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This paper presents a method to determine the Drucker–Prager parameters of pressure-dependant

elastic-perfectly plastic polymeric materials by means of the depth-sensing indentation technique. This

is achieved via an inverse analysis of the load–displacement data resulting from two tests performed

with Berkovich and spherical tips. The well-posedness and the effective range of application of the

proposed method are carefully assessed first. Then the method is tested for two elasto-plastic materials

with mild initial strain-hardening (HDPE and PMMA), and the results are compared to those measured

using conventional tensile and compression tests. It is found that the pressure-sensitivity indices can be

accurately predicted, while the yield stress predictions in tension and compression fall within the non-

linear portion of the uniaxial stress–strain curves, i.e., inside the region where plastic deformation

begins.

& 2011 Elsevier Ltd. All rights reserved.
1. Introduction

Since the appearance of depth-sensing indentation, great
efforts have been dedicated to interpret the load–displacement
curves in order to extract the mechanical properties of the
indented substrates. Unlike traditional tests, e.g., uniaxial tension
and compression, determination of mechanical properties using
depth-sensing indentation requires some previous knowledge of
the material behaviour.

Regarding the determination of Young’s modulus for elastic
materials, there is already a widely accepted method developed
by Oliver and Pharr [1]. However, many materials depart from the
same initial assumptions; hence, specific corrections for the
Oliver and Pharr method have been proposed for other cases,
such as viscoelasticity [2], excessive plastic deformation [3,4],
sharp indentation [5], superhard materials [6] and surfaces with
residual stresses [7]. Especially, plastic behaviour is a more
complex problem and there is a larger diversity of behaviours.
For example, indentation methods have already been developed
to characterize the yield response of isotropic [8–13] and aniso-
tropic [14] materials, which respond to the Ramberg–Osgood law,
semi-brittle elasto-plastic materials with crack formation during
indentation [15], and multilayered composites [16].
ll rights reserved.
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The indentation responses of materials exhibiting hydrostatic
pressure-sensitive plastic behaviour, as is the case of some ceramics
[17,18], bulk metallic glasses [19,20] and polymers [21,22], have
also been studied. In general, the plastic behaviour of such materials
can be described by the Mohr–Coulomb and Drucker–Prager yield
criteria [23–27]. The Drucker–Prager [28] yield criterion is a general-
isation of Coulomb’s law, which is suitable for soil mechanics where
the shear stress required for simple slip is linearly dependant on the
normal pressure acting on the slip surface. The Drucker–Prager yield
criterion has been successfully used to describe the plastic beha-
viour of polymers [29]. For example, it explains the slip-line patterns
formed around notch tips in epoxies under remote tension and
compression [30]. Finite element analyses (FEA) of Berkovich and
Vickers indentations of elastic–plastic solids obeying both the
Mohr–Coulomb and Drucker–Prager criteria were performed by
Giannakopoulos and Larson [18] and Vaidyanathan et al. [19] to
study the indentation response of ceramics and bulk metallic
glasses. They showed that the indentation depth at a given indenta-
tion load decreased with the pressure-sensitivity index of the
material due to the enhancement of the mean contact pressure.
Narasimhan [31] developed a set of analytical equations to calculate
the stress and displacement fields of a tip pressing against a material
that responds to the hydrostatic pressure-dependant Drucker–
Prager yield criterion.

Despite the above-mentioned research, there is yet no estab-
lished method to determine the properties of pressure-sensitive
plastic materials from the load–displacement curves resulting from
depth-sensing indentation tests. This work aims to contribute
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towards the development of such a method. Assuming that the
materials display an elastic-perfectly plastic behaviour and that its
plastic behaviour obeys the Druker–Prager yield criterion, a method
is proposed herein to extract the values of two independent material
properties from the indentation load–displacement curves. That is,
yield points in compression and in tension. The pressure-sensitivity
index is given by the ratio of these two parameters.

Three main quantities can be measured in an indentation load–
displacement curve: the curvature of the loading curve, the initial
slope of the unloading curve and the ratio of residual depth to
maximum indentation depth. A relation between these three
quantities was analytically derived by Tho et al. [32] for conical
indenters. The existence of an intrinsic relation amongst three
quantities suggests that only two are independent. Thus, only two
of three quantities can be obtained from the load–displacement
curve arising from a single test using a given indenter geometry.
This means that the inverse analysis of a single load–displacement
curve to recover three unknown quantities will yield non-unique
combinations of elasto-plastic material properties. Cheng and Cheng
[33] and Venkatesh et al. [34] also discussed the uniqueness issue
and presented a number of computationally non-unique cases.
Hence, the inverse approach proposed in this work to determine
the plastic properties of pressure-sensitive polymeric materials uses
two indenter geometries. Similar methods have also been developed
to evaluate the strain-hardening plastic properties of other materials
like metals [9–11].

The plastic properties of high-density polyethylene (HDPE) and
polymethylmethacrylate (PMMA) in bulk form are determined using
the proposed methodology and compared to those directly mea-
sured from the conventional tensile and compression tests.
Fig. 1. Axisymmetric finite element model for Berkovich and spherical indenta-

tion simulations.

2. Finite element (FE) simulation

2.1. Material model

The materials used for FEA were assumed to obey the
Drucker–Prager yield criterion to behave like elastic-perfectly
plastic (i.e., no work hardening) and to have time-independent
mechanical reactions. With these assumptions, the mathematical
description of the plastic behaviour can be reduced to two
independent parameters: the pressure-sensitivity index, tan a,
and the yield point in compression sc.

The Drucker–Prager yield function is given by [35]

fðsijÞ ¼ seþsm tana�ð1�1
3tanaÞsc ¼ 0 ð1Þ

where

sm ¼
1

3
skk and se ¼

ffiffiffiffiffiffiffi
3J2

p
ð2Þ

are the hydrostatic stress and von Mises equivalent stress,
respectively.

The pressure-sensitivity index is often expressed in terms of
the yield points in tension, st, and in compression, sc, such that

tana¼ 3
m�1

mþ1
ð3Þ

where

m¼
sc

st
ð4Þ

2.2. Computational model

An axisymmetric FE model was developed to simulate the
indentation response of elasto-plastic pressure-sensitive materi-
als using the FEA software ABAQUS/Standard [36] (see Fig. 1).
The sample size was set thirty times higher and wider than the
indentation depth. A convergence analysis was first performed to
assess the dependence of the results with the model discretisa-
tion. Hence, it was found that a mesh constructed using 15,000
four-noded quadrilateral elements (CAX4R) with refinement
towards the contact zone provides mesh-independent results.
The element size in the contact zone was set 100 times smaller
than the indenter radius (see Fig. 1). The contact between the
indenter and the mesh was assumed frictionless. The indenter
was modelled as an analytic surface. Finite deformation formula-
tion was used for all simulations.

Two indentation geometries were simulated: Berkovich (tri-
angular pyramid with a face angle of 801) and spherical. One of
the advantages of these two geometries is that the plastic
response is almost unaffected by friction [9,37].

For the conical indenter, the projected contact area is
a¼ph2 cot2 b, where b is the angle between the substrate and
the cone. In particular, for a Berkovich indenter, a¼24.56h2. In
this study, the 3D geometry of the Berkovich indenter was
assimilated in the axisymmetric models to a conical one for
which the projected area/depth ratio was identical to that of the
Berkovich indenter. This yielded an apex angle of the equivalent
cone p/2�b¼70.31. This same procedure has been used by other
investigators [11].

The performance of the FE models were verified by comparing
the results to those reported by Dao et al. [11] for the Berkovich
indenter and by Cao et al. [10] for the spherical indenter. Excellent
agreements were obtained in both cases.

The FE models were used to conduct a comprehensive para-
metric study for the range of mechanical properties comprising
many polymers. In total, 100 FE models were solved. The ranges



2

3

4
Berkovich indenter

E = 5 GPa; σc = 140 MPa; tanα= 0
(Pressure insensitive plastic material)

E = 5 GPa; σc= 60 MPa; tanα= 0.39
(Pressure sensitive plastic material)

P 
(m

N
)

R. Seltzer et al. / International Journal of Mechanical Sciences 53 (2011) 471–478 473
of material properties examined are Young modulus 1rEr
5 GPa, yield point in compression 20rscr400 MPa and pressure-
sensitivity index 0rtan ar0.6 (or 1rmr1.5, see Eqs. (3) and (4)).
Poisson’s ratio is fixed at n¼0.4. The combination of these properties
yields 30rEn/sc r120, where En is the so-called reduced modulus
defined by

1

E�
¼
ð1�ni

2Þ

Ei
þ
ð1�ns

2Þ

Es
ð5Þ

The subscripts i and s in Eq. (5) refer to the indenter and the
substrate, respectively.
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Fig. 2. Loading–unloading curves obtained from simulation of Berkovich indenta-

tions of a pressure-sensitive and a pressure-insensitive plastic material. The

coincidence in the curves shows the non-uniqueness in the indentation response.

Fig. 3. Plastic zones developed for a Berkovich indenter: (a) pressure-insensitive

and (b) pressure-sensitive plastic materials.
3. Experimental tests

Indentation, tension and compression tests were conducted on
a high-density pipe-grade polyethylene (HDPE) kindly provided
by Repsol YPF [38], and on a commercial-grade polymethyl-
methacrylate (PMMA). FTIR studies showed that this type of
PMMA might have a plasticisation effect on its mechanical
properties. Compression moulded sheets were machined into
standard dumb-bell shaped specimens (gauge length equal to
50 mm) and rods or rectangular prisms (height equal to 5 mm) to
perform uniaxial tensile and compressive tests, respectively.

The mechanical tests were performed with an Instron 5567
testing machine at ambient temperature (20–25 1C). Tensile
elongation was measured using an extensometer with a gauge
length of 50 mm. Since polymers are strain rate dependant,
similar strain rates were applied in all mechanical tests. Thus,
tensile tests were conducted at 5 mm/min and compression tests
at 0.5 mm/min to obtain similar strain rates. Young’s modulus, E,
and yield stress in tension and compression, st and sc, were
determined from the stress–strain curves. In every case,
5 repeated tests were conducted and their results were averaged.

Indentation tests were performed using a fully calibrated
UMIS-2000 nano-indenter (CSIRO, Australia). Details of this
facility were published elsewhere [39]. The nano-indenter has a
displacement resolution 0.1 nm, internal noise uncertainty
o0.1 nm, force resolution 0.75 mN and stage registration repeat-
ability 0.2 mm. Berkovich and spherical (20 mm radius) indenters
were used to perform the indentations. Loading and unloading
rates were chosen to approximate the strain rate of the tensile
and compression tests (�0.0017 s�1). A holding time of 30 s after
maximum load was applied was used to calculate the elastic
modulus. The contact force to detect the surface position was
0.015 mN. Five indentations separated by a distance of 100 mm
were made at ambient temperature for each testing condition.

The reduced elastic modulus En was calculated using the
Oliver–Pharr model [1] from spherical indentations at depths
smaller than 2 mm to avoid excessive errors due to pile-up. To
eliminate the creep effects, the indentation stiffness value, S, was
corrected with the formula developed by Ngan and Tang [3].
4. Forward analysis

4.1. Single indentation test: non-unique solution

Numerical modelling showed that the indentation tests of two
materials with different sets of plastic properties (sc and tan a)
can yield the same loading–unloading curve. This non-uniqueness
of the results is shown in Fig. 2 for the cases of a pressure-sensitive
material, with E¼5 GPa, sc¼60 MPa and tan a¼0.39, and a pres-
sure-insensitive material, with E¼5 GPa, sc¼140 MPa and tan a¼0,
tested using a Berkovich indenter. The corresponding develop-
ments of the plastic zones at identical indentation depths are
shown in Fig. 3. It can be seen that despite the coincidence of the
loading–unloading curves for both materials, their plastic zones
are significantly different. While the pressure-insensitive material
flows only underneath the indenter tip, the plastic zone of the
pressure-sensitive material spreads to the free surface. Further-
more, the plastic zone of the pressure-sensitive material is larger
than that of the pressure-insensitive material. Hence, it is
expected that indentations made with another tip geometry,
which would generate a different stress field, will provide two
distinct load–displacement curves. With this aim, spherical
indentations on both materials were simulated. The results are
plotted in Fig. 4, where it is clear that spherical indentation does
yield two different load–displacement responses.

Conversely, it was found that two pairs of sc and tan a values
that yield identical load–displacement curves for the spherical
indentations can show different load–displacement curves for the
Berkovich indentations. One of these cases is illustrated in Fig. 5.

4.2. Yield point

If the mechanical behaviour of an elastic-perfectly plastic
material is completely defined in terms of the reduced modulus,
En, and the yield point, sy, the load P in Berkovich and spherical
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indentation tests can be expressed, respectively, as

P¼ PðE�,syðBerkovichÞ,h,bÞ ð6Þ
and

P¼ PðE�,syðsphericalÞ,h,RÞ ð7Þ

By applying the P theorem in dimensional analysis to Eq. (6)
this gives

P¼ syðBerkovichÞh
2
YBerkovich

1

E�

syðBerkovichÞ
,b

� �
ð8aÞ

which is more conveniently expressed by

Ci ¼
P

h2
¼ syðBerkovichÞ

YBerkovich

1

E�

syðBerkovichÞ
,b

� �
ð8bÞ

Similarly, for Eq. (7), this yields

P¼ syðsphericalÞh
2
Yspherical

1

E�

syðsphericalÞ
,
h

R

� �
ð9Þ

The equations for the functions
QBerkovich

1 and
Qspherical

1 that relate
P to h, En, sy (Berkovich) and sy (spherical) are given in Appendix A.
4.3. Pressure-sensitivity index and yield point in compression

It has been stated in Section 4.1 that for each pressure-
dependant material whose plastic behaviour can be described
by sc and tan a, there is a pressure-independent material, which
yields the same load–displacement response for the same inden-
tation test. Consider, for example, the case illustrated in Fig. 2. The
pressure-dependant material with sc¼60 MPa and tan a¼0.39
has the same Berkovich indentation response as the pressure-
independent material with sc¼140 MPa and tan a¼0. Hence,
sy(Berkovich)¼140 MPa. However, there are potentially infinite
(sc, tan a) pairs whose sy(Berkovich)¼140 MPa. In order to deter-
mine a function that relates sy(Berkovich) to the pairs (sc, tan a) that
yield the same indentation behaviour, 50 FE models with different
combinations of materials properties were solved. These results
are reported in Fig. 6, where the values of the ratio sy(Berkovich)/sc

that yield the same P–h response in Fig. 2 are plotted as a function
of tan a for different En/sc values.

The curves in Fig. 6 can be fitted to a function, tan a, of the
following form:

tana¼ A�1 ln
syðBerkovichÞ

sc

� �
ð10Þ
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where A is given by

A¼�0:52627ln
E�

sc

� �
þ0:41239 ln

E�

sc

� �� �2

�0:042340 ln
E�

sc

� �� �3

ð11Þ

The above fit predicts sy(Berkovich)/sc values within 3.5% error
from the FEA solutions.

As for the Berkovich indenter, a function that relates the pairs
(sc, tan a) that yield the same indentation curve can be found for
the spherical indenter (see Fig. 7). This is

tana¼ 0:87444ln
syðsphericalÞ

sc

� �
�0:16419 ln

syðsphericalÞ

sc

� �� �2

ð12Þ

However, unlike the Berkovich indentations, it is noted that
the function, tan a, for spherical indentations is independent of
En/sy(spherical).
5. Inverse analysis

5.1. Algorithm

Based on the results and relations given in Section 4, an
algorithm for the determination of En, sc and tan a for pressure-
sensitive plastic materials is presented next. The input data are
the P–h curves for three indentation tests:
�
 loading curve of the Berkovich test with a relative indentation
depth up to h/R¼0.1;

�
 loading curve of a spherical-tip test with a relative indentation

depth up to h/R¼0.1 and

�
 the load–hold–unload curve of a spherical-tip test with a

relative depth h/Ro0.1.

Step 1: Compute the reduced modulus En by means of the
Oliver–Pharr [1] model and the Ngan and Tang [3] correction for
creep using the data from the load–hold–unload P–h test with the
spherical tip.

Step 2:
�
 Fit the P–h curve of the Berkovich indentation test using a
function of the form P¼Cih

2 to determine Ci.
�
 Compute sy(Berkovich) using Eq. (A.1) and En obtained in
Step 1.

Step 3:
�
 Determine the load at h¼0.1R from the P–h curve of the
indentation test performed with the spherical tip.

�
 Compute sy(spherical) using Eq. (A.2) and En obtained in Step 1.

Step 4:
�
 Set up a system of equations using Eqs. (10) and (12) with
values of En, sy(Berkovich) and sy(spherical) determined in the
previous steps.

�
 Solve the system of equations to find sc and tan a using the

Newton method.

�
 Use Eqs. (3) and (4) to determine st.

5.2. Effectiveness of the algorithm

A first point to consider when using the above proposed
algorithm is its application range. It must be noted that the range
of properties analysed to develop the algorithm is 30oEn/

sco120 and 0otan ao0.6 (or 1omo1.5). Thus, solutions out-
side this range are not reliable.

Another issue that must be considered is the well-posedness of
the inverse problem. According to Hadamard [40], a problem is
well-posed if the following conditions are satisfied:
�
 a solution exists (existence);

�
 the solution is unique (uniqueness) and

�
 the solution depends continuously on the problem data

(stability).
In particular, the last condition means that a small change in the
problem data does not cause an abrupt, disproportionate change in
the solution. This property is especially important for inverse ana-
lyses, since perturbations arising from measuring inevitable errors,
such as those in experimental data. Discussion on the satisfaction of
the above conditions for the problem is next given, and the range of
properties where this method yields reliable results is established.

5.2.1. Existence and uniqueness

The existence and uniqueness of the solutions were checked
for the outputs of the 100 FE models cases solved in Section 2. In
every case the algorithm returned the values of the prescribed
mechanical property values accurately. It should be noted that the
solutions of the system given by Eqs. (10) and (12) must be found
always within the limits of the interpolations:

1r
syðsphericalÞ

sc
r2:25 ð13Þ

and

1r
syðBercovichÞ

sc
r4 ð14Þ

5.2.2. Stability

The stability analysis assesses the sensitivity of the results to
small perturbations in the input values. The stability of a problem
can be assessed by means of the condition number k (see Appendix
B). The better conditioned is a problem, the closer k is to 1. The
function k is plotted in Fig. 8 within the analysed range for the input
variables, which is 30rE�=sc r120 and 1r ðsyðsphericalÞ=scÞr2:25.
It can be seen that the stability of the method deteriorates rapidly
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when En/sco40. In such a case, the sensitivity to errors in the input
data also increases when sy(spherical) /sc decreases, i.e., when the
material yield point has a weak dependence on pressure. In contrast,
the method is well-posed in all the range of sy (spherical) /sc when
En/sc440.

The physical explanation for the deterioration in the well-
posedness of the method is that as En/sc decreases, the indentation
response tends to be more elastic, and hence its plastic properties
are more difficult to identify. In such a case, a means to extend the
application range of the method would be to use combinations of
more acute indenters (like conical indenters with apex angles less
than 70.31) to develop larger plastic zones under the indenter tip.
However, cautions must be exercised because some experimental
difficulties may arise, such as the influence of friction in the
indentation response and the roundness of the indenter tip.
sion tests for (a) HDPE and (b) PMMA.
6. Applications to PMMA and HDPE

6.1. Experimental results

Typical true stress–true strain curves for HDPE and PMMA (see
Section 3) in tension and compression are shown in Fig. 9. Young’s
moduli, E, were calculated from the initial slope for both materi-
als. The points on the curves where plastic deformation begins are
within the ranges delimited by the initial departure from linearity
and the maximum stress. It is a common practice in polymers to
assimilate the yield stress to the maximum stress [41]. Alterna-
tively, in absence of a maximum stress, as it is in the case of the
compression curve of HDPE (see Fig. 9(a)), the yield stress may be
obtained from the intersection of the straight lines, which result
from the linear extrapolations of the elastic and post-yield
portions of the true stress–true strain curve. The yield stresses
in tension, st, and compression, sc, were hence determined for
both materials using the previously described procedure.

Typical P–h curves resulting from the indentation tests on
HDPE and PMMA using the Berkovich and spherical tips are
plotted in Fig. 10 (shown as continuous curves).

6.2. Application of the inverse method

The inverse problem in Section 5 assumes an elastic-perfectly
plastic material behaviour with a sharp switch between the initial
elastic regime and the plastic plateau. However, as shown in
Fig. 9, both HDPE and PMMA present a smooth and gradual
transition between their elastic responses and the plastic pla-
teaus. Moreover, it can also be argued that these smooth transi-
tions represent the strain-hardening behaviour of the materials.
The determination of the strain-hardening parameter would
require an extra loading curve for an indentation made with a
third tip geometry. Hence, a modified inverse method would be
required. Such a method based on the indentation results of three
indenter geometries would not only be more arduous to imple-
ment, but it would be applicable only to a specific stress–strain
response, which should be known a priori. Therefore, strain-
hardening was neglected in the present analysis, giving priority
to practicality over accuracy.

The material properties determined from the experimental
P–h curves in Fig. 10 using the algorithm introduced in Section 5.1
are given in Table 1. In both cases, the solution procedure was
well-conditioned, with En/scE79 and En/scE60 for HDPE and
PMMA, respectively. The indentation elastic moduli, E, and the
pressure-sensitivity index, sc/st, given in Table 1 agree quite well
(within 13% and 5% error, respectively) with those values mea-
sured directly from the tension and compression tests shown in
Fig. 9. Further, the yield stresses in tension and compression
obtained from the inverse method are always within the range
between the initial departure from linearity and maximum stress
in the uniaxial tests (see Section 6.1).
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Fig. 10. Experimental and simulated P–h curves for HDPE and PMMA due to

Berkovich and spherical indentations.

Table 1
Mechanical properties of HDPE and PMMA determined from experimental P–h

curves using the inverse method proposed in Section 5.1.

E (GPa)a sc (MPa) st (MPa) sc/st

HDPE 1.08 (70.08) 17.1 12.8 1.34

PMMA 4.09 (70.03) 81.1 62.2 1.30

a To calculate E, the Poisson ratio was taken from published data assuming

n¼0.45 for HDPE (Lai J, PhD thesis, Delft University, 1995) and n¼0.4 for PMMA

(http://www.goodfellow.com/).

Table 2
Plastic properties of HDPE and PMMA determined from the simulated curves

shown in Fig. 10 using the inverse method proposed in Section 5.1.

Depth-sensing indentation (simulated)

sc (MPa) st (MPa) sc/st sy(Berkovich)

(MPa) [11]

sy(spherical)

(MPa) [10]

HDPE 20.4 14.9 1.37 48.3 37.5

PMMA 74.5 59.8 1.25 135 112
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An interesting question may be asked. Are the indentation
curves simulated using two sets of material properties for HPDE
and PMMA: (a) actual experimental stress versus strain responses
in Fig. 9 and (b) assumed elastic-perfectly plastic behaviours with
material constants (E, sc and st) given in Table 1 similar? Fig. 10
plots these simulated P–h curves, which show good agreement
with each other for both materials confirming the equivalency of
the two set of inputs.

Naturally, if the simulated indentation curves in Fig. 10 are
used to obtain the plastic properties using the inverse method in
Section 5.1, such as those shown in Table 2, they should be similar
to the (E, sc and st) values in Table 1, which are derived from the
experimental indentation curves. Indeed they are.
Also reported in Table 2 are the yield stresses, sy(Berkovich) and
sy(spherical), for HPDE and PMMA calculated using the Dao et al.
[11] and Cao et al. [10] methods, respectively. It can be seen that
these values are much larger than the actual values determined
from the tension and compression tests (see Fig. 9). Therefore,
there are limitations of the methods proposed by Dao et al. [11]
and Cao et al. [10] for pressure-sensitive plastic materials.
7. Conclusions

In has been demonstrated in this work that the Drucker–
Prager parameters (pressure-sensitivity index and yield stresses
in tension and compression) of pressure-sensitive polymers can
be determined by means of depth-sensing indentation using a
combination of two different tip geometries and inverse analysis.

An inverse method to determine the Drucker–Prager para-
meters from indentation P–h curves was devised using finite
element simulation. The method is effective and can be reliably
applied to materials for which the ratio of the reduced modulus to
the yield stress in compression is En/sc440.

The proposed method was tested for two elasto-plastic mate-
rials with mild initial strain-hardening, HDPE and PMMA. The
pressure-sensitivity index was predicted with an error less than
5%. In every case the predicted yield stresses fell well within the
stress range delimited by the initial departure from linearity and
the maximum stress in the experimental stress–strain curves.
These results are an improvement with respect to the predictions
using other schemes and methods, which do not account for the
effects of pressure sensitivity and overestimate the yield stresses.

The proposed method can be potentially extended by adding
extra tests with different tip geometries (e.g., conical indenters of
varying angles). In this way, the method will be applicable to
materials with En/sco40 and/or effect of strain-hardening.
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Appendix A

In the case of Berkovich indentation of elastic-perfectly plastic
materials, Dao et al. [11] obtained the following relation:

YBerkovich

1
¼

Ci

syðBerkovichÞ
¼ 29:267�30:596 ln

E�

syðBerkovichÞ

� �� �

þ13:635 ln
E�

syðBerkovichÞ

� �� �2

�1:131 ln
E�

syðBerkovichÞ

� �� �3

ðA:1Þ

http://www.goodfellow.com/
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where Ci is the coefficient of the interpolating equation P¼ Cih
2 of

the loading curve in a sharp indentation test.
For spherical indentation of elastic-perfectly plastic materials,

when h¼0.1R, Cao and Lu [42] found that

Yspherical

1
¼

P9h=R ¼ 0:1

syðsphericalÞh2
¼�64:419þ25:055 ln

E�

syðsphericalÞ

� �� �

þ11:500 ln
E�

syðsphericalÞ

� �� �2

�1:356 ln
E�

syðsphericalÞ

� �� �3

ðA:2Þ

Cao et al. [10] have provided a set of similar equations for depths
h/R between 0.01 and 0.1. The latter was chosen given its algorithm
has the highest stability. This becomes important when the ratio En/

s(spherical) is small. From a physical point of view, the indentation
depth should be sufficient to deform the material plastically.
Appendix B

The condition number is given by

CondðxÞ ¼
xf 0ðxÞ

f ðxÞ

����
���� ðB:1Þ

where x is the input, f(x) the output and f0(x) stands for the
derivative of f(x) with respect to x. For a given problem, the
inverse problem is to determine what input would yield a given
output. For the problem of evaluating a function, y¼ f(x), the
inverse problem, denoted by x¼ f�1(y), is to determine, for a given
value y, a value x such that f(x)¼y. From the definition, we see
that the condition number of the inverse problem, k, is the
reciprocal of that of the original problem:

kðxÞ ¼ f ðxÞ

xf 0ðxÞ

����
���� ðB:2Þ

In the analysis carried out in this study:

f ¼ sceA tana ðB:3Þ

y¼ syðBerkovichÞ ðB:4Þ

x¼ sc ðB:5Þ

where A is defined in Eq. (11) and tan a is replaced by Eq. (12).
Hence, the condition number of the inverse problem k is a
function of the reduced modulus, yield point in compression
and the reference yield point in the spherical test:

k¼ g
syðsphericalÞ

sc
,
E�

sc

� �
ðB:6Þ
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