smith et al. 2011).

DOX has various effects on central nervous system 
functions. Because it is already clinically available, it is an 
obvious and attractive candidate for drug repurposing. Sub-
antimicrobial doses of DOX (20 mg twice daily with serum 
concentrations in the range of 200–600 ng/mL) have been 
repeatedly demonstrated as safe with no evidence of post-
treatment microbiologic resistance (Payne et al. 2011).

The neuroprotective effects of DOX on dopaminergic 
neurons have been demonstrated both in vitro and in vivo 
(Cho et al. 2011; Lazzarini et al. 2013). These effects seem 
to result from antiapoptotic and anti-inflammatory mecha-
nisms involving the downregulation of MMPs (Cho et al. 
2011; Fig. 2). Nevertheless, it has become clear that the use 
of DOX to control Tet-ON/Tet-OFF systems (DOX-induci-
ble systems) involves risk (Lewandoski 2001) in that the use 
of DOX per se produces unexpected experimental outcomes. 
Recently, we showed that the systemic treatment of mice in 
a 6-OHDA model of PD with DOX protected dopaminergic 
neurons (Lazzarini et al. 2013) and that this neuroprotec-
tion was associated with a reduction in microglial activation. 
This important discovery happened by accident (serendip-
ity) when 6-OHDA-lesioned mice were fed chow containing 
DOX. Comparable results were obtained in another group 
of mice that were later administered DOX subcutaneously 
(Fig. 2). The 6-OHDA model causes neuroinflammatory 
responses (Taylor 2013; Tufekci et al. 2012), including reac-
tive astrocytosis (Wachter et al. 2010) and microglial acti-
vation (Lazzarini et al. 2013; Marinova-Mutafchieva et al. 
2009; Fig. 2). These experimental results strongly suggest 
that DOX is a promising alternative for the treatment of PD.

Additionally, our group has also reported a direct effect 
of DOX in the activation of primary microglia in vitro 
(Santa-Cecília et al. 2016). DOX reduces the LPS-induced 
activation of microglial cells in a concentration-depend-
ent manner (200–300  µM) by preventing increase in 
the expression of Iba-1. Additionally, DOX reduces the 
expression of inflammatory mediators, such as TNF-α, 
ROS, and iNOS. This effect was associated with the inhi-
bition of the production of the proinflammatory cytokines 
TNF-α and IL-1β by LPS. One possible molecular mecha-
nism underlying these effects is that DOX inhibits the acti-
vation of the p38 MAPK and NF-κB signaling pathways 

in LPS-stimulated microglial cells. Similarly, Zhang et al. 
(2015) have thoroughly demonstrated that the effects of 
DOX in a rat model of PD occur through the inhibition of 
the LPS-induced degeneration of dopaminergic neurons by 
the downregulation of the expression of microglial major 
histocompatibility complex II.

Neuroinflammation and α-synuclein pathology interact 
synergistically and lead to PD neurodegeneration (Gao 
and Hong 2008). Neuron-associated proteins, particularly 
α-synuclein, are modified by oxidation to form nitrated 
α-synuclein, which misfolds and aggregates to create intra-
cellular inclusions called Lewy bodies (Kosloski et  al. 
2010). More recently, González-Lizárraga et  al. (2017) 
have reported that DOX reshapes α-synuclein oligomers 
and inhibits α-synuclein aggregation and the seeding of new 
oligomers, thus preventing cytotoxicity in dopaminergic cell 
lines.

Fig. 2  Tetracycline and neuronal cell death. Tetracyclines can pro-
tect against neuronal cell death by directly suppressing expression 
of MMPs and activation of glial cells, remodeling α-synuclein early 
aggregates and scavenging ROS. Indirectly, DOX is able to inhibit 
mitochondrial dysfunction and subsequent oxidative damage caused 
by α-synuclein aggregates or production of proinflammatory media-
tors from glial cell activation, which, in turn, leads to MMP activa-
tion. MMP matrix metalloproteinase, ROS reactive oxygen species, 
SYN α-synuclein

http://www.who.int/medicines/publications/essentialmedicines/en/
http://www.who.int/medicines/publications/essentialmedicines/en/
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DOX is clearly promising for preventing and inhibiting 
dopaminergic cell loss (Sapadin and Fleischmajer 2006) 
through its anti-inflammatory effects (Joshi and Miller 
1997). Importantly, the long-term administration (up to 
2 years) of subantimicrobial doses of DOX has not pro-
duced antibiotic side effects in clinical trials (Golub et al. 
2016; Keijmel et al. 2017). Thus, subantimicrobial doses 
of DOX may represent a game changer in PD therapy that 
will benefit a considerable number of patients.

The feasibility of treatment 
with tetracycline, minocycline, 
and doxycycline in neurodegenerative 
diseases

The most common side effects of an antibiotic concentra-
tion (200 mg/day) of tetracycline is gastrointestinal upset 
(Carter 2003), increased photosensitivity, teeth discol-
oration, and bone formation and growth interference in 
children under the age of eight (Archer and Archer 2002; 
Gupta et al. 2006). Other common side effects of this anti-
biotic dose include nausea, vertigo, and mild dizziness, 
which are completely reversible upon discontinuation of 
the drug. Additionally, liver toxicity, pigmentation, and a 
lupus erythematosus-like syndrome may appear during the 
use of this drug (Garner et al. 2003).

Although tetracycline has been studied extensively, 
long-term studies are rare (Smith et al. 2005). Nonethe-
less clearly a major concern of the use of antibiotics as 
adjuncts to mechanical debridement procedures is the 
development of antibiotic side effects (Chopra and Rob-
erts 2001). The administration of tetracyclyne antibiotic 
doses (200–400 mg/day) is responsible for the antimicro-
bial effects, which may result in bacterial resistance and 
alterations in endogenous flora. In contrast, clinical trials 
have demonstrated that the administration of subantibiotic 
doses (20–40 mg/day) does not alter bacterial susceptibil-
ity to antibiotics and results in anti-inflammatory effects 
(Payne et al. 2011; NINDS NET-PD Investigators 2006).

Studies on the neuroprotective effects of MIN in experi-
mental models of neurodegeneration have had promising 
results. However, MIN has shown variable and even con-
tradictory (beneficial and detrimental) effects in various 
species and models, which suggests an urgent need for the 
promotion of the publication of negative results (Diguet 
et al. 2004).

Accordingly, additional studies are required to deter-
mine the conditions required for the safe clinical admin-
istration of subantibiotic doses during the prolonged 
treatments necessary in the study of neurodegenerative 
diseases.

Conclusion and open questions

In this review, we presented the current experimen-
tal evidence for the potential use of tetracycline and its 
derivatives (MIN and DOX) as neuroprotective agents in 
PD. MIN and DOX, which are already clinically avail-
able, have protective actions with long half-lives, minor 
side effects, increased lipid solubilities, good tolerances, 
and excellent blood–brain barrier penetrations. The use 
of these drugs alone or in combination with other agents 
offers novel therapeutic approaches that target multiple 
pathways that lead to the degeneration of dopaminer-
gic neurons in PD. Indeed, this class of drugs has been 
reported to exert unique effects on complex pathologies 
(Griffin et al. 2010). In brief, both are effective, and each 
exhibits unique pharmacological properties that may prove 
to be potentially advantageous.

Because the pathology of PD is very complex, the neu-
roprotective properties of MIN and DOX seem to be medi-
ated by mechanisms other than their antimicrobial effects 
(Fig. 2): (1) the protection of dopaminergic cells through 
decreased levels of intracellular MMPs, which participate 
in cell death signaling; (2) prevention of the activation of 
microglia; (3) inhibition of the production of proinflam-
matory molecules; and 4) inhibition of the aggregation of 
α-synuclein, among others. These properties are not neces-
sarily limited to MIN and DOX as other tetracyclines have 
also been shown to have beneficial effects on inflammation 
and apoptotic cell death.

In conclusion, tetracycline and its derivatives have been 
increasingly recognized for their anti-inflammatory and 
neuroprotective potentials. While the mechanisms under-
lying their benefits are still unclear, this novel mode of 
action of tetracyclines may help in the development of 
more specific and effective strategies in the treatment of 
neurodegenerative disorders. Finally, drug repurposing 
has potential for quickly bringing medications with known 
safety profiles to new patient populations.

Neuroprotective antibiotics are a potential treatment for 
chronic neurological disorders that have few existing treat-
ments. DOX, which is listed on the World Health Organi-
zation’s list of essential medicines and which is already 
clinically available, should be considered an excellent can-
didate in the development of therapeutic strategies for PD.
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