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ABSTRACT: This paper addresses the comparison between two techniques for the 

optimization under parametric uncertainty of multiproduct batch plants integrating design and 

production planning decisions. This problem has been conceived as a two-stage stochastic 

Mixed Integer Linear Programming (MILP) in which the first-stage decisions consist of 

design variables that allow determining the batch plant structure, and the second-stage 

decisions consist of production planning continuous variables in a multi-period context. The 

objective function maximizes the expected net present value. In the first solving approach, the 

problem has been tackled through mathematical programming considering a discrete set of 

scenarios. In the second solving approach, the multi-scenario MILP problem has been 

reformulated by adopting a simulation-based optimization scheme to accommodate the 

variables belonging to different management levels. Advantages and disadvantages of both 

approaches are demonstrated through a case study. Results allow concluding that a 

simulation-based optimization strategy may be a suitable technique to afford two-stage 

stochastic programming problems. 
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1 Introduction 

The concepts involved in decision-making under uncertainty are closely linked to those 

of optimization under uncertainty. Literature on optimization under uncertainty very often 

divides the approaches into two categories: “wait and see” and “here and now”. In the “wait 

and see” approaches, one has to wait until an observation on the random elements is made, 

and then solve the deterministic problem. Conversely, a “here and now” problem involves 

optimization over some probabilistic measure of the system performance –usually the 

expected value. It should be noted that many realistic problems have both “here and now”, 

and “wait and see” approaches embedded in them. The trick to overcome this situation is to 

divide the decisions into these two categories and use a coupled approach (DIWEKAR, 2002). 

In this regard, many advances have been observed in the supporting theory, including 

algorithmic developments and computational capabilities for solving this class of problems, 

most of which fall into one of these two areas: multistage stochastic programming and 

stochastic optimal control. 

In multistage stochastic programming, decisions are based on past observations and 

decisions before the future events occur (BIRGE; LOUVEAUX, 1997). A finite set of 

scenarios is often generated to represent the space, therefore, the stochastic program becomes 

a deterministic equivalent program, whose size can easily grow out of hand for a large 

number of scenarios, making the direct solution approaches numerically intractable, thus 

requiring methods of decomposition or aggregation (BALASUBRAMANIAN; 

GROSSMANN, 2004). 

Stochastic optimal control describes a sequential decision problem in which the 

decision-maker chooses an action in the state involved at any decision stage according to a 

decision rule or policy. Dynamic programming provides the framework for designing 

algorithms to compute an optimal control policy. However, for large problems, dynamic 

programming also suffers numerically from dimensionality. Both approaches -stochastic 

programming and optimal control- are essentially equivalent, but they exhibit differences in 

formulation and solution, with the consequent advantages and disadvantages for specific 

problems (CHENG; SUBRAHMANIAN; WESTERBERG, 2003, 2004a; DUENAS; 

PETROVIC, 2000; KUSTER; JANNACH; FRIEDRICH, 2010). 
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Efficient numerical solution proposals can be achieved by combining several techniques 

that belong to each approach. The resulting strategy needs to be adapted to solve the specific 

problem, defining some approximations or heuristic-based methods. The works Cheng, 

Subrahmanian and Westerberg (2004b) and Jung et al. (2004) are relevant examples in this 

regard. 

In the literature, it is not easy to find comparisons regarding the two-stage stochastic 

scheme solved by mathematical programming and by the heuristic simulation-based 

optimization approach. Therefore, this work presents such comparison so as to demonstrate 

advantages and disadvantages of both approaches. 

 

2 Description of the techniques used in the comparison 

2.1 Two-stage stochastic programming 

The two-stage stochastic linear programming (2SSLP) problem can be stated as in Birge 

and Louveaux (1997) (Equation 1): 
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Here Eω is the expectation, and ω denotes a scenario or possible outcome with respect 

to the probability space (Ω; P). The variables x are the first-stage variables, as they have to be 

decided upon before the stochastic variable ω realizes. The variables yare second-stage 

variables: they can be assessed after the outcome of ω is known. 

In this work discrete distributions P are only considered, specifically through a Monte 

Carlo sampling technique, so it can be written (Equation 2): 
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Therefore, a large LP can be formulated. This LP is the deterministic equivalent of the 

problem (Equation 3): 
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The sequence of events in (Equation 3) is as follows: first the decision maker 

implements the first stage decisions x. Then the system will be subjected to the random 

process described by (Ω; P), which results in an outcome ωΩ. Finally, the decision maker 

will execute the second stage decisions yω accordingly. 

 

2.2 Simulation-based optimization strategy 

The simulation-based optimization (SbO) algorithm proposed for the comparison is a 

variation of the one presented in Durand, Mele and Bandoni (2011) and Durand et al. (2012) 

can be followed from Figure 1. It involves an outer loop, which corresponds to a Genetic 

Algorithm (GA) strategy, and an inner loop, which is a Monte Carlo sampling of the uncertain 

parameters over an LP deterministic planning model. As in the stochastic programming 

technique, variables must be divided into first-and second-stage variables. 

At the beginning of the algorithm, initial estimations for the first stage variables are 

provided to the GA outer loop, which in turn runs the inner loop taking samples of the 

uncertain parameters. 

For each sampling, an LP deterministic planning model obtains the values of the 

second-stage decisions variables and gives a value for the objective function. Enough 

samplings of the LP model are done to obtain a representative value of the population of 

objective function values. 

Usually, the expected value is utilized and then is returned to the GA outer loop, which 

uses it to search for the optimum combination of first-stage variables’ values. A filter is 

utilized to avoid the use of the inner loop when an already-tried combination of first-stage 

variables is chosen again (the filter returns the same expected value of the objective function). 
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Figure 1 – Simulation-based optimization strategy 

 
 

The variation introduced in this work with respect to the SbO strategy described in 

Durand, Mele and Bandoni (2011) and Durand et al., (2012) is that the simulation step in the 

inner loop is replaced with an LP optimization for each sample of the uncertain parameters. 

The reason for this variation is to make this technique and the stochastic programming more 

comparable. 

 

3 Design and planning of a multiproduct plant in a mutiperiod environment. Overall 

description 

 

In a multiperiod environment, consider a multiproduct plant that processes a set I of 

products i over a time horizon H, which is divided into t = 1, 2,…,NT specified time periods 

Ht, not necessarily of the same length. Every product i follows the same production sequence 

throughout a set J of batch processing stages and a set K of semi-continuous stages that form 

NL semi-continuous subtrains. The production of product i at every time period t requires a 

given processing time ptijt in batch stage j and the size/duty factors SFijt/Dikt for each 

batch/semi-continuous stage. 

In order to reduce idle times in the plant, out of phase duplication of batch units and the 

introduction of intermediate storage tanks between batch stages are allowed. Additionally, in-
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phase duplication is admitted at semi-continuous stages, so each stage k can consists of one or 

more units of the same size. Let Mj denote the set {1, 2,…, 
U

jM
} of possible number of equal 

units that can be allocated in parallel in each batch stage j. And let Gk be the set {1, 2,…, 
U

kG } 

of units that can be duplicated in parallel in semi-continuous stage k. Thus, m Mj identical 

parallel units can operate out of phase in stage j and gGk parallel units operate in phase in 

stage k. When an intermediate tank is allocated, the original process is decoupled in 

subprocesses, upstream and downstream of the tank, each one having different batch size and 

limiting cycle time. 

Also, the design problem involves the selection of equipment sizes for both batch and 

semi-continuous units, and intermediate storage tanks from a number of available discrete 

sizes. Thus, the batch unit size of stage j, Vj, and the size of semi-continuous unit at stage k, 

Rk, are restricted to values from the sets SVj ={j1, j2,...,j,nj} and SRk={k1, k2,..., k,mk}, 

respectively. In the same way, the size of storage tanks VTj is restricted to values from the set 

STj={tj1, tj2,...,tj,gj} 

The plant operates in a single product campaign (SPC) mode in every time period, and 

when storage tank are not allocated, a Zero Wait (ZW) policy is employed. 

Product demands are not known to the decision maker with certainty, but it is assumed 

that the uncertainty can be represented by a set of scenarios S. Each scenario sS has a known 

probability ps that reflects the likelihood of each scenario to take place with
1 Ss sp

. 

Moreover, these scenarios are described through lower and upper bounds on product demand 

levels in each time period t, 
L

itsDE and
U

itsDE . The amounts of raw materials consumed are 

determined by mass balances with a given parameter Fit that accounts for the process 

conversion of raw material to product i during period t. Costs and availability of raw materials 

vary from period to period and are assumed to be known. Also, prices of final products in 

each time period and maximum available storage capacities are problem data. 

In every scenario s, production planning decisions allow to determine at each period t 

and for each product i, the amount to be produced qits, the number of batches nits, and the total 

time Tits to produce product i. Furthermore, at the end of every period t, the levels of both 

final product IPits and raw material inventories IMits are obtained. 
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The total sales QSits, the amount of raw material purchased Cits, and the raw material to 

be used for the production RMits of product i in each time period t are determined with this 

formulation. In this model, it is assumed that each product requires a unique raw material that 

it is not shared by other products. However, more sophisticated transformation processes can 

be easily incorporated. 

In summary, a two-stage stochastic MILP model was developed. First-stage decisions 

consist of design variables that allow determining the batch plant structure. Second-stage 

decisions consist of planning variables (continuous variables) to determine the production, 

purchases, and inventories of raw materials and products for each period throughout the time 

horizon under each scenario, given the plant structure decided at the first-stage. 

The objective function maximizes the expected net present value (ENPV) over a set of 

scenarios S (Equation 4). 
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(4) 

 

The economic criterion in Equation 4 is calculated by the probabilistic average of the 

difference between the revenue due to product sales and the overall costs in each scenario s, 

with the latter consisting of the cost of raw materials, inventory costs, and the capital 

investment cost corresponding to batch units, semi-continuous units, and storage tanks. 

Parameters npit, it, it, and it are the corresponding cost coefficients for each term associated 

with production planning decisions. Note that all the above cost coefficients take into account 

the time value of money, in other words, they are discounted prices for each time period with 

a specified interest rate. 

Due to space reasons, the detailed formulation is not provided in this manuscript, but 

readers can see Moreno, Montagna and Iribarren (2007) for more details. 

 

4 IMPLEMENTATION AND RESULTS 

In order to create a manageable problem, the example from Moreno, Montagna and 

Iribarren (2007) has been modified to account for only 4 periods, but still with an operation 
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horizon of one year. Therefore, some parameters have been changed as shown in Tables 1 and 

2. All other parameters have been kept unmodified. 

Table 1 – Data for the model 

t 
Costs of raw materials, κit ($/kg) Prices of products, npit ($/kg) 

A B C D E A B C D E 

1 2.200 0.500 1.200 0.600 1.300 55.00 47.00 40.00 42.00 48.00 

2 1.733 1.500 2.067 1.400 1.600 53.00 48.00 42.67 44.00 50.67 

3 1.733 1.500 2.500 1.400 1.600 53.00 48.00 44.00 44.00 50.67 

4 2.200 1.500 1.633 0.600 1.000 55.00 46.00 41.33 42.00 48.00 

 εit = 0.0002 $/kg/hr σit = 0.0015 $/kg/hr 

 

As explained before, the demands are the uncertain parameters in the formulation, 

which are specified by a range of lower-upper bounds (DE
L

it-DE
U

it). For each scenario, the 

nominal upper bound on product demands in every time period is affected with a factor 

generated following a normal probability distribution N (1, 0.20). The lower bounds on 

demands for each product are set to 50% of the upper demands. Therefore, the number of 

uncertain parameters for this work is 20. 

Table 2 – Nominal upper bounds on demands 

t 
DE

U
it (x 10

3
 kg)

 †
 

A B C D E 

1 6.40 6.90 8.50 7.50 7.30 

2 5.00 6.40 7.90 7.30 10.00 

3 6.00 7.20 6.90 7.30 8.90 

4 4.50 8.00 8.40 7.50 6.90 

† Lower bounds on demands, DE
L

it, are calculated as 0.5•DE
U

it. 

 

The problem was solved with the techniques described in Section 2 in a AMD A6-3620 

APU system (4 cores) at 2.20GHz with 8Gb of RAM memory, 64bit operating OS, using in 

both cases the GAMS 24.0.2/CPLEX 12.5.0 solver for MILP/LP resolutions (2SSLP 

technique and inner loop of the SbO method). In addition, the MATLAB R2008a package for 

the outer loop, with the GA toolbox used with default options. 

For the SbO technique, it was determined that 50 samplings in the inner loop per 

solution were sufficient to obtain a representative ENPV value (i.e., in consecutive tests at or 

near the optimal solution, the ENPV did not vary enough as to change the combination of 

outer loop variables at the optimal solution). 
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4.1 Determination of the optimal solution 

The characteristics of the problem described in the previous section allow determining 

its optimal solution before applying the techniques proposed in this work. 

In Equation (4) the expected net present value is equal to the incomes from sales (1
st
 

term) minus the cost of raw materials (2
nd

 term), minus the cost of inventories (3
rd

 term) 

minus the capital cost for all the equipment installed in the plant (4
th

 term is the cost for batch 

units, 5
th

 term is the cost for semi-continuous units, and 6
th

 term is the cost for storage tanks). 

In both techniques, the planning decisions (handled by the second-stage variables in the 

2SSLP method and the inner loop LP in the SbO approach), give flexibility to the plant in 

order to fulfill at least minimum demands. However, this flexibility is limited by the decisions 

taken in the first-stage or outer loop, i.e., the plant structure. 

In some scenarios, for a given plant structure, it can happen that no combination of 

planning variables allow fulfilling demands, leading to infeasibilities. If a given plant 

structure does not fall in infeasibilities for all the generated scenarios, the ENPV becomes the 

cost of the installed plant plus the aggregated effect of all the scenarios. This aggregated 

effect is the mean of the applied perturbation, which (for the normal distribution perturbations 

utilized in this work) is the nominal value for the demand. 

Therefore, the ENPV, for a given plant structure for which no infeasibilities are found, 

is equal to the case where no parametric uncertainty is considered. On the other hand, if the 

installed plant cannot comply with minimum demands in one or more of the generated 

scenarios, the 1
st
 term of Equation (4) becomes infeasible or null (depending on the utilized 

solving technique) for that scenario and the aggregated effect decreases with respect to the 

nominal value. 

For the present problem, values of non-uncertain parameters and perturbations applied 

to demands have been chosen to produce the situation described in the previous paragraph for 

first-stage variables combinations at the optimum solution and near it. Therefore, solving the 

problem without considering parametric uncertainty gives a solution whose corresponding 

first-stage variables are the same as those obtained in the optimal solution for the problem 

considering uncertainties. 

The optimal plant structure for the non-uncertainty case is (V2, V3, V6) = (2000 L, 1500 

L, 100 L) with 2 units for the first batch stage and 1 and 2 units for the next two batch stages, 

and (R1, R4, R5, R7) = (30 HP, 2.5 m
2
, 3 m

2
, 30 HP) for semi-continuous stages, with 2, 2, 3 
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and 1 units operating in parallel respectively, and a storage tank after the second batch stage 

with size (VT2) = (4000). The objective function value for this solution is $2,766,549.07. 

 

4.2 RESULTS 

Table 3 shows the solution performance of both techniques and the size of the problem 

that each solved. 

Table 3 – Solution performance of the 2SSLP and SbO techniques 

 2SSLP SbO 

Objective function value $2740130.32 $2784888.82 

CPU time 23306.908 secs 25206.702 secs
†
 

Problem size 

50 scenarios 

131924 eqs. 

137109 continuous vars. 

70 binary vars. 

Population: 200 

Generations: 81 

Unique solutions: 3100 

Best solution found at generation 

16 

Valid solutions
††

 2
3
*3

4
*6

3
*6

4
*5

2
 = 4534963200 

Found optimal solution? Yes Yes 
†
 Algorithm stopped by time limit (25000 seconds) violation at generation 81. 

††
 Total quantity of valid combinations of the integer variables. 

 

Figure 2 shows the convergence of the objective function value with the number of 

scenarios utilized. The dotted line represents the average ENPV value. As expected, the 

computing time to solve the example in each instance increases with the number of scenarios. 

When the ENPV value starts to stabilize the computing time is in the range of 20000-25000 

seconds. Therefore, the instance of 50 scenarios has been chosen as the optimal number and 

its statistics presented in Table 3. 

Figure 2 – Objective function convergence for the 2SSLP technique 
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Figure 3 presents the solving performance of the SbO technique. For a better 

comparison with the 2SSLP method, the algorithm was forced to run until a computing time 

limit of 25000 seconds. But, it can be seen that the optimal solution is found very early in the 

process, in generation 16. In the following generations, this solution is held as the optimal, but 

the algorithm continues looking for other solutions that could improve the result, therefore 

maintaining a great gap between the best and the worst individual in each generation. The 

objective function value in the worst individual of each generation varies greatly due to the 

presence or not of unfeasible scenarios, but the average number per individual stabilizes 

around generation 10. 

Figure 3 – Objective function convergence for the 2SSLP technique 

  

 

As can be seen from Table 3 and Figure 2 and 3, while both techniques find the optimal 

solution, the SbO algorithm takes less than half of the computing time. The ENPV of both 

techniques differ from the non-uncertainty considered case. The reason for this difference is 

that the discretization of the uncertain parameters does not allow for a totally smooth 

representation, but in both cases the difference is less than 1%. 

We can conclude that the SbO technique is better in terms of computing time, but, since 

it utilizes a metaheuristic algorithm, it cannot determine if it has reached the optimal solution. 

 

5 CONCLUSIONS 

This paper compares the performance of two techniques for optimization under 

parametric uncertainty in solving the simultaneous design and planning of a multiproduct 

plant. The problem presented in this work is very interesting and difficult to solve, even more 

if uncertainty is considered. However, its characteristics can be modified to allow for its use 
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as a benchmark for different solving approaches, since an optimal solution for the problem 

can be found before these techniques are applied. 

The techniques compared in this work are a rigorous two-stage stochastic programming 

and a hybrid simulation-based optimization algorithm. The characteristics of both methods 

where manipulated for a more fitted comparison. The SbO approach had a better performance 

in terms of computing time, while both of them reached the optimal solution. However, since 

SbO utilizes a metaheuristic algorithm it cannot ensure having found the best solution, thus 

leading to a potentially waste of computation power and time. 

As a future work, the two-stage stochastic programming with relaxation techniques 

should be included in the comparison, since their characteristics can lead to a better 

performance. 
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