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Oscillatory fluid movements in heterogeneous porous rocks induced by seismic waves cause dissi-

pation of wave field energy. The resulting seismic signature depends not only on the rock compres-

sibility distribution, but also on a statistically averaged permeability. This so-called equivalent

seismic permeability does not, however, coincide with the respective equivalent flow permeability.

While this issue has been analyzed for one-dimensional (1D) media, the corresponding two-dimen-

sional (2D) and three-dimensional (3D) cases remain unexplored. In this work, this topic is ana-

lyzed for 2D random medium realizations having strong permeability fluctuations. With this

objective, oscillatory compressibility simulations based on the quasi-static poroelasticity equations

are performed. Numerical analysis shows that strong permeability fluctuations diminish the magni-

tude of attenuation and velocity dispersion due to fluid flow, while the frequency range where these

effects are significant gets broader. By comparing the acoustic responses obtained using different

permeability averages, it is also shown that at very low frequencies the equivalent seismic perme-

ability is similar to the equivalent flow permeability, while for very high frequencies this parameter

approaches the arithmetic average of the permeability field. These seemingly generic findings have

potentially important implications with regard to the estimation of equivalent flow permeability

from seismic data. VC 2013 Acoustical Society of America. [http://dx.doi.org/10.1121/1.4824967]

PACS number(s): 43.20.Jr, 43.40.Ph [NPC] Pages: 4742–4751

I. INTRODUCTION

Seismic waves propagating in fluid-saturated porous

rocks with heterogeneity in the mesoscopic scale range, that

is, heterogeneities larger than the pore size but smaller than

the prevailing wavelengths, can be significantly attenuated

(e.g., Pride et al., 2004; M€uller et al., 2010). This is because

seismic waves induce a local, oscillatory fluid flow between

mesoscale heterogeneities with differing elastic complian-

ces. This so-called wave-induced fluid flow (WIFF) loss

mechanism depends on the rock properties as well as on the

pore fluid composition. Specifically, WIFF depends on the

hydraulic transport capability of the rock, that is, the flow

permeability. This dependence can be readily understood as

WIFF implies fluid pressure diffusion between different

mesoscale heterogeneities of the probed rock volume. The

fluid pressure diffusivity, in turn, is directly proportional to

the flow permeability. Therefore, the WIFF mechanism pro-

vides a link between flow permeability and seismic attrib-

utes. Implications of this link have been exemplified in

some contexts (e.g., Rubino et al., 2012). Flow permeability

estimates extracted from seismic signals would have enor-

mous value for underground reservoir characterization, with

potential applications in hydrocarbon exploration, hydrol-

ogy, and geotechnical engineering (e.g., van Dalen et al.,
2010).

Flow permeability is arguably one of the most variable

parameters in geological formations, including sedimentary

basins and aquifers. Even in seemingly homogeneous forma-

tions it may range over several orders of magnitude (e.g.,

Sanchez-Vila et al., 2006). Thus, from a seismic point of

view it seems expedient to search for an equivalent seismic
permeability. This permeability is defined such that it results

in the same amount of attenuation and phase velocity

dispersion due to WIFF when the actual heterogeneous

permeability field is upscaled and replaced by a constant

value. In this context, it is, however, important to note that

the equivalent seismic permeability is different from the
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dynamic permeability used to model the transition from the

viscosity- to the inertia-dominated flow regime in Biot’s

(1956a,b) theory (e.g., Johnson et al., 1987; M€uller and

Sahay, 2011).

Shapiro and M€uller (1999) showed that in randomly lay-

ered poroelastic media there is a discrepancy between the

equivalent seismic permeability and the equivalent flow per-
meability, that is, the permeability obtained by upscaling the

flow equations. More recently, M€uller et al. (2007) showed

that in weakly heterogeneous random poroelastic media the

equivalent seismic permeability is frequency-dependent.

Only in the low-frequency limit does the equivalent seismic

permeability coincide with the flow permeability. This

means that the equivalent seismic permeability should

actually be a dynamic-equivalent permeability.

In order to understand the role of permeability fluctua-

tions for the WIFF loss mechanism, the following analytical

recipe has been developed. Based on the method of statisti-

cal smoothing applied to Biot’s (1956a) equations, M€uller

et al. (2007) derived a dispersion equation for the slow com-

pressional wave in the presence of permeability fluctuations.

From this dispersion equation, an equivalent seismic perme-

ability can be identified that shows dynamic behavior in the

seismic frequency band. This dynamic-equivalent perme-

ability model can then be incorporated into the expression

for the dynamic-equivalent wavenumber for the fast com-

pressional wave also obtained by the method of statistical

smoothing. This wavenumber entails attenuation and veloc-

ity dispersion due to WIFF taking into account random per-

meability fluctuations. It has been inferred that permeability

fluctuations cause WIFF to be observable in a broader fre-

quency range and that the peak attenuation shifts along the

frequency axis depending on the strength of the permeability

fluctuations. M€uller et al. (2007) extended this analysis to

strong permeability fluctuations in randomly layered media

and observed good agreement with the attenuation and ve-

locity dispersion obtained from numerical simulations.

The above recipe does, however, have several limita-

tions mainly associated with the difficulty of treating strong

fluctuations by means of perturbation theory methods.

Therefore, it is not known how strong permeability fluctua-

tions affect seismic signatures due to WIFF. This problem is

not only of obvious interest in the context of flow permeabil-

ity extraction from seismic signatures, but also presents a

challenge from a theoretical point of view. For 1D random

media, the exact low- and high-frequency limits of the

equivalent seismic permeability are known and application

of the strong-contrast perturbation theory reveals the

frequency-dependence of this dynamic-equivalent perme-

ability (Caspari et al., 2013). However, the corresponding

results for 2D or 3D random media have not been obtained,

which is also due to the fact that there are no analytical solu-

tions for the effective flow permeability (e.g., Sanchez-Vila

et al., 2006).

The aim of this work is to quantify the impact of strong

permeability fluctuations on the WIFF mechanism. This is

done through numerical simulations in 2D realizations of

random fields including strong permeability fluctuations.

The random medium parameters are chosen such that they

mimic typical porous rocks. To determine seismic attenua-

tion and velocity dispersion due to WIFF, we use a numeri-

cal oscillatory compressibility test based on the quasi-static

poroelasticity equations, similar to that proposed by Rubino

et al. (2009). We compare the simulated attenuation and ve-

locity dispersion characteristics with those obtained by

replacing the fluctuating permeability field by its respective

arithmetic and harmonic average, as well as by the true

equivalent flow permeability. The latter is numerically

inferred from a separate upscaling procedure based on the

steady-state flow equations. These broadband simulations

provide further insight into the role of the equivalent seismic

permeability for attenuation and velocity dispersion. Similar

questions to those addressed here at the mesoscopic scale

have previously been analyzed in the framework of Biot’s

(1956a,b) intrinsic attenuation mechanism. In this sense,

Berryman (1986, 1988) determined the correct permeability

average in the context of this attenuation mechanism, while

Yamamoto and Turgut (1988) analyzed the effects of the

pore size distribution on the frequency dependence of this

energy loss mechanism.

This paper is organized as follows. First, we introduce

the numerical methodologies of the quasi-static oscillatory

compressibility and steady-state flow tests. While the former

test allows us to infer compressional wave attenuation and

velocity as functions of frequency, the latter test yields the

true equivalent flow permeability. This is followed by a se-

ries of numerical simulations involving 2D binary random

medium realizations. Changes in the attenuation and disper-

sion behaviors caused by the associated permeability fluctua-

tions are analyzed and discussed.

II. METHODOLOGICAL BACKGROUND

A. Spatial and temporal scales of WIFF

WIFF constitutes an important attenuation mechanism

in porous rocks, which is operative in the presence of hetero-

geneities in the mesoscopic scale range. This means that the

characteristic length scale of the heterogeneities ameso satis-

fies the relation

apore � ameso � k; (1)

where apore represents a typical pore or grain size and k is

the predominant seismic wavelength. The propagation of

seismic waves through a medium containing mesoscopic het-

erogeneities produces local fluid pressure gradients and fluid

flow. The associated fluid pressure relaxation is therefore

governed by fluid pressure diffusion with a characteristic

transition frequency, xc. This characteristic frequency

depends on the size of the mesoscopic heterogeneities and

the scales at which fluid flow occurs, that is, the correspond-

ing diffusion lengths involved in the process. At this charac-

teristic frequency, the diffusion length, Ld, is of similar size

as the heterogeneities, so that

Ld �
ffiffiffiffiffiffiffiffiffiffiffiffi
D=xc

p
’ ameso; (2)

or equivalently,
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xc ’ D=a2
meso; (3)

where D is the pressure diffusivity. This parameter can be

expressed in terms of the poroelastic properties of the fluid-

saturated porous rock (e.g., Rubino et al., 2012)

D ¼ j
g

LM � a2M2

L

� �
; (4)

where j and g denote the permeability of the rock and the

fluid shear viscosity, respectively. In addition, the parame-

ters a, M, and L are given by (e.g., Rubino et al., 2012)

a ¼ 1� Km

Ks
; (5)

M ¼ a� /
Ks
þ /

Kf

� ��1

; (6)

L ¼ ku þ 2l: (7)

In these expressions, Ks, Km, and Kf are the bulk moduli of

the solid grains, the dry matrix and the fluid phase, respec-

tively, while l is the shear modulus of the bulk material,

which is equal to that of the dry frame, and / is the porosity

of the rock. In addition, the saturated Lam�e parameter, ku, is

given by

ku ¼ Ksat �
2

3
l; (8)

where Ksat is the undrained bulk modulus of the saturated

material, which can be computed as (e.g., Rubino et al.,
2012)

Ksat ¼ Km þ a2M: (9)

For frequencies x� xc, the diffusion lengths are much

larger than the typical size of the heterogeneities.

Correspondingly, there will be enough time during each os-

cillatory half cycle for the fluid pressure to equilibrate at a

common value. Thus, this low-frequency regime represents

a relaxed state. On the other hand, for frequencies x� xc.

the diffusion lengths are very small compared to the size of

the heterogeneities. There is no time for communication

between the pore fluid of the different parts of the rock. In

this case, the pore pressure is approximately constant within

each heterogeneity and, consequently, this high-frequency

regime is associated with an unrelaxed state. For intermedi-

ate frequencies, as characterized by diffusion lengths that are

of similar size as the heterogeneities, that is, frequencies x
close to xc, significant fluid flow can be induced by the seis-

mic wave, which in turn can generate significant attenuation

and velocity dispersion effects. Thus, the characteristic fre-

quency xc defined by Eq. (3) is also associated with maxi-

mum attenuation due to WIFF. From Eqs. (3) and (4), we

notice that the frequency range where attenuation due to

WIFF operates shifts toward lower frequencies for decreas-

ing permeability and increasing fluid viscosity or size of the

mesoscopic heterogeneities.

The propagation of seismic waves in porous elastic sol-

ids saturated by compressible viscous fluids can be modeled

using the theory of poroelasticity developed by Biot

(1956a,b). Biot considered a porous isotropic medium satu-

rated with a single-phase, compressible viscous fluid. He fur-

ther assumed that anelastic effects arise from relative

motions between the fluid and the solid frame. One of the

most important consequences of Biot’s work is the predic-

tion of a slow compressional wave, in addition to the classi-

cal compressional (P) and shear (S) waves known in

classical elastodynamics. This additional wave, commonly

referred to as P2 or slow Biot wave, is characterized by a

phase velocity lower than that of the P wave and is associ-

ated with an out-of-phase motion of the solid and fluid

phases. An important parameter in this theory is the critical

Biot frequency xBiot (Biot, 1956a,b). This critical frequency

separates the viscosity-dominated regime ðx� xBiotÞ from

the regime dominated by the inertial forces ðx� xBiotÞ. In

the viscosity-dominated or low-frequency range, the P2

wave is strongly attenuated and, actually, is not a propagat-

ing mode but a fluid pressure diffusion process (Dutta and

Od�e, 1979; Chandler and Johnson, 1981). In the

high-frequency range, the P2 mode is a propagating wave. In

the framework of the Biot (1956a) theory, seismic attenua-

tion due to WIFF can be seen as energy conversion from the

classical wave propagating through the heterogeneous do-

main into P2-wave energy at the discontinuities of the rock

(Gurevich and Lopatnikov, 1995; M€uller and Gurevich,

2005a,b). Because of their diffusive nature, these P2 waves

cannot directly be observed in the low-frequency range.

However, we can infer their existence as they may be re-

sponsible for the observed attenuation levels of the propagat-

ing waves modes due to WIFF effects.

B. Quasi-static poroelasticity and the oscillatory
compressibility test

Studying seismic attenuation and velocity dispersion

due to WIFF at mesoscopic scales is a difficult task. This is

mainly due to the fact that, in the low-frequency range, the

diffusion process associated with the fluid pressure equilibra-

tion is a critical issue because the corresponding diffusion

lengths, which characterize the spatial scales at which the

fluid pressure equilibration or fluid flow occurs, are very

small as compared with the seismic wavelengths (e.g.,

Rubino et al., 2007). This, in addition to the necessity to

consider small enough grid spacing to properly represent the

mesoscopic heterogeneities, is an issue both in the low- and

high-frequency ranges.

Rubino et al. (2009) proposed an upscaling procedure

based on a numerical oscillatory compressibility test for rep-

resentative rock samples having an isotropic distribution of

mesoscopic heterogeneities. This methodology permits one

to obtain the equivalent complex undrained plane wave mod-

uli, which contain the information on attenuation and veloc-

ity dispersion due to WIFF. We use this methodology to

solve Biot’s (1941) consolidation equations rather than

Biot’s (1956a) equations of motion, as it has also been sug-

gested by Wenzlau et al. (2010) and Quintal et al. (2011).
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That is, since WIFF is controlled by fluid pressure diffusion,

we can neglect the inertial forces that, in turn, provide us a

more efficient procedure to estimate WIFF effects. To this

end, we solve the equations of quasi-static poroelasticity in

the space-frequency domain (Biot, 1941)

r � r ¼ 0; (10)

ix
g
j

w ¼ �rpf ; (11)

where r � (rij) is the stress tensor, w is the relative fluid–

solid displacement, and pf is the fluid pressure. Please note

that Eq. (10) represents the stress equilibrium within the

sample, whereas the expression (11) is Darcy’s law. These

two equations are coupled through the stress-strain relations

rij ¼ 2l�ijðusÞ þ dijðkur � us � aMfÞ; (12)

pf ¼ �aMr � us þMf; (13)

where us denotes the average displacement vector of the

solid phase, �ijðusÞ ¼ 1
2
ð@us

i=@xj þ @us
j=@xiÞ is the strain ten-

sor of the solid phase and f ¼ �r � w represents the change

in fluid content.

To compute WIFF effects, we consider representative

rock samples in the form of rectangular random medium

realizations containing mesoscopic-scale heterogeneities.

These media are subjected to a time-harmonic compression

with constant amplitude of the form DPeixt on its upper

boundary, and no tangential forces act on the boundaries.

The solid phase is neither allowed to move on the lower

boundary nor have horizontal displacements on the lateral

boundaries. Further, the fluid is not allowed to flow into or

out of the numerical domain.

Denoting by V the original volume of the sample, its

complex oscillatory volume change DV(x) allows us to

define the equivalent undrained complex plane-wave modu-

lus, �LðxÞ, by using the relation

DVðxÞ
V

¼ � DP
�LðxÞ ; (14)

which is valid for a viscoelastic homogeneous solid in the

quasi-static case. In order to estimate this volume change,

Eqs. (10) to (13) are solved under proper boundary

conditions. Let X ¼ ð0; LxÞ � ð0; LyÞ be a domain in the

(x,y)-plane representing the rock sample to be compressed.

Set C the boundary of X, given by C ¼ CL [ CB [ CR [ CT ,

where

CL ¼ fðx; yÞ 2 C : x ¼ 0g; (15)

CR ¼ fðx; yÞ 2 C : x ¼ Lxg; (16)

CB ¼ fðx; yÞ 2 C : y ¼ 0g; (17)

CT ¼ fðx; yÞ 2 C : y ¼ Lyg: (18)

Also, denote by m the unit outer normal on C and let v

be a unit tangent so that {m,v} is an orthonormal system on

C. Then, to estimate the volume change DV(x), we consider

the solution of Eqs. (10) to (13) under the following bound-

ary conditions:

rm ¼ ð0;�DPÞ; ðx; yÞ 2 CT ; (19)

rm � v ¼ 0; ðx; yÞ 2 CL [ CR; (20)

us � m ¼ 0; ðx; yÞ 2 CL [ CR; (21)

us ¼ 0; ðx; yÞ 2 CB; (22)

w � m ¼ 0; ðx; yÞ 2 C: (23)

The vertical displacements us
2ðx; Ly;xÞ on CT allow us

to obtain an average vertical displacement us;T
2 ðxÞ experi-

enced by the boundary CT. Then, for each frequency, x, the

volume change produced by the compressibility test can be

approximated by DVðxÞ � Lxus;T
2 ðxÞ, which enables us to

compute the equivalent complex plane-wave modulus, �LðxÞ,
through Eq. (14). The corresponding complex compressional

velocity is given by

VpcðxÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffi
�LðxÞ
qb

;

s
(24)

where qb is the average bulk density of the numerical rock

sample; that is,

qb ¼
1

V

ð
X
ð/qf þ ð1� /ÞqsÞdV; (25)

where qs and qf are the density of solid grains and pore fluid,

respectively.

Finally, the equivalent compressional phase velocity,

Vp(x), and inverse quality factor, Q�1
p ðxÞ, are then given as

(Rubino et al., 2009)

VpðxÞ ¼ Re
1

VpcðxÞ

� �� ��1

; (26)

1

QpðxÞ
¼ ImðVpcðxÞ2Þ

ReðVpcðxÞ2Þ
: (27)

To estimate the equivalent complex moduli, we

employ a finite element procedure to approximate the so-

lution of Eqs. (10) to (13) under the corresponding bound-

ary conditions [Eqs. (19) to (23)]. We use bilinear

functions to approximate the solid displacement vector

and a closed subspace of the vector part of the Raviart-

Thomas-Nedelec space of zero order for the fluid

displacement.

It is important to mention that we have performed a 1D

convergence analysis to ensure that, given the wide fre-

quency ranges considered in the numerical examples, the

employed grid spacing is small enough to properly represent

the prevailing fluid pressure diffusion processes.
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C. Equivalent flow permeability

In order to infer the discrepancies between the equiva-

lent seismic and flow permeabilities, an additional upscaling

procedure to determine the latter is needed. In this sense, the

equivalent flow permeability can be obtained using a numer-

ical procedure similar to laboratory tests employed to deter-

mine flow permeabilities (Guarracino and Monachesi, 2010).

The flow permeability, j, is defined by the classical Darcy’s

law through a linear relation between flow velocity, _w, and

the gradient of fluid pressure, pf. Then, the usual procedure

to estimate j experimentally is to prescribe a constant fluid

pressure gradient and to measure the fluid discharge through

the rock sample.

Fluid flow in saturated porous media is described by the

following general equation (Wang, 2000)

@f
@t
¼ �r � _w: (28)

An equivalent value of flow permeability can therefore be

obtained by solving Eq. (28) for the steady-state case with

boundary conditions that mimic laboratory experiments.

Following Desbarats (1992), a predefined fluid pressure dif-

ference between the top and bottom boundaries is therefore

imposed and no-flow conditions are applied on the lateral

boundaries. Then, the corresponding boundary value prob-

lem can be expressed as

r � j
g
rpf

� �
¼ 0; ðx; yÞ 2 X; (29)

pf ¼ p1; ðx; yÞ 2 CB; (30)

pf ¼ p2; ðx; yÞ 2 CT ; (31)

_w � m ¼ 0; ðx; yÞ 2 CL [ CR; (32)

where Eq. (29) is obtained by using Darcy’s law (11) in the

time domain in Eq. (28) and imposing steady-state

conditions.

The numerical solution of the differential problem

described by Eqs. (29) to (32) allows us to compute the aver-

aged fluid velocity in the vertical direction, _wy , induced by the

externally imposed pressure gradient Dp/Ly¼ (p2� p1)/Ly,

_wy ¼
1

Lx

ð
CB

_w � m dx: (33)

Then, according to Darcy’s law, the equivalent permeability,

jeq, at the scale of the considered rock sample is given by

jeq ¼
g _wyLy

Dp
: (34)

The differential problem defined by Eqs. (29) to (32) is

solved using a mixed finite element method employing the

lowest-order Raviart-Thomas-Nedelec space, which gives a

simultaneous approximation to fluid pressure and flow.

This method is especially suitable for this study because

it conserves locally the fluid mass and can handle large

discontinuities in the permeability field (Guarracino and

Monachesi, 2010).

III. NUMERICAL ANALYSIS

A. Poroelastic random medium models
of heterogeneous porous rocks

In this section, we explore the effects of strong perme-

ability fluctuations associated with spatial porosity variations

on the equivalent seismic permeability and its seismic signa-

ture. We model a porous rock that is fully saturated with

water and whose frame is composed of quartz grains with the

poroelastic properties given in Table I. We use the Kozeny-

Carman equation to relate porosity, /, of the numerical rock

sample to the permeability, j (e.g., Mavko et al., 2009),

j ¼ B
/3

ð1� /Þ2
d2; (35)

where B is a geometrical factor that depends on the tortuos-

ity of the sample. In this work, we take B¼ 0.003 and use

d¼ 8� 10�3 cm for the mean grain diameter.

In addition to permeability fluctuations, a spatially vari-

able porosity also implies fluctuations in other poroelastic

parameters, such as the dry frame moduli and bulk density.

In fact, considering fluctuations in the elastic properties of

the dry frame is essential as poroelastic compressibility con-

trasts are needed to produce WIFF (e.g., M€uller and

Gurevich, 2005b). To link the porosity, /, and the solid grain

properties with the elastic moduli of the dry frame we use

the model of Krief et al. (1990),

Km ¼ Ksð1� /Þ3=ð1�/Þ; (36)

l ¼ Kmls=Ks; (37)

where ls is the shear modulus of the solid grains.

We study the behavior of the equivalent seismic perme-

ability in the case of strong permeability fluctuations pro-

duced by a heterogeneous binary porosity field. We generate

this field using stochastic fractal fields based on a von-

Karman-type spectral density function, which is frequently

used in the statistical characterization of heterogeneities for

different applications (e.g., Tronicke and Holliger, 2005)

TABLE I. Material properties for the models considered in this study.

Material 1 Material 2

Grain bulk modulus, Ks [GPa] 37 37

Grain shear modulus, ls [GPa] 44 44

Grain density, qs [g/cm3] 2.65 2.65

Porosity, / 0.05 0.4

Dry rock bulk modulus, Km [GPa] 30 1.25

Dry rock shear modulus, l [GPa] 35 1.5

Permeability, j [D] 0.00269 3.458

Water density, qf [g/cm3] 1.04

Water bulk modulus, Kf [GPa] 2.25

Water viscosity, g [Pa � s] 0.003
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Sdðkx; kyÞ ¼ S0ð1þ k2
x a2

x þ k2
y a2

yÞ
�ðHþE=2Þ; (38)

where kx and ky are the horizontal and vertical wavenumbers,

ax and ay are the horizontal and vertical correlation lengths,

S0 is a normalization constant, and E is the Euclidean

dimension. This expression corresponds to a band-limited

scale-invariant stochastic process with a Hausdorff fractal

dimension, DH¼Eþ 1�H, with 0	H	 1.

To generate heterogeneous porosity fields with corre-

sponding characteristics, we first partition the computational

domain into a finite number of grid cells Xj and assign to

each of these cells a pseudo-random number drawn from a

uniform distribution. Then, we Fourier transform this field to

the spatial wavenumber domain and filter its amplitude spec-

trum using Eq. (38), with ax¼ ay¼ 1 cm and H¼ 1. Next,

we transform back the result to the spatial domain to obtain

a heterogeneous field. Finally, the binary field is obtained

through thresholding and appropriate rescaling. Please note

that this binarization of the original continuous stochastic

field results in a halving of the original H-value; that is,

Hbinary¼H/2¼ 0.5 and DH¼Eþ 1�Hbinary¼ 2.5 (Holliger

et al., 1993; Goff et al., 1994). The second-order statistics of

the considered binary field are thus governed by an exponen-

tial autocorrelation function.

Figure 1 shows the binary porosity distribution employed

in the numerical analysis. Black regions (material 1) have a po-

rosity, /¼ 0.05, and a permeability, j¼ 2.69� 10�3 D, while

the white regions (material 2) have a porosity, /¼ 0.4, and

permeability, j¼ 3.458 D. The elastic properties of the dry

frame obtained by Eqs. (36) and (37) are shown in Table I.

B. Generic effects of permeability fluctuations

In order to obtain the equivalent flow permeability, we

solve the corresponding differential problem [Eqs. (29) to

(32)] assuming an externally imposed pressure difference

Dp¼ 100 Pa. Figure 2 shows the fluid pressure and the nor-

malized modulus of the fluid velocity field for the random

medium realization shown in Fig. 1. Note that the fluid pres-

sure field is relatively smooth and is mainly governed by the

pressure gradient between the upper and lower boundaries.

Conversely, the fluid velocity field is highly heterogeneous

and exhibits fluctuations of three orders-of-magnitude over

short distances. It is also interesting to notice that the fluid

velocity field is strongly correlated with the pattern shown

in Fig. 1. The equivalent flow permeability value given by

Eq. (34) turned out to be 7.648� 10�3 D, which lies between

the harmonic (3.903� 10�3 D) and the arithmetic (1.0738 D)

averages.

Figure 3 shows the inverse quality factor and phase ve-

locity curves obtained using the oscillatory compressibility

test (solid lines). In order to study the behavior of the seismic

permeability, we also include the seismic responses obtained

when replacing the heterogeneous permeability field by a ho-

mogeneous field having a permeability value given by the

arithmetic average (dotted lines), the harmonic average (dot-

ted-dashed lines), and the estimated equivalent flow perme-

ability (dashed lines). Note that while in these cases we

consider a homogeneous permeability field, we retain the

original heterogeneities associated with the other poroelastic

properties, that is, porosity, bulk density, and elastic moduli

of the dry frame. We observe that in the presence of perme-

ability fluctuations the attenuation levels are less significant

and the attenuation peak gets broader. This is in agreement

with the results of M€uller et al. (2007). In this context, it is

interesting and important to note that the same behavior was

observed by Yamamoto and Turgut (1988) for classical

P-wave attenuation in the presence of log-normal pore size

distributions. It should, however, also be noted that the

effects studied by Yamamoto and Turgut (1988) are pro-

duced by pore-scale heterogeneities, while those analyzed in

this work arise due to the presence of mesoscale

heterogeneities.

FIG. 1. Heterogeneous binary porosity field considered to analyze the dis-

crepancies between the equivalent seismic permeability and the flow perme-

ability. Black and white regions correspond to porosities of /¼ 0.05 and

/¼ 0.4, respectively.

FIG. 2. (Color online) Fluid pressure field (top panel) and normalized modu-

lus of the fluid velocity field (bottom panel) for the numerical rock sample

shown in Fig. 1.
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We also observe in Fig. 3 that, for frequencies below


1 Hz in the case of the inverse quality factor and below


10 Hz in the case of phase velocity, there is a very good

agreement between the responses obtained for the heteroge-

neous permeability field (solid lines) and those correspond-

ing to a constant permeability value given by the equivalent

flow permeability (dashed lines). This, in turn, indicates that

for very low frequencies the equivalent seismic permeability

is similar to the equivalent flow permeability. This result is

expected, since, as explained by M€uller et al. (2007), at low

frequencies the diffusion length is larger than the typical size

of the heterogeneities and, hence, WIFF takes place at spatial

scales involving several heterogeneities. Conversely, for

very high frequencies the diffusion length is much smaller

than the typical heterogeneity size and WIFF takes place at

spatial scales much smaller than the prevailing heterogene-

ities. This implies that the local permeability value is

sampled which, on average, should yield a seismic perme-

ability close to the arithmetic average. In fact, we observe in

Fig. 3 that there is good agreement between the seismic

attenuation and phase velocity curves for the heterogeneous

permeability field (solid lines) and those corresponding to

the arithmetic average of the permeability field (dotted

lines), especially for frequencies above 
107 Hz in the case

of the inverse quality factor and for frequencies above


106 Hz in the case of phase velocity. With regard to the

harmonic average permeability, we observe that the attenua-

tion curve is similar to that corresponding to the equivalent

flow permeability, although it is shifted toward lower fre-

quencies. For this reason, the harmonic average permeability

cannot reproduce the attenuation behavior of the heterogene-

ous permeability case.

It is interesting to observe that there are three clear

attenuation peaks for the heterogeneous permeability field

(Fig. 3). Conversely, the averaged permeability fields show

two peaks, one of which is very prominent and associated

with very high levels of attenuation, while the second one is

less visible and related to lower levels of attenuation. In the

case of the effective flow permeability, for example, the

main attenuation peak is located at a frequency of 63 Hz,

while the less prominent one occurs at 3.1 Hz. For this par-

ticular averaged permeability, these two attenuation peaks

occur at the same frequencies as two of the peaks for the het-

erogeneous permeability case. In addition, the third attenua-

tion peak for the heterogeneous permeability field is located

at approximately the same frequency as the main peak for

the arithmetic average permeability. As illustrated by Eq.

(2), the occurrence of an attenuation peak due to the pres-

ence of mesoscopic heterogeneities manifests the coinci-

dence between the diffusion length and the characteristic

size of the heterogeneities (e.g., Gurevich and Lopatnikov,

1995; M€uller and Gurevich, 2005a). The fact that the aver-

aged permeability fields exhibit two attenuation peaks, thus

points to the existence of two characteristic length scales.

However, in the presence of mesoscopic permeability fluctu-

ations, WIFF attenuation is sensitive to the entire permeabil-

ity range covered by the equivalent seismic permeability.

This creates additional possibilities to satisfy Eq. (2), which

in turn results in additional attenuation peaks.

The velocity dispersion and attenuation characteristics

presented in Fig. 3 are based on a single realization from the

corresponding stochastic ensemble. However, we note that

in the given context it is possible to obtain meaningful

results even from a single realization of the random medium.

The reason for this is that WIFF is a local phenomenon

occurring in the vicinity of the heterogeneities. The numeri-

cal upscaling procedure then averages these local WIFF con-

tributions over the entire sample. So, to some extent, the

ensemble averaging process is replaced by the spatial aver-

aging in a single realization. This self-averaging requires

that the sample size is large enough so that this single real-

ization is representative of the corresponding stochastic en-

semble. The smoothness of the attenuation and velocity

dispersion behaviors in Fig. 3 as well as the existence of

characteristic frequencies clearly indicate that the sample

size is indeed large enough to represent features of the

underlying stochastic ensemble.

C. Effects of correlation between permeability field
and elastic properties distributions

While it is reasonable to assume that there exists some

correlation between the petrophysical material properties,

this correlation is unlikely to be as strong as we implicitly

assumed in the previous models. Notably, the correlation

FIG. 3. (Color online) Inverse quality factor (top) and phase velocity (bot-

tom) as functions of frequency for the binary porosity distribution shown in

Fig. 1. The different curves correspond to different permeability fields.
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between the permeability and the porosity is often found to

be rather weak (e.g., Dafflon et al., 2010). To explore the

potential implications of such a lack of correlation, we repeat

the simulation but consider a different permeability distribu-

tion (Fig. 4). That is, we use the permeability field shown in

Fig. 4, while keeping the original distributions of all other

poroelastic properties, as depicted in Fig. 1.

Figure 5 shows the corresponding inverse quality factor

and phase velocity as functions of frequency for the equiva-

lent flow permeability (dashed lines), the arithmetic average

of the permeability distribution (dotted lines), as well as for

the actual heterogeneous permeability field (solid lines). We

observe similar results as those shown in the previous simu-

lation. That is, in the presence of strong permeability fluctua-

tions the attenuation levels are less significant and the

attenuation peak gets broader. In addition, for very low fre-

quencies the equivalent seismic permeability is similar to the

equivalent flow permeability, while for very high frequen-

cies the seismic permeability approaches the arithmetic aver-

age value of the sample. These results suggest that our

conclusions can indeed be generalized to the case of perme-

ability fields which are uncorrelated with distributions of the

porosity and the elastic properties.

D. Effects related to the strength of permeability
fluctuations

To analyze the role of the strength of the permeability

fluctuations for the equivalent seismic permeability and the

corresponding seismic signature, we repeat the first

FIG. 4. “Uncorrelated” permeability field used to study the corresponding

effects on the attenuation behavior related to the heterogeneous sample

shown in Fig. 1. Black and white regions correspond to permeabilities of

j¼ 2.69� 10�3 D and j¼ 3.458 D, respectively.

FIG. 5. (Color online) Inverse quality factor (top) and phase velocity (bot-

tom) as functions of frequency for the binary porosity distribution shown in

Fig. 1 and the uncorrelated permeability field shown in Fig. 4. The different

curves correspond to different permeability fields.

FIG. 6. (Color online) Inverse quality factor (top) and phase velocity (bot-

tom) as functions of frequency for the binary porosity distribution shown in

Fig. 1, considering j¼ 2.69� 10�2 D for the black regions and j¼ 0.3458

D for the white regions. The different curves correspond to different perme-

ability fields.
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simulation with a reduced permeability contrast. This means

that for regions having low porosity (black), permeability is

j¼ 2.69� 10�2 D, that is, ten times the value used in the

original simulation. The high-porosity regions (white) corre-

spond to j¼ 0.3458 D, that is, one tenth of the previous

value.

Figure 6 shows the inverse quality factor and phase ve-

locity for the heterogeneous permeability field (solid lines),

as well as for the arithmetic average of the permeability distri-

bution (dotted lines) and the computed equivalent flow perme-

ability (dashed lines). We observe that for very low

frequencies, the equivalent seismic permeability seems to be

similar to the equivalent flow permeability, while for very high

frequencies it approaches the arithmetic average permeability.

Comparing Figs. 3 and 6, we also see that the maximum

attenuation is lower for stronger permeability fluctuations.

However, the frequency range where attenuation is significant

tends to be broader in the strong permeability fluctuations

case. Correspondingly, we also observe that significant veloc-

ity dispersion effects take place within a broader frequency

range for stronger permeability fluctuations.

IV. CONCLUSIONS

We have explored the effects of strong permeability

fluctuations on the P-wave attenuation and velocity disper-

sion of heterogeneous porous rocks. To this end, we

numerically determined compressional wave attenuation

and velocity dispersion due to WIFF in 2D random poroe-

lastic medium realizations with realistic spatial fluctuations

of the poroelastic properties, including strong permeability

contrasts. Particular attention was given to the role of the

equivalent seismic permeability that reproduces the acous-

tic response of the original heterogeneous porous medium

if the permeability field is replaced by an upscaled, con-

stant permeability. In order to infer the behavior of the

equivalent seismic permeability, we compared the acoustic

responses of heterogeneous porous media with those

obtained by replacing the heterogeneous permeability fields

by constant values, including the corresponding arithmetic

and harmonic averages, as well as the equivalent flow per-

meability. The latter was obtained by numerically solving

the steady-state flow equation for the same 2D random me-

dium realizations. The numerical examples shown in this

work can be regarded as representative for the considered

stochastic models and, hence, allow for the following

conclusions:

(i) Strong permeability fluctuations, characterized by

ratios on the order of 103 between the maximum and

minimum values, diminish the magnitude of WIFF

attenuation compared to poroelastic media with con-

stant permeability, but otherwise heterogeneous pa-

rameters. These lower levels of attenuation are

accompanied with a broadening of the attenuation

peak as well as a broadened velocity dispersion

behavior. These effects are more significant as the

strength of the permeability fluctuations increases.

This also means that the observability of attenuation

and dispersion within a certain frequency band is con-

trolled by permeability fluctuations.

(ii) At very low frequencies (x�xc), the equivalent

seismic permeability is similar to the equivalent flow

permeability. At very high frequencies (x� xc), the

equivalent seismic permeability approaches the arith-

metic average of the permeability field. This also con-

firms that the equivalent seismic permeability is

frequency-dependent and, hence, warrants the con-

cept of dynamic-equivalent permeability in poroelas-

tic media with mesoscale heterogeneities.

(iii) The results described under points (i) and (ii) above

also hold true for random permeability fields which

are not correlated with the spatial fluctuations of the

porosity and the associated poroelastic material

properties.

Our findings have implications concerning the possibil-

ity of estimating the equivalent flow permeability of geologi-

cal formations using seismic waves. Seismic signatures are

controlled by an equivalent seismic permeability, which can

be very different from the equivalent flow permeability. This

difference is controlled by the strength of the mesoscopic

permeability fluctuations. Given that in many geological for-

mations the permeability fluctuations are strong, often exhib-

iting orders-of-magnitude between the minimum and

maximum values, it is important to understand the scaling

relation between these two equivalent permeabilities. This

study shed some light onto the controlling factors for the

equivalent seismic permeability. Future work will focus on

the scaling relation to enable predictions of the equivalent

flow permeability from seismic signatures.
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