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Conventional field phenotyping for drought tolerance, the most important factor limiting

yield at a global scale, is labor-intensive and time-consuming. Automated greenhouse

platforms can increase the precision and throughput of plant phenotyping and contribute

to a faster release of drought tolerant varieties. The aim of this work was to establish a

framework of analysis to identify early traits which could be efficiently measured in a

greenhouse automated phenotyping platform, for predicting the drought tolerance of

field grown soybean genotypes. A group of genotypes was evaluated, which showed

variation in their drought susceptibility index (DSI) for final biomass and leaf area. A large

number of traits were measured before and after the onset of a water deficit treatment,

which were analyzed under several criteria: the significance of the regression with the

DSI, phenotyping cost, earliness, and repeatability. The most efficient trait was found to

be transpiration efficiency measured at 13 days after emergence. This trait was further

tested in a second experiment with different water deficit intensities, and validated using

a different set of genotypes against field data from a trial network in a third experiment.

The framework applied in this work for assessing traits under different criteria could be

helpful for selecting those most efficient for automated phenotyping.

Keywords: phenotyping, drought susceptibility index, transpiration efficiency, soybean, field

INTRODUCTION

Phenotyping is currently the bottleneck in breeding for many traits, including drought tolerance
(Richards et al., 2010; Montes et al., 2011), mostly due to the cost of genotyping having largely
decreased during the last years in relation to that of phenotyping. Conventional procedures
for phenotyping complex traits are usually labor intensive, time consuming, low throughput,
costly, and destructive to plants (Montes et al., 2007; Chen et al., 2014). High-throughput
and reproducible phenotyping is then crucial for accelerating the release of improved varieties
(Vadez et al., 2012). To help attain this goal, automated phenotyping platforms have been
developed, which aim at increasing the capacity for obtaining phenotypic information. Greenhouse
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located plant phenotyping platforms are becoming increasingly
widespread, due to the availability of commercial (e.g., Lemnatec,
http://www.lemnatec.com; Photon Systems Instruments, http://
www.psi.cz) and also commercial phenotyping services (e.g., the
Plant Accelerator, https://www.plantphenomics.org.au/services/
accelerator/). Efforts have been made toward lowering the
initial cost of phenotyping platforms by developing affordable
technologies (e.g., Pereyra-Irujo et al., 2012; Minervini et al.,
2017). Operational costs of commercial and custom-made
phenotyping platforms, however, have not received much
attention, but can be crucial for assessing the practical
applicability of this technology.

Besides costs, the relative value of the phenotypic data
obtained should be considered, in comparison with traditional
phenotyping techniques. Reproducible and precise phenotyping
of early traits at medium or high throughput is a clear advantage
of greenhouse located platforms. The main goal of phenotyping
in a crop breeding context is usually to predict field performance,
but doing so using automated platforms is usually questioned,
mainly because environmental conditions in greenhouses and
soil conditions in pots are often unrealistic (Poorter et al., 2012).
Results on traits determined at vegetative stages on plants grown
in pots in controlled environment experiments are difficult to
relate directly into yield performance under field conditions
(Junker et al., 2015), because in these conditions plants are
far removed from the situation they will experience in the
field (Araus and Cairns, 2014). Nevertheless, there are a few
reports in the literature where phenotypic measurements in the
greenhouse and the field are correlated. Chapuis et al. (2012)
found a high genetic correlation between the sensitivity of grain
number (the main component driving yield) to water deficit
determined in a network of maize field trials and the sensitivity
of leaf elongation rate in a greenhouse phenotyping platform.
In soybean, Pardo et al. (2015) found similar rankings of water
deficit tolerance of yield in greenhouse experiments and field
trials and, though they did not use an automated phenotyping
platform, their protocols and measurements could be readily
automated. Another important aspect to take into account in
order to estimate the value of phenotyping in a breeding context
is the ability of a given trait to identify differences between
genotypes, which can be quantified as the heritability (Specht
et al., 2001; Rebetzke et al., 2002; Du et al., 2009) or repeatability,
a concept better suited to cultivars from diverse sources and
different pedigrees (Fehr, 1987; Lambrides et al., 2004; Hallauer
et al., 2010). Also earliness (time between seedling emergence
and trait measurement) could be useful when phenotyping cost
is similar between two traits.

Obtaining plant genotypes with improved tolerance to
drought is currently a main goal in plant breeding as water is
the main factor limiting crop yield worldwide (Hufstetler et al.,
2007). Conventional and marker-assisted breeding for improved
tolerance to water deficit has been successful in different crops
(e.g., maize, rice, wheat), through phenotyping in water-limited
environments (Hall and Richards, 2013). However, this approach
can be ineffective in changing environmental scenarios (i.e.,
climate change, Brisson et al., 2010). In addition, the time
required for the development of an improved variety is long and

very costly in resources (Hall and Richards, 2013). Therefore,
accelerating breeding of drought tolerant varieties could bring
enormous advantages, and efficient phenotyping is a key point
to reach this goal. Most of the available phenotyping platforms
automatically manipulate the soil water content through precise
irrigation of each pot; therefore, it allows to measure the
response to specific water deficit scenarios. They also provide
measurements of a few basic traits frequently used for quantifying
tolerance to water deficit, including growth traits estimated
through the analysis of digital images of the plants (leaf area,
aerial biomass, height), and water consumption. These data allow
the calculation of indices useful for characterizing the responses
of plants to drought, e.g., transpiration rate per unit leaf area and
transpiration efficiency, leaf area ratio and net assimilation rate.

The objective of this work was to establish a framework
for assessing the efficiency of phenotyping (i.e., the ratio of
phenotyping value and cost) and applying it for selecting traits
measured in an automated phenotyping platform aimed at
predicting drought tolerance of field-grown soybean genotypes.
The drought tolerance ranking of a set of soybean genotypes
was first quantified in the GlyPh phenotyping platform, and
compared to that previously determined under greenhouse
and field conditions by Pardo et al. (2015). Second, different
traits putatively associated with drought tolerance during the
vegetative period were analyzed by estimating their phenotyping
efficiency under different criteria. One of these traits was selected
and further studied under different water deficit intensities.
Finally, it was validated using a set of independent genotypes
against field data obtained from a trial network and characterized
under a specific protocol of analysis, by comparing data obtained
in GlyPh against field data obtained from a trial network.

MATERIALS AND METHODS

Genetic Material
Three experiments were carried out using different sets of
soybean genotypes (Table 1). Experiment 1 included seven
genotypes: five commercial genotypes (N7001, Munasqa, A8000,
BR16, and TJ2049), one breeding line (XI73535RG), and one
plant introduction (PI416937). All genotypes except XI73535RG
had been previously evaluated by Pardo et al. (2015). Experiment
2 was carried out only with Munasqa and TJ2049, which were
selected from results obtained in Experiment 1 and Pardo et al.
(2015). Experiment 3 was carried out with a set of seven
commercial genotypes: Bio 6.50, NS4611, RA644, SRM4222,
SRM5200, SRM6001, and SRM6900, which were selected taking
into account (i) covering a wide range of tolerance to water deficit
in field conditions (ii) the availability of seeds (iii) the restrictions
of size of the Glyph platform. Munasqa and TJ2049 were also
included in this experiment as checks.

Culture Methods and Growth Conditions
The experiments were carried out using GlyPh, an automated
phenotyping platform developed for soybean which allows the
evaluation of genotypes under precisely controlled water deficit
conditions (described in detail in Pereyra-Irujo et al., 2012).
GlyPh allows the evaluation of up to 120 plants growing in
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individual pots; automatic watering and measurement routines
allow the simulation of multiple water regimes for each plant
individually, and the measurement of soil water content and
image capture for growth estimation. Plants were initially grown
in a growth chamber [16 h photoperiod, 300–600 µmol m−2

s−1 PAR, 24/19◦C temperature day/night, 1.9/1.18 KPa vapor
pressure deficit (VPD) day/night]. Four days after emergence
(DAE), plants were transferred to GlyPh. The platform is located
at the Balcarce Experimental Unit of the National Institute of
Agricultural Technology and the Faculty of Agricultural Sciences
(UNMdP) in an environmentally controlled glasshouse (S37◦46′,
W58◦18′), where heaters and coolers were set to start at 13◦C
and at 27◦C, respectively. Plants were grown in cylindrical PVC
pots (10 cm diameter, 35 cm high) filled with soil. This soil
was an A horizon from a Typic Argiudoll soil. Each pot was
sown with two seeds, and at the V1 stage (Fehr and Caviness,
1977) seedlings were thinned to one plant per pot. Inoculation
with Bradyrhizobium japonicum was not carried out to avoid
possibly confounding effects from biological nitrogen fixation or
from its response to water deficit (Serraj et al., 2001). Nutrient
solution (Hoagland solution at 100%) was applied by irrigation
every 4 days. 100% Hoagland’s solution contains 15mol m−3 of
NO3, a concentration higher than that required for inhibiting
nodulation (4mol m−3 of NO3−; Harper and Gibson, 1984;
Imsande, 1986). Nodules in the root system were not observed
along the experiment. Initial soil water content was measured
by oven-drying samples at 105◦C for 48 h and subsequently
controlled by automated weighing, as described in Pereyra-Irujo
et al. (2012). Pots were initially watered to a mean soil water
content of 0.26 g water g soil−1 which corresponds to a soil water
potential of −0.033 Mpa (the soil moisture retention curve was
previously characterized in the laboratory; INGEIS, CONICET-
UBA, Buenos Aires, Argentina), and maintained through daily
irrigations. Daily changes in pot weight were attributed to
changes in soil water status after correction for plant weight;
for this correction, two plants per treatment were harvested

and weighed weekly as described by Granier et al. (2006).
Photosynthetically active radiation, relative humidity, and air
temperature were measured every 15min, and averaged every
1 h, with dataloggers (Four Channel Datalogger, Cavadevices,
Buenos Aires, Argentina). Vapor pressure deficit was calculated
from temperature and relative humidity data. Mean values of
meteorological conditions during each experiment are presented
in Table 2 (Supplementary Figure 1).

In Experiment 1, between 12 and 17 plants of each genotype
were grown. All plants were initially grown under well-watered
conditions (WW, 0.26 g water g soil−1, −0.033 MPa), and at 33
DAE, a water deficit treatment (WD, 0.21 g water g soil−1,−0.21
MPa) was randomly imposed to half of the pots. Irrigation of
pots was stopped until the desired soil water content was reached.
Plants were harvested at 57 DAE.

In Experiment 2, 16 plants each of Munasqa and TJ2049,
the two genotypes with most contrasting behavior under WD
were grown. Plants were initially maintained under well-watered
conditions (0.26 g water g soil−1, −0.033 MPa). At 34 DAE,
four randomly-chosen plants of each genotype were subjected
to each of four soil water content treatments: 0.26 g water g
soil−1 (−0.033 MPa, WW), 0.21 g water g soil−1 (−0.21 MPa,
WD1), 0.19 g water g soil−1 (−0.65 MPa, WD2), and 0.18 g

TABLE 2 | Meteorological conditions during the three experiments in the

phenotyping platform GlyPh.

Experiment Day length

(h)

PAR

(µmol m−2 s−1)

T day/

night

(◦C)

RH

day/night

(%)

VPD day/

night (KPa)

1 14 387 28/17 57/85 1.63/0.31

2 14 292 21/12 43/56 1.42/0.70

3 14 239 24/17 46/59 1.74/0.78

Mean values of day length, incident solar radiation (PAR), temperature (T), relative humidity

(RH), and vapor pressure deficit (VPD), averaged for the whole experiment period.

TABLE 1 | Soybean genotypes used in the three experiments carried out in the GlyPh phenotyping platform.

Genotype Maturity group Origin Year of release Type of germplasm Growth habit Experiment

A8000RG VIII Argentina 1998 Cultivar Determinate 1

BR16 VII Brazil 1991 Cultivar Determinate 1

Munasqa VIII Argentina 2001 Cultivar Determinate 1, 2, 3

N7001 VII USA 2000 Cultivar Determinate 1

PI416937 V Japan 1977 Plant introduction Determinate 1

TJ2049 IV Argentina 2003 Cultivar Indeterminate 1, 2, 3

XI73535RG VII Argentina – Breeding line Determinate 1

Bio 6.50 VI Argentina 2011 Cultivar Indeterminate 3

NS 4611 IV Argentina 2012 Cultivar Indeterminate 3

RA 644 VI Argentina 2012 Cultivar Determinate 3

SRM 4222 IV Argentina 2012 Cultivar Indeterminate 3

SRM 5200 V Argentina 2012 Cultivar Indeterminate 3

SRM 6001 VI Argentina 2012 Cultivar Indeterminate 3

SRM 6900 VI Argentina 2012 Cultivar Indeterminate 3
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water g soil−1 (−0.94 MPa, WD3). The soil water content
corresponding to each water deficit treatment was reached at
different moments (34, 43, and 44 DAE for WD1, WD2, and
WD3, respectively). Although both genotypes reached the target
water deficit at different dates for the different water treatments
(average differences = 2.67 ± 1.3), this differences were not
significant (p = 0.32, 018, and 0.35 for WD1, WD2, and WD3,
respectively). Plants were harvested at 57 DAE.

In Experiment 3, between 8 and 12 plants of seven commercial
genotypes were grown (Table 1). Plants were grown under well-
watered conditions (0.26 g water g soil−1, −0.033 MPa) and
harvested at 27 DAE. In this experiment the WD treatment was
not included because the traits to be validated corresponded to
well-watered conditions.

Measurement of Traits
Several phenotypic traits were evaluated during the vegetative
stage with GlyPh (Table 3). These traits were defined by
the multiple combinations of the basic trait measured, the
measurement time, and the soil water content treatment.

In Experiment 1, leaf area (LA) was estimated by manually
measuring the width and length of all terminal leaflets, as in
Wiersma and Bailey (1975), at 13, 20, 27, 33, 38, and 44 DAE.
Shoot dry weight (SDW) was estimated as a function of leaf area
and plant age, the calibrated function used was as described in
Pereyra-Irujo et al. (2012):

SDW(g) = 0.1+ 0.00184∗LA(cm2)+ 0.0000926∗LA(cm2)
∗Plant age(days) (1)

In Experiments 2 and 3, LA was non-destructively estimated
from image data, obtained from automated imaging routines
carried out with GlyPh. Top and side view images were obtained
for each plant at 13, 27, 33, 38, 44, and 49 DAE in Experiment
2, and at 13, 20, and 27 DAE in Experiment 3. Images were
segmented and the number of pixels corresponding to plant
material were counted using the ImageJ image analysis software
(Abramoff et al., 2004). Data were converted to cm2 using the
corresponding calibration factor for each camera and summed to
obtain the projected shoot area as in Pereyra-Irujo et al. (2012).
Projected shoot area was highly correlated to manually measured
leaf area (R2 = 0.98, RMSE = 15.6 cm2, data not shown). Shoot
dry weight was estimated by using Equation (1).

At the end of Experiments 1 and 2 (57 DAE), plants were
harvested, and separated into main stem and branches. Dry
weight of these shoot fractions was determined after drying at
50◦C to constant weight. Branches and nodes were counted.
Allometric ratios were calculated by dividing the mass of leaves
and stems (either for the whole plant or only the branches)
by final shoot dry mass (LMR, SMR, LMRb, and SMRb,
respectively).

Total transpired water was calculated as the sum of daily
evapotranspiration minus soil evaporation determined through
the automated daily weighing of the pots in GlyPh. Three pots
without plants, filled with the same soil, were placed in the
platform to measure direct water evaporation from the soil.
Transpiration efficiency (TE) was estimated as the ratio between

TABLE 3 | Phenotypic traits measured in Experiment 1.

Category Trait Measurement

time (DAE)

Morphology Leaf dry weight 57

Stem dry weight 57

Leaf dry weight of branches 57

Stem dry weight of branches 57

Leaf area 13, 20, 27, 33,

38, 44, 57

Shoot dry weight 13, 20, 27, 33,

38, 44, 57

Number of nodes 57

Number of branches 57

Leaf area ratio (LAR) 33, 38, 44, 57

Specific leaf area (SLA) 57

Biomass partitioning Leaf mass ratio (LMR) 57

Stem mass ratio (SMR) 57

Leaf mass ratio of branches (LMRb) 57

Stem mass ratio of branches (SMRb) 57

Growth Relative expansion rate (RER) 33, 38, 44, 57

Relative growth rate during WS (RGRWS) 57

Net assimilation rate (NAR) 57

Water use Total transpired water 57

Transpiration (T) Daily

Transpired water during WS 57

Transpiration efficiency (TE) 13, 20, 27, 33,

38, 44, 57

Transpiration rate at break Point 54

Transpiration rate at max VPD 54

Transpiration rate (TR) 50, 51, 52, 53,

54

Slope1* 54

Slope2* 54

Slope2:Slope1* 54

Intercept 1* 54

Intercept 2* 54

Leaf-to-Air temperature difference 17, 18, 24, 37,

41, 42, 43, 46,

49, 50, 52, 53,

57

Leaf temperature 17, 18, 24, 37,

41, 42, 43, 46,

49, 50, 52, 53,

57

Stomatal conductance (gs) 17, 24, 37, 46

*Slopes and intercepts of a two-segment linear regression representing the response of

TR to VPD.

shoot dry weight and the total transpired water accumulated from
0 DAE. TE was determined at 13, 20, 27, 33, 38, 44, and 57 DAE
in Experiment 1, at 13, 27, 33, 38, 44, and 57 DAE in Experiment
2 and at 13, 20, and 27 DAE in Experiment 3.

In Experiment 1, other water use, morphology and growth
traits were also measured. Specific leaf area (SLA) was calculated
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as the ratio between plant leaf area and dry mass of leaves; Leaf
area ratio (LAR) was calculated as the ratio between leaf area and
the shoot dry weight.

Relative expansion rate (RER) was calculated as:

RER =

(

ln LA2 − ln LA1

t2 − t1

)

(2)

Where LA, leaf area; t, time; subscripts 1 and 2 correspond to
successive collection. Net assimilation rate (NAR) was calculated
from the following expression:

NAR =

(

SDW2 − SDW1

t2 − t1

)

÷

(

ln LA2 − ln LA1

LA2 − LA1

)

(3)

Where SDW, shoot dry weight, LA, leaf area; t, time; subscripts 1
and 2 correspond to successive collection.

The response of transpiration rate (TR, mg water m−2 s−1)
to air vapor pressure deficit (VPD) was measured. During 5
consecutive days, plants in both well-watered and water deficit
treatments were sequentially weighed at regular time intervals
between 11:00 and 14:00 h, with VPD ranging between 1.2 and
2.98 KPa. Transpiration rate for each genotype was regressed
against VPD. A two-segment linear regression (Fletcher et al.,
2007) was applied to the data using GraphPad Prism 5 (GraphPad
Software Inc., San Diego, CA)1 for each genotype:

If VPD < BP, TR = I1 + S1(VPD) (4)

If VPD ≥ BP, TR = I2 + S2(VPD) (5)

where BP is the breakpoint between the two linear segments.
A common BP was established for all genotypes (2.47 ± 0.14
KPa), as the average BP from previously adjusted two-segment
linear regression for each genotype. Parameters of two segment
linear regressions were estimated for each plant of each genotype:
intercept 1 (I1), intercept 2 (I2), slope 1 (S1), slope 2 (S2), and the
change in slope at high VPD (S2:S1 ratio). In addition, the TR at
maximumVPD (TRmaxVPD) and TR at the breaking point (TRBP)
were calculated for each plant of each genotype.

Stomatal conductance (gs) was measured using a porometer
(Decagon SC-1, Decagon Devices, Pullman,WA). Measurements
were taken on the abaxial side of the youngest fully expanded leaf
of the main stem. In Experiment 1 gs was measured at 17, 24,
37, and 46 DAE. Leaf temperature was measured in all plants at
17, 18, 24, 37, 41–43, 46, 49, and 50–53 DAE using an infrared
thermometer (Omega model OS-FS, Stamford, CT). Thermal
measurements were performed at midday on the adaxial side of
two fully expanded leaves from the top of the main stem, and
averaged. The difference between leaf and air temperature was
also calculated (Idso, 1982).

For all traits measured both under WW and WD conditions,
the drought susceptibility index (DSI) was calculated as in Du
et al. (2009).

DSI = (1−
Ywd

Yww
)/(1−

Xwd

Xww
) (6)

1Graphpad Software Inc. San Diego, CA. Available online at: http://www.
graphpad.com/

where Ywd and Yww are trait values for a given genotype, and Xwd

and Xww are the means of all genotypes, under WD and WW
conditions. In Experiments 1 and 2, the DSI for final shoot dry
weight and leaf area was used as a measurement of (the inverse
of) drought tolerance of each genotype for subsequent analyses.

Evaluation of Phenotyping Efficiency and
Selection of Traits
In order to identify those traits with the highest phenotyping
efficiency from data obtained in Experiment 1, four criteria were
considered:

i) The regression between each trait and the target trait (the
trait intended to be predicted, the DSI for final dry weight
in this case), discarding those traits with non-significant
relationships (p > 0.05).

ii) The ratio between the determination coefficient of the
relationship between the trait and the target trait and the
relative phenotyping costs (the ratio of the costs of the
trait and the target trait), as in Medugorac and Soller
(2001), discarding those with a ratio lower than 2 (assuming
the preference of an indirect trait should be justified by
being largely advantageous). Assuming the time and space
allocation in a phenotyping platform to be the main cost,
the phenotyping cost of each trait was approximated by
calculating the product of the number of replicates used and
the time required to reach the moment of that measurement
(plant·day).

iii) Earliness (in days after emergence) was used as an additional
selection criteria (independently of cost), since it implies an
inherent advantage in phenotyping throughput. The earlier
traits among those that fulfilled the previous criteria were
selected.

iv) The ability to detect differences between genotypes assessed
through the repeatability (w2) (Fehr, 1987), for each trait. The
repeatability of a given trait was considered acceptable when
w2 was similar or higher than 0.5.

Before onset of drought treatment, w2 was calculated as:

w2
=

σ 2
g

σ 2
g + σ 2

e�r
(7)

where σ 2
g is the genotypic variance σ 2

e environmental variance
and r is the number of replicated plants. After onset of drought
treatment, w2 was calculated as:

w2
=

σ 2
g

σ 2
g +σ 2

e�rt+
σ 2
ge�t

(8)

where σ 2
ge is the genotype × environment variance, and t is the

number of environments (i.e., soil water content treatments).
Variance components were estimated by residual maximum
likelihood (REML) procedure in SAS (SAS, 2017).
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Validation of the Selected Trait Against
Field Trial Data of Independent Genotypes
A database was created from published data obtained from
Argentina’s national trial network of soybean cultivars (Red
de Ensayos de Cultivares de Soja, RECSO, INTA, http://inta.
gob.ar). This network extends from 23 to 38◦S and from 58
to 65◦W, covering a wide range of environmental conditions
during the soybean growing season, and a wide range of soil
types varying from sandy loam to clay loam (Panigatti, 2010).
The database included data obtained from 80 environments
(Supplementary Table 2), as the result of combining years
(2012–2016) and locations, and a total of 282 cultivars. During
the crop cycle, rainfall was between 212 and 1,178mm and
average daily temperature between 17 to 24◦C. Input data were
genotype, sowing, emergence and physiological maturity dates,
monthly rainfall, and grain yield.

In order to evaluate the response of cultivars to water
availability, environments where yield was mainly limited by
water were identified, based on the relationship between grain
yield and water input. For each environment, water input was
quantified as the average total rainfall, from 60 days before
sowing until physiological maturity and yield as the average yield
of the genotypes sowed in this trial. The model proposed by
Bouman and Toung (2001) was used:

Yield = a(1− e(b(water input−c))) (9)

Where a is the attainable yield, b the initial factor-use efficiency,
and c the theoretical minimum amount of the input factor needed
for any yield at all. The model was fit iteratively so that 95%
of the environments were below the curve. The environments
with an average yield between −20 and +20% of this curve were
considered as “water-limited,” while the rest of the environments
were assumed to have been limited by other factors, and not
considered in further analyses.

The tolerance to water deficit of each genotype was quantified
using two approaches. First, selected environments were further
classified as wet, intermediate and dry environments. The cut off
points were chosen according to the amount of rainfall during
the period between 3 months and 1 month before harvest;
dry years were those with rainfall of <175mm during the
critical period, and wet years period were those with at least
double the rainfall, as in Pardo et al. (2015). The DSI was
calculated (using Equation 6) for each genotype considering its
average yield in the dry and wet environments. The second
approach included: (i) calculating, for each genotypes, the
difference between its actual yield and the average yield of
each environment (1Y) was calculated, and (ii) regressing the
1Y values against water input; the slope of this relationship
was used then as an estimate of tolerance to water deficit
(genotypes with positive slope were considered sensitive, while
those with negative slope were considered tolerant). Based
on these data, seven genotypes were chosen considering (i)
covering a wide range of tolerance to water deficit in field
conditions, (ii) the availability of seeds, and (iii) the restrictions
of size of the GlyPh platform. These genotypes were grown
in Experiment 3, and the trait previously selected from in

Experiments 1 and 2 was measured for its validation against field
data.

Data Analysis
The data obtained from Experiments 1 and 2 were analyzed
using the PROC MIXED procedure in SAS (SAS Institute
Inc., Cary, NC). Water regimes and blocks were considered
as fixed effects, and genotypes and replicates were considered
as random effects. Data from Experiment 3 was analyzed by
analysis of variance (ANOVA). Differences between genotypes
means were analyzed with Tukey-Kramer test (P < 0.05).
DSI for SDW and LA values from Experiment 1 were used
to compare the tolerance to DSI from yield in greenhouse
experiments and field trials reported by Pardo et al. (2015)
(p < 0.05). In Experiment 3, the most efficient trait was
validated by regression against DSI for yield and the slope of 1Y
(p < 0.05).

RESULTS

Drought Susceptibility Index for Shoot Dry
Weight During the Vegetative Period
Correlated With Published DSI for Yield
Shoot dry weight and leaf area at 57 DAE differed significantly
between genotypes in Experiment 1 (p < 0.05 and p < 0.0001,
respectively, Figure 1). Under water deficit, SDW decreased
between 29 and 43% (for Munasqa and Tj2049, respectively) and
LA between 39 and 50% (Munasqa and Tj2049, respectively).

The DSI for both traits, calculated for Experiments 1 and
2 are presented in Figure 2. The DSI ranged from 0.82 to
1.21 in Experiment 1 and from 0.92 to 1.13 in Experiment 2.
The DSI for final SDW and SDW at 57 DAE under WW
were not associated with SDW at 57 DAE under WW
conditions (p = 0.39), while a negative association with SDW
at 57 DAE under WD condition was found (R2 = 0.63,
p= 0.03).

The DSI for final SDW correlated with yield DSIs found
by Pardo et al. (2015) in greenhouse conditions (Experiments
2 and 3 from Pardo et al., 2015; r = 0.81, p < 0.05 and
r = 0.97, p < 0.05, respectively) and in field trials (r = 0.99,
p < 0.10). Similar results were found using the DSI for final
LA. In Experiment 1, TJ2049 showed the highest DSI for both
SDW and LA, while Munasqa had the lowest index for both
traits (Figures 2A,B). These genotypes showed the same behavior
when their DSI for SDW and LA were tested across different
levels of water deficit (insets in Figures 2A,B). Based on these
results, these two contrasting genotypes were further analyzed in
Experiment 2.

Selection of the Most Efficient Trait
In Experiment 1, several traits were evaluated with GlyPh during
the vegetative stage, from 13 to 57 DAE. Four different selection
criteria were used in order to select those traits with the highest
phenotyping efficiency. The first criterion was the significance of
regressions between each evaluated trait and the DSI for final
biomass (the target trait in this case), leading to the selection
of 64 trait per moment per treatment combinations (from a
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FIGURE 1 | Shoot dry weight (A,B) and leaf area (C,D) at 57 days after emergence of the Experiment 1 for the seven soybean genotypes under well-watered (left)

and water deficit conditions (right). Vertical bars represent mean values, error bars represent standard errors.

total of 358, Figure 3, Supplementary Table 1). These traits
were subsequently evaluated with the second criterion, the ratio
between the determination coefficient of the relationship between
each trait and the target trait, and the relative phenotyping cost.
A total of 13 trait per moment per treatment combinations
presented a ratio ≥2 (Figure 3), with traits corresponding to the
morphology (LA, SDW, and LAR) and water use (T, TE, TR,
and gs).

The third selection criterion used was earliness, finding that
measurement time of the traits so far selected ranged between
13 and 57 DAE, with two of them measured before imposition
of water treatments (TE at 13 DAE and gs at 24 DAE). When
evaluated according to the last selection criterion, it was found
that gs presented a low repeatability (0.30, Figure 4), while that

of TE was higher, not only at 13 DAE (0.70), but also at 38 and 44
DAE (0.86 for both). According to results of applying the four
criteria, TE at 13 DAE was selected as the most efficient trait
and subjected to further analysis and validation against field data
using independent genotypes.

Characterization of the Selected Trait
In Experiment 1, TE at 13 DAE showed an inverse relationship
with the DSI for final SDW (Figure 5A). The drought-
tolerant genotype (Munasqa) showed the lowest DSI value
and the highest TE, while the drought-susceptible genotype
(TJ2049) showed opposite values. In Experiment 2, the
drought-tolerant genotype Munasqa displayed significantly
higher TE than the drought-sensitive genotype, TJ2049 at
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FIGURE 2 | Drought susceptibility index (DSI) for: (A) shoot dry weight and (B) leaf area at 57 days after emergence (DAE) in Experiment 1. Insets: DSI for shoot dry

weight at 57 DAE for contrasting genotypes (Tj2049, black bars and Munasqa, gray bars) under three soil water deficits (−0.21, −0.65, and −0.94 MPa) in

Experiment 2.

FIGURE 3 | Determination coefficient (R2) of the relationship between drought

susceptibility index (DSI) for shoot dry weight at 57 DAE and a given trait vs.

relative phenotyping cost (calculated as the phenotyping cost of each trait

divided by the cost of DSI for shoot dry weight). Horizontal dash line indicates

the threshold for significant regressions. Diagonal dash line indicates the

threshold of the ratio of the determination coefficient of the relationship of DSI

for shoot dry weight to the relative phenotyping cost. White section shows the

significant and selectable relationships (p < 0.05), the dark gray section of the

figure exhibit the non-significant relationships (p > 0.05) while the light gray

area displays the traits discarded for having a ratio between the determination

coefficient and the relative phenotyping cost, lower than 2. Data from

Experiment 1.

13, 27, and 33 DAE in plants under WW conditions
(Figure 5B).

Validation of the Selected Trait Against
Data From Field Trials for Independent
Genotypes
To validate the ability of the trait TE at 13 DAE for predicting
the tolerance of water deficit in independent genotypes, a
group of seven genotypes was selected based on field yield
data. A relationship between grain yield and water input
for 80 field environments was established, and 36 water-
limited environments were selected (Figure 6). The selected
environments were in the range of 24 to 38◦S and 58 to 64◦W.
Water input during the whole cycle was in the range of 338–
1,178mm and the average yields per environment varied between
2,478 and 5,440 kg ha−1. According to Pardo et al. (2015), these
environments were then classified as dry (n = 14), intermediate
(n = 16), and wet (n = 6). Mean yield in the dry environments
ranged between 3,387 and 3,980Kg ha−1 for the seven genotypes
evaluated, whereas the average yield under wet conditions was
between 4,049 and 5,103Kg ha−1 (Supplementary Figure 2).
The DSI calculated for each genotype considering its average
yield in the dry and wet environments ranged from −0.70 to
2.48, and the slope of 1Y (see section Validation of the Selected
Trait Against Field Trial Data of Independent Genotypes) ranged
from−6.67 to 3.17. A negative association between DSI for yield
and mean yield in the dry environments was found (r = −0.80,
p < 0.0001), while a positive correlation was found with mean
yield in the wet environments (r = 0.30, p = 0.00004), meaning
that DSI for yield is mainly explained by the yield under
drought.

Seven genotypes were selected based on this data. DSI
values for yield ranged from 0.49 to 1.05, being minimum
for SRM6900 and maximum for SRM4222, and values for the
slope of 1Y ranged from −1.9 to 0.6 (Figure 7A). The value
of TE at 13 DAE was higher for Munasqa than for TJ2049,
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FIGURE 4 | Repeatability (upper bar graphs) and time of measurement (DAE: days after emergence, down timeline) of the traits selected by the ability to predict

drought tolerance of a given genotype. Horizontal dark gray bar indicates the length of the water deficit treatment. TE, transpiration efficiency; gs, stomatal

conductance; T, transpiration; SDW, shoot dry weight; LAR, leaf area ratio; TR, transpiration rate; WW and WD, well watered and water deficit treatments respectively.

FIGURE 5 | (A) Relationship between Drought Susceptibility Index (DSI) for final shoot dry weight and transpiration efficiency at 13 days after emergence (DAE) under

well watered conditions in the Experiment 1.(B) Transpiration efficiency for Munasqa (gray columns) and Tj2049 (black columns) contrasting genotypes in the

well-watered treatment at 13, 27, and 33 DAE in the Experiment 2. Bars represent mean values, error bars represent standard errors. Significant differences (p < 0.05

and p < 0.01) are represented as * and **, respectively.

the contrasting genotypes identified in Experiments 1 and 2
(inset in Figure 7B). For the seven genotypes selected from
the field trial network, TE at 13 DAE ranged from 3.46 to
3.99 g Kg−1 (Figure 7B), and was negatively correlated with
the DSI for yield (R2 = 0.77, Figure 7C) and with the slope
of 1Y (R2 = 0.67, inset in Figure 7C). Furthermore, the
DSI for yield and the slope of 1Y were also significantly
correlated with TE at 21 (R2 = 0.68 and 0.70, respectively)
and 28 DAE (R2 = 0.69 and 0.70, respectively, data not
shown).

DISCUSSION

Given that greenhouse phenotyping aimed at predicting field
performance is usually questioned, in this work we performed
two different validations. First, the ranking of the most
contrasting genotypes from previously published field data was
found to be conserved under different levels of water deficits
applied using GlyPh. While Pardo et al. (2015) compared the
sensitivity of yield to drought between greenhouse and field
conditions, our results show that a trait measured in the
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FIGURE 6 | Relationship between average grain yield and water input during the whole crop cycle for 80 environments evaluated from the Argentina’s national trial

network of soybean cultivars (RECSO) database. The curve with solid line represents adjusted yield (Equation 9) and curves of dotted lines represents ±20% of the

potential yield. Each data point represents one of the 80 environments. Black data points represent water limited environments while gray data points represent

environments with limitations to yield besides water (these environments where excluded from the study).

vegetative stage could also be valid for predicting the DSI of
yield. Since this analysis was based on a limited number of
genotypes, and the validity of the results could be restricted by the
variability in this sample, the selected trait was validated against
independent field data and a different set of genotypes. To the
best of our knowledge, only the work of Chapuis et al. (2012) in
corn had previously found a correlation between the sensitivity
to water deficit of grain number determined in a network of
field trials and the sensitivity of a vegetative trait measured in
a phenotyping platform. Other potentially valuable traits could
have been also validated, especially those included in Figure 4.
These traits were either related to the amount of leaf area, aerial
biomass, and the ratio between them (LAR) under water deficit,
and the transpiration rate in the late stages of the experiment.
The stomatal conductance was also an interesting candidate trait,
but showed a lower repeatability. TE at 13 DAE was chosen as
an ideal trait for validation, being easy to measure and likely
encompassing the effects of biomass accumulation and stomatal
behavior, but further studies need not be limited to only one trait.

Field trial networks are carried out in many countries, and
they provide simple and accessible data. This kind of data
source could avoid the need of experimental work to obtain data
for validation in phenomic studies. In this work we propose
a technique to identify those environments which are limited
mainly by the amount of available water, based on the equation
proposed by Bouman and Toung (2001), but which could be
similarly applied to other factors for which data were available
(e.g., nutrients). The data analysis was simple involving the use

of the envelope curve (de Wit, 1992), the critical period for
yield (Fischer, 1975; Jiang and Egli, 1993), a rule of thumb for
identifying dry and wet environments (Pardo et al., 2015), and
the susceptibility index DSI to quantifying water deficit tolerance
(Du et al., 2009). Two different methods were used to calculate
the sensitivity of each genotype to water availability: one based
on the slope of relative yields against water availability, and the
other based on a DSI calculated using contrasting environments.
Both yielded similar results, but the latter showed a slightly higher
correlation to greenhouse data. The applied procedure allowed
identifying genotypes with a wide range of tolerance to water
deficit. The data set for validating TE at 13 DAE was completed
by measuring the trait in GlyPh in Experiment 3, automatically
determining the shoot dry weight by imaging and total transpired
water by weighing. The applied procedure was successful for
validating the selected trait. Thus, the use of widely available data
sources and combining them with classical approaches of data
analysis in agronomy, ecophysiology and plant breeding with
precise measurement of traits available in most of greenhouse
automated phenotyping platforms could be useful to answers
questions not currently unraveled in phenomics.

The selected trait, TE at 13 DAE, was found to be correlated
with field data despite the wide variation of environmental
conditions in the trial network (e.g., temperature, soil type),
suggesting a low effect of the interaction between water
availability and other environmental factors on water deficit
tolerance in the studied genotypes. This trait correlated with
the response of yield to water availability, even though it
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FIGURE 7 | (A) Values of drought susceptibility index (DSI) for yield (data from

RECSO database), (B) transpiration efficiency at 13 days after emergence

(DAE) for the seven genotypes. Inset: Transpiration efficiency for Munasqa and

(Continued)

FIGURE 7 | Tj2049 contrasting genotypes. Bars represent mean values; error

bars represent the standard error. Data from Experiment 3. (C) Relationship

between DSI for yield and transpiration efficiency at 13 DAE. Inset: relationship

between Slope of 1Y and transpiration efficiency at 13 DAE. 1Y is the

difference between actual yield and the average yield of each environment, TE

is the transpiration efficiency at 13 DAE.

was measured early in the crop cycle and under well-watered
conditions, in agreement with Earl (2002) and Pereyra-Irujo et al.
(2012) which found TE in soybean to be a constitutive trait.

In the work of Chapuis et al. (2012) in corn, the most
probable mechanism accounting for the correlation between
results obtained in a phenotyping platform and in the field was
that leaf growth, silk growth and the anthesis–silking interval
share part of their genetic determinism (Welcker et al., 2007).
Our results suggest that high TE could be a mechanism that
could be underlying drought tolerance under the field conditions
explored. Tardieu (2012) considers that high TE is only useful
to tolerate severe terminal water stress. In the database used, the
“dry” environments received in average 607± 53mm, enough to
yield near 3,864 kg ha−1, with only 13% of environments with
rainfall lower than 200mm from flowering to harvest. Under
these conditions it is unlikely that crops experienced severe
terminal water stress, which would constitute evidence against
the advantage of a high TE. More research should be carried out
to elucidate this.

Early measurement of TE is suitable for high-throughput
selection, since it is feasible with most available phenotyping
platforms, including those available as a commercial service.
A convenient alternative to be considered is carbon isotope
discrimination (CID), which is used frequently in phenotyping
as an estimator of TE (Tardieu et al., 2011; Masuka et al., 2012).
While CID is reliably correlated to intrinsic TE measured at leaf
level (i.e., the ratio of photosynthesis to stomatal conductance), it
has frequently been shown to be only poorly correlated to whole-
plant TE (i.e., the ratio of biomass to transpiration in a plant) in
different species (e.g., Hammer et al., 1997; Krishnamurthy et al.,
2007; Turner et al., 2007; Devi et al., 2011; Adiredjo et al., 2014;
Velázquez et al., 2017). More research should be performed to
elucidate whether CID could be used as an alternative to whole-
plant biomass and transpiration measurements in soybean.

The conditions proposed by Edmeades et al. (1998) for a
suitable “secondary” trait for breeding include having a positive
correlation to yield. Drought tolerance in the greenhouse and
in the field were used as the target traits for secondary trait
selection and validation, respectively. In field data, a positive
correlation was found between drought tolerance and yield in
water-limited environments (i.e., negative correlation between
DSI and yield). When looking at only the 7 cultivars used in
Experiment 3, however, this correlation is not evident (r = 0.08,
p = 0.86). Likewise, TE at 13 DAE is also not correlated with
yield under dry conditions (r = −0.29, p = 0.52). The whole
dataset also showed a negative correlation between drought
tolerance and yield in environments with high water availability.
These results suggest that selecting for high TE to improve
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DSI of yield could be detrimental to potential yield; performing
selection based on both high TE and high potential yield could
help overcome this limitation. As suggested by Blum (2009),
besides selecting for traits that improve water use efficiency
(such as TE), final yield and traits that improve water uptake
should also be taken into account in a breeding program
aiming at improving yield and yield stability in water-limited
environments.

Despite an initial trend in plant phenomics toward
increasingly sophisticated platforms, in recent years efforts
have been made toward lowering the initial cost of hardware
(e.g., Pereyra-Irujo et al., 2012; Minervini et al., 2017) and
the development of open-source software (e.g., Hartmann
et al., 2011; Klukas et al., 2014). But not only initial costs are
a limitation; operational costs of these platforms can also be
significant, especially in relation to the value of the results
obtained. To the best of our knowledge, this is the first report in
the literature of an analysis framework for assessing the efficiency
of plant phenotyping in an automated platform. The framework
used in this work could be applied for selecting the most efficient
traits not only when using a phenotyping platform located in the
greenhouse but also for phenotyping in other situations (e.g., in
the field by applying automated or traditional phenotyping). In
this work, it was assumed that the time and space allocation in a
phenotyping platform constitute the main cost of phenotyping,
but other factors could be considered (e.g., the cost of a specific
measurement), as well as the threshold values for each criteria
(e.g., repeatability).

CONCLUSION

The framework of analysis used in this work proved to be
useful for selecting the most efficient trait for phenotyping using
an automated phenotyping platform, in order to reduce costs,
time and effort. Transpiration efficiency under well-watered
conditions was found to be an early and efficient trait that
correlated to water deficit tolerance both under greenhouse and
field conditions, and could be potentially useful for developing
soybean genotypes tolerant to water deficit using automated
phenotyping techniques.

AUTHOR CONTRIBUTIONS

LA: coordinated the whole writing of the manuscript; GP and
LA: conceived and designed the experiments; LP: performed
the experiments, measurements, and data analysis; LP and LA:
discussed the results; LP, LA, and GP: wrote the manuscript; AB
and IE: performed leaf area and transpirations measurements
during Experiment 3.

ACKNOWLEDGMENTS

The authors thank Luis Mendez for technical support during
the experiments and Adriana Cano for data analysis support with
SAS. This work was supported by grants of Ministerio de Ciencia
Tecnología e Innovación Productiva, Plataforma BiotecSur UE
127119 and Instituto Nacional de Tecnología Agropecuaria
PNCYO-1127042. LP andAB hold a scholarship fromCONICET,
the National Research Council of Argentina, LA and GP are
members of CONICET and IE is member of INTA, the National
Institute of Agricultural Technology. This work is part of a thesis
submitted by LP in partial fulfillment for the requirements for a
Doctor’s degree at Facultad de Ciencias Aagrarias, Universidad
Nacional de Mar del Plata.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2018.
00587/full#supplementary-material

Supplementary Table 1 | Phenotypic traits evaluated during the Experiment 1

with GlyPh and four criteria considered for the evaluation of phenotyping efficiency.

Supplementary Table 2 | Characteristics of the 80 environments evaluated from

the Argentinean National Trial Network of Soybean cultivars (RECSO) database.

Supplementary Figure 1 | Daily course of maximum and minimum values of

temperature (◦C), relative humidity (RH, %) and irradiation∗∗ (µmol/m²s ∗10) for

experiment 1 (A), experiment 2 (B), and experiment 3 (C) in greenhouse during

57, 50, and 28 days after emergence (DAE), respectively. ∗∗Minimum values for

irradiation were near zero for all experiments (data not shown).

Supplementary Figure 2 | Average yield of the seven genotypes evaluated in dry

(A) and wet (B) conditions in the field.

REFERENCES

Abramoff, M. D., Magalhaes, P. J., and Ram, S. J. (2004). Image processing with
ImageJ. Biophotonics Int. 11, 36–42.

Adiredjo, A. L., Navaud, O., Lamaze, T., and Grieu, P. (2014). Leaf carbon isotope
discrimination as an accurate indicator of water-use efficiency in sunflower
genotypes subjected to five stable soil water contents. J. Agron. Crop Sci. 200,
416–424. doi: 10.1111/jac.12079

Araus, J. L., and Cairns, J. E. (2014). Field high-throughput phenotyping:
the new crop breeding frontier. Trends Plant Sci. 19, 52–61.
doi: 10.1016/j.tplants.2013.09.008

Blum, A. (2009). Effective use of water (EUW) and not water-use efficiency (WUE)
is the target of crop yield improvement under drought stress. Field Crops Res.

112, 119–123. doi: 10.1016/j.fcr.2009.03.009

Bouman, B. A. M., and Toung, T. P. (2001). Field water management to save water
and increase its productivity in irrigated lowland rice. Agric. Water Manage. 49,
11–30. doi: 10.1016/S0378-3774(00)00128-1

Brisson, N., Gate, P., Gouache, D., Charmet, G., Oury, F.-X., and Huard, F.
(2010). Why are wheat yields stagnating in Europe? A comprehensive data
analysis for France. Field Crops Res. 119, 201–212. doi: 10.1016/j.fcr.2010.
07.012

Chapuis, R., Delluc, C., Debeuf, R., Tardieu, F., andWelcker, C. (2012). Resiliences
to water deficit in a phenotyping platform and in the field: how related are they
in maize? Eur.J. Agron. 42, 59–67. doi: 10.1016/j.eja.2011.12.006

Chen, D., Neumann, K., Friedel, S., Kilian, B., Chen, M., Altmann, T., et al. (2014).
Dissecting the phenotypic components of crop plant growth and drought
responses based on high-throughput image analysis. Plant Cell 26, 4636–4655.
doi: 10.1105/tpc.114.129601

Frontiers in Plant Science | www.frontiersin.org 12 May 2018 | Volume 9 | Article 587

https://www.frontiersin.org/articles/10.3389/fpls.2018.00587/full#supplementary-material
https://doi.org/10.1111/jac.12079
https://doi.org/10.1016/j.tplants.2013.09.008
https://doi.org/10.1016/j.fcr.2009.03.009
https://doi.org/10.1016/S0378-3774(00)00128-1
https://doi.org/10.1016/j.fcr.2010.07.012
https://doi.org/10.1016/j.eja.2011.12.006
https://doi.org/10.1105/tpc.114.129601
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Peirone et al. Efficiency of Drought Tolerance Phenotyping

Devi, M., Bhatnagar-Mathur, P., Sharma, K., Serraj, R., Anwar, Y., and Vadez, V.
(2011). Relationships between transpiration efficiency and its surrogate traits
in the rd29A:DREB1A transgenic lines of groundnut. J. Agron. Crop Sci. 197,
272–283. doi: 10.1111/j.1439-037X.2011.00464.x

deWit, C. T. (1992). Resource use efficiency in agriculture.Agric. Syst. 40, 125–151.
doi: 10.1016/0308-521X(92)90018-J

Du, W., Wang, M., Fu, S., and Yu, D. J. (2009). Mapping QTLs for
seed yield and drought susceptiblity index in soybean (Glycine max

L.) across different environments. J. Genet. Genomics 36, 721–731.
doi: 10.1016/S1673-8527(08)60165-4

Earl, H. J. (2002). Stomatal and non-stomatal restrictions to carbon assimilation in
soybean (Glycine max L.) lines differing in water use efficiency. Environ. Exp.
Bot. 48, 237–246. doi: 10.1016/S0098-8472(02)00041-2

Edmeades, G. O., Bolanños, J., Bänziger, M., Ribaut, J. M., White, J. W.,
et al. (1998). “Improving crop yields under water deficits in the tropics,” in
Proceedings of Second International Crop Science Congress Crop, Productivity

and Sustainability—Shaping the Future, eds V. L. Chopra, R. B. Singh, and A.
Varma (New Delhi: Oxford; IBH), 437–451.

Fehr, W. R. (1987). Principles of cultivar development: Theory and Technique, Vol.
1. New York, NY: Macmillan Publ. Co.

Fehr, W. R., and Caviness, C. E. (1977). Stages of Soybean Development. Special
Report 87. Ames, IA: Cooperative Extension Service, Agriculture and Home
Economics Exp. Stn. Iowa State University, 929–931.

Fischer, R. A. (1975). Yield potential in a dwarf spring
wheat and the effect of shading. Crop Sci. 15, 607–613.
doi: 10.2135/cropsci1975.0011183X001500050002x

Fletcher, A. L., Sinclair, T. R., and Allen, L. H. Jr. (2007). Transpiration responses to
vapor pressure deficit in well-watered ‘slow-wilting’ and commercial soybean.
Environ. Exp. Bot. 61, 145–151. doi: 10.1016/j.envexpbot.2007.05.004

Granier, C., Aguirrezabal, L. A. N., Chenu, K., Cookson, S. J., Dauzat, M.,
Hamard, P., et al. (2006). PHENOPSIS, an automated platform for reproducible
phenotyping of plant responses to soil water deficit in Arabidopsis thaliana
permitted the identification of an accession with low sensitivity to soil water
deficit. New Phytol. 169, 623–635. doi: 10.1111/j.1469-8137.2005.01609.x

Hall, A., and Richards, R. (2013). Prognosis for genetic improvement of yield
potential and water-limited yield of major grain crops. Field Crops Res. 143,
18–33. doi: 10.1016/j.fcr.2012.05.014

Hallauer, A. R., Carena, M. J., and Filho, J. B. M. (eds.). (2010). “Selection: theory,”
in Quantitative Genetics in Maize Breeding, 3rd Edn (New York, NY: Springer),
223–285.

Hammer, G., Ferquhar, G., and Broad, I. (1997). On the extent of genetic variation
for transpiration efficiency in sorghum. Aust. J. Agric. Res. 48, 649–655.
doi: 10.1071/A96111

Harper, J. E., and Gibson, A. H. (1984). Differential nodulation
tolerance to nitrate among legume species. Crop Sci. 24, 797–801.
doi: 10.2135/cropsci1984.0011183X002400040040x

Hartmann, A., Czauderna, T., Hoffmann, R., Stein, N., and Schreiber, F. (2011).
HTPheno: an image analysis pipeline for high-throughput plant phenotyping.
BMC Bioinformatics 12:148. doi: 10.1186/1471-2105-12-148

Hufstetler, E. V., Boerma, H. R., Carter, T. E., and Earl, H. G. (2007). Genotypic
variation for three physiological traits affecting drought tolerance in soybean.
Crop Sci. 47, 25–35. doi: 10.2135/cropsci2006.04.0243

Idso, S. B. (1982). Non-water-stressed baselines: a key to measuring
and interpreting plant water stress. Agric. Meteorol. 27, 59–70.
doi: 10.1016/0002-1571(82)90020-6

Imsande, J. (1986). Inhibition of nodule development in soybean by nitrate or
reduced nitrogen. J. Exp. Bot. 37, 348–355. doi: 10.1093/jxb/37.3.348

Jiang, H., and Egli, D. B., (1993). Shade induced changes in flower and pod
number and flower and fruit abscission in soybean. Agron. J. 85, 221–225.
doi: 10.2134/agronj1993.00021962008500020011x

Junker, A., Muraya, M. M., Weigelt-Fischer, K., Arana-Ceballos, F., Klukas,
C., Melchinger, A. E., et al. (2015). Optimizing experimental procedures
for quantitative evaluation of crop plant performance in high throughput
phenotyping systems. Front. Plant Sci. 5:770. doi: 10.3389/fpls.2014.00770

Klukas, C., Chen, D., and Pape, J.-M. (2014). Integrated analysis platform: an
open-source information system for high-throughput plant phenotyping. Plant
Physiol. 165, 506–518. doi: 10.1104/pp.113.233932

Krishnamurthy, L., Vadez, V., Devi, J., Serraj, R., Nigam, S. N., and Sheshshayee,
M. S. (2007). Variation in transpiration efficiency and its related traits in a
groundnut (Arachis hypogaea L.) mapping population. Field Crop. Res. 103,
189–197. doi: 10.1016/j.fcr.2007.06.009

Lambrides, C., Chapman, S., and Shorter, R. (2004). Genetic variation for
carbon isotope discrimination in sunflower: association with transpiration
efficiency and evidence for cytoplasmic inheritance. Crop Sci. 44, 1642–1653.
doi: 10.2135/cropsci2004.1642

Masuka, B., Araus, J. L., Das, B., Sonder, K., and Cairns, J. E. (2012). Phenotyping
for abiotic stress tolerance in maize. J. Integr. Plant Biol. 54, 238–249.
doi: 10.1111/j.1744-7909.2012.01118.x

Medugorac, I., and Soller, M. (2001). Selective genotyping with a main
trait and a correlated trait. Anim. Breed. Genet. 118, 285–295.
doi: 10.1046/j.1439-0388.2001.00308.x

Minervini, M., Giuffrida, M. V., Perata, P., and Tsaftaris, S. (2017). Phenotiki:
an open software and hardware platform for affordable and easy image-
based phenotyping of rosette-shaped plants. Plant J. 90, 204–216.
doi: 10.1111/tpj.13472

Montes, J. M., Albrecht, E., Melchinger, A. E., and Reif, J. C. (2007). Novel
throughput phenotyping platforms in plant genetic studies. Trends Plant Sci.
12, 433–436. doi: 10.1016/j.tplants.2007.08.006

Montes, J. M., Technow, F., Dhillon, B. S., Mauch, F., andMelchinger, A. E. (2011).
High-throughput non-destructive biomass determination during early plant
development in maize under field conditions. Field Crops Res. 121, 268–273.
doi: 10.1016/j.fcr.2010.12.017

Panigatti, J. L. (2010). Argentina 200 Años, 200 Suelos. Buenos Aires: INTA.
Pardo, E. M., Vellice, G. R., Pereyra-Irujo, G. A., Prietto, S., Aguirrezabal,

L. A. N., Castagnaro, A., et al. (2015). Drought tolerance screening under
controlled conditions predicts ranking of water-limited yield of field-grown
soybean genotypes. J. Agron. Crop Sci. 201, 95–105. doi: 10.1111/jac.
12106

Pereyra-Irujo, G. A., Gasco, E. D., Peirone, L. S., and Aguirrezabal, L. A. N. (2012).
GlyPh: a low-cost platform for phenotyping plant growth and water use. Funct.
Plant Biol. 39, 905–913. doi: 10.1071/FP12052

Poorter, H., Fiorani, F., Stitt, M., Schurr, U., Finck, A., Gibon, Y., et al.
(2012). The art of growing plants for experimental purposes: a practical
guide for the plant biologist. Funct. Plant Biol. 39, 821–838. doi: 10.1071/
FP12028

Rebetzke, G. J., Condon, A. G., Richards, R. A., and Farquhar, G. D.
(2002). Selection for reduced carbon isotope discrimination increases aerial
biomass and grain yield of rainfed bread wheat. Crop Sci. 42, 739–745.
doi: 10.2135/cropsci2002.0739

Richards, R. A., Rebetzke, G. J., Watt, M., Condon, A. G., Spielmeyer,
W., and Dolferus, R. (2010). Breeding for improved water productivity
in temperate cereals: phenotyping, quantitative trait loci, markers and
the selection environment. Funct. Plant Biol. 37, 85–97. doi: 10.1071/F.P.
09219

SAS (2017). SAS Studio 3.6 and SAS 9.4M4. SAS University Edition. Cary, NC: SAS
Institute Inc.

Serraj, R., Vadez, V., and Sinclair, T. R. (2001). Feedback regulation of
symbiotic N2 fixation under drought stress. Agronomie 21, 621–626.
doi: 10.1051/agro:2001153

Specht, J. E., Chase, K., MacRander, M., Graef, G. L., Chung, J., Markwell,
J. P., et al. (2001). Soybean response to water. Crop Sci. 41, 493–509.
doi: 10.2135/cropsci2001.412493x

Tardieu, F. (2012). Any trait or trait-related allele can confer drought tolerance: just
design the right drought scenario. J. Exp. Bot. 63, 25–31. doi: 10.1093/jxb/err269

Tardieu, F., Granier, C., and Muller, B. (2011). Water deficit and growth. Co-
ordinating processes without an orchestrator? Curr. Opin. Plant Biol. 14,
283–289. doi: 10.1016/j.pbi.2011.02.002

Turner, N. C., Palta, J. A., Shrestha, R., Ludwig, C., Siddique, K. H. M., and
Turner, D. W. (2007). Carbon isotope discrimination is not correlated with
transpiration efficiency in three cool-season grain legumes (pulses). J. Integr.
Plant Biol. 49, 1478–1483. doi: 10.1111/j.1672-9072.2007.00557.x

Vadez, V., Berger, J. D., Warkentin, T., Asseng, S., Ratnakumar, P., Rao, K. P. C.,
et al. (2012). Adaptation of grain legumes to climatic change: a review. Agron.
Sust. Dev. 32, 31–44. doi: 10.1007/s13593-011-0020-6

Frontiers in Plant Science | www.frontiersin.org 13 May 2018 | Volume 9 | Article 587

https://doi.org/10.1111/j.1439-037X.2011.00464.x
https://doi.org/10.1016/0308-521X(92)90018-J
https://doi.org/10.1016/S1673-8527(08)60165-4
https://doi.org/10.1016/S0098-8472(02)00041-2
https://doi.org/10.2135/cropsci1975.0011183X001500050002x
https://doi.org/10.1016/j.envexpbot.2007.05.004
https://doi.org/10.1111/j.1469-8137.2005.01609.x
https://doi.org/10.1016/j.fcr.2012.05.014
https://doi.org/10.1071/A96111
https://doi.org/10.2135/cropsci1984.0011183X002400040040x
https://doi.org/10.1186/1471-2105-12-148
https://doi.org/10.2135/cropsci2006.04.0243
https://doi.org/10.1016/0002-1571(82)90020-6
https://doi.org/10.1093/jxb/37.3.348
https://doi.org/10.2134/agronj1993.00021962008500020011x
https://doi.org/10.3389/fpls.2014.00770
https://doi.org/10.1104/pp.113.233932
https://doi.org/10.1016/j.fcr.2007.06.009
https://doi.org/10.2135/cropsci2004.1642
https://doi.org/10.1111/j.1744-7909.2012.01118.x
https://doi.org/10.1046/j.1439-0388.2001.00308.x
https://doi.org/10.1111/tpj.13472
https://doi.org/10.1016/j.tplants.2007.08.006
https://doi.org/10.1016/j.fcr.2010.12.017
https://doi.org/10.1111/jac.12106
https://doi.org/10.1071/FP12052
https://doi.org/10.1071/FP12028
https://doi.org/10.2135/cropsci2002.0739
https://doi.org/10.1071/F.
https://doi.org/10.1051/agro:2001153
https://doi.org/10.2135/cropsci2001.412493x
https://doi.org/10.1093/jxb/err269
https://doi.org/10.1016/j.pbi.2011.02.002
https://doi.org/10.1111/j.1672-9072.2007.00557.x
https://doi.org/10.1007/s13593-011-0020-6
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Peirone et al. Efficiency of Drought Tolerance Phenotyping

Velázquez, L., Alberdi, I., Paz, C., Aguirrezábal, L., and Pereyra Irujo, G.
(2017). Biomass allocation patterns are linked to genotypic differences in
whole-plant transpiration efficiency in sunflower. Front. Plant Sci. 8:1976.
doi: 10.3389/fpls.2017.01976

Welcker, C., Boussuge, B., Bencivenni, C., Ribaut, J. M., and Tardieu, F. (2007). Are
source and sink strengths genetically linked in maize plants subjected to water
deficit? A QTL study of the responses of leaf growth and of Anthesis–Silking
Interval to water deficit. J. Exp. Bot. 58, 339–349. doi: 10.1093/jxb/erl227

Wiersma, J. V., and Bailey, T. B. (1975). Estimation of leaflet,
trifoliolate, and total leaf areas of soybeans. Agron. J. 67, 26–30.
doi: 10.2134/agronj1975.00021962006700010007x

Conflict of Interest Statement: The authors declare that the research was
conducted in the absence of any commercial or financial relationships that could
be construed as a potential conflict of interest.

Copyright © 2018 Peirone, Pereyra Irujo, Bolton, Erreguerena and Aguirrezábal.

This is an open-access article distributed under the terms of the Creative Commons

Attribution License (CC BY). The use, distribution or reproduction in other forums

is permitted, provided the original author(s) and the copyright owner are credited

and that the original publication in this journal is cited, in accordance with accepted

academic practice. No use, distribution or reproduction is permitted which does not

comply with these terms.

Frontiers in Plant Science | www.frontiersin.org 14 May 2018 | Volume 9 | Article 587

https://doi.org/10.3389/fpls.2017.01976
https://doi.org/10.1093/jxb/erl227
https://doi.org/10.2134/agronj1975.00021962006700010007x
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles

	Assessing the Efficiency of Phenotyping Early Traits in a Greenhouse Automated Platform for Predicting Drought Tolerance of Soybean in the Field
	Introduction
	Materials and Methods
	Genetic Material
	Culture Methods and Growth Conditions
	Measurement of Traits
	Evaluation of Phenotyping Efficiency and Selection of Traits
	Validation of the Selected Trait Against Field Trial Data of Independent Genotypes
	Data Analysis

	Results
	Drought Susceptibility Index for Shoot Dry Weight During the Vegetative Period Correlated With Published DSI for Yield
	Selection of the Most Efficient Trait
	Characterization of the Selected Trait
	Validation of the Selected Trait Against Data From Field Trials for Independent Genotypes

	Discussion
	Conclusion
	Author Contributions
	Acknowledgments
	Supplementary Material
	References


