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ABSTRACT. This article deals with the construction of surfaces that are suitable for repre-
senting pentachords or 5-pitch segments that are in the same T {I class. It is a generalization
of the well known Öttingen-Riemann torus for triads of neo-Riemannian theories. Two pen-
tachords are near if they differ by a particular set of contextual inversions and the whole
contextual group of inversions produces a Tiling (Tessellation) by pentagons on the surfaces.
A description of the surfaces as coverings of a particular Tiling is given in the twelve-tone
enharmonic scale case.

1. Introduction

The interest in generalizing the Öttingen-Riemann Tonnetz was felt after the careful
analysis David Lewin made of Stockhausen’s Klavierstück III [25, Ch. 2], where he basically
shows that the whole work is constructed with transformations upon the single pentachord
xC,C#, D,D#, F#y. A tiled torus with equal tiles like the usual Tonnetz of Major and
Minor triads is not possible by using pentagons (you cannot tile a torus or plane by regular
convex pentagons). Therefore one is forced to look at other surfaces and fortunately there
is an infinite set of closed surfaces where one can gather regular pentagonal Tilings. These
surfaces (called hyperbolic) are distinguished by a single topological invariant: the genus or
number of holes the surface has (see Figure 8)1.

The analysis2 of Schoenberg’s, Opus 23, Number 3, made clear the type of transfor-
mations3 to be used. These are the basic contextual transformations (inversions) we are
concerned in this article and they are given in (DEF. 1).

The main result of this paper is given in Theorem 1. We propose a surface of a high genus
as a topological model for pentachords satisfying certain conditions. We give a construction
of this surface in terms of a covering of another surface of smaller genus which carries a

1Not all genera admit a regular pentagonal Tiling.
2Prepint by David Lewin cited in [13].
3In this work again there is a fundamental generating pentachord xB5, D,E,B,C#y and the group of

transformations contain the pT {Iq-class of this pitch segment.
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Figure 1: Excerpt of Les Heures Persanes, Op. 65, IV. Matin Frais dans la Haute Vallée by
Charles Koechlin. Copyright 1987 by Editions Max Eschig.

pentagonal Tiling on it. The structure of the group of contextual transformations is studied
and related to the surface. Many examples of pentachord or 5-pitch segments (and their T {I
classes) including the two examples above fit into this kind of surfaces as a regular Tiling.

In a recent paper Joseph Straus [31] gave an interpretation of passages of Schoenberg’s
Op. 23/3 and Igor Stravinsky’s In Memoriam Dylan Thomas. He uses a different set
of transformations on pentachords or 5-pitch segments: a combination of inversions and
permutations. Straus describes a space for these transformations and it would be interesting
to check whether this kind of contextual groups fits into our framework.

Also, the citations in [20, pag. 49] are an useful source of examples for studying 5-
pitch segments. For instance, A. Tcherepnin uses the different modes of xC,D,E, F, Ay and
xC,D,E5, G, A5y in his Ops. 51, 52, and 53.

We use the dodecaphonic system. This is best suited for Stockhausen or Schoenberg’s
works and it translates into numbering pitch classes modulo octave shift by the numbers in
Z12. However, as we see in the following passages other systems are admissible. For instance,
diatonic with numbers in Z7.
Example 1. The piece IV of Les Heures Persanes, Op. 65 by Charles Koechlin contains
passages like that of Figure 1, where starting with a given pentachord he makes several
parallel pitch translates but in a diatonic sense. In this case you have to assign to the
notes a number in Z7 (for instance, rC,D,E, F,G,A,Bs Ñ r0, 1, 2, 3, 4, 5, 6s). There are 14

pT {Iq-forms for any pentachord.

Example 2. The piano part of Figure 2 from the Ballet Petrushka by Igor Stravinsky also
moves pentachords in a parallel diatonic way. The same observations as in Example 1 apply.

In this article we are not going to pursue the case of a pitch system with numbering in a
general Zm. Our approach requires to study each numbering system on a case by case basis.
Although, I presume a theory over any Zm is possible, but with heavier machinery.
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Figure 2: Piano part of Russian Dance, Part I (No. IV) of the Ballet Petrushka by Igor
Stravinsky: Petrushka, the Moor and the Ballerina suddenly begin to dance, to great aston-
ishment of the crowd.

In Section 3 we introduce the contextual inversions and translation operators. We give
two lemmas relating these operators. Several examples are developed in cases of triads
and tetrachords. Tessellations are introduced. In Section 4 surfaces and Triangle groups
(groups related to Tilings of a given surface) are explored. Several formulas are given on
how to compute the genus in terms of a Tiling of type tF, p, qu (F regular convex p-gons
where q polygons meet at each vertex). Section 5 is devoted to describe the structure
of the transformation group. This group fits into an exact sequence with two terms: a
quotient isomorphic to the dihedral D12 (or a subgroup of it) that maps into the triangle
group of a surface with minimal Tiling, and an abelian subgroup. Our transformation group
is also a semi-direct product of an inversion operator and an abelian group of translation
operators. Section 6 contains the main theorem that gives the construction of a tiled surface
by pentagons so that all transforms of a given pentachord fit together. This surface is a
covering of a genus 13 surface, which is in turn a 2 ´ 1 cover of the genus 4 Bring4 surface.

2. Tone networks

Tone networks (Tonnetz) where invented by Leonhard Euler as a way of visualizing
harmonically related tones by means of a graph where points represent pitches, or by its
dual graph, where points represent tones. The musicologist Hugo Riemann extensively used
these networks in his theory. More recently, group theorists following David Lewin and
Richard Cohn related these ideas with LPR operations [see 3, for a historical perspective].
When we assume enharmonic equivalence and equal-tempered tuning the familiar Öttingen-
Riemann Tonnetz associated with Major and Minor triads becomes double periodic and the
graph can be wrapped around a torus T

2 in a regular way. That is, the torus surface splits
into equilateral (curved) triangle tiles whose sides are the edges of the graph and all of its
vertices have 6 incident edges. Such an object is known as a regular tessellation of type
t3, 6u on the torus.

In a series of papers, Richard Cohn [2, 4] relates the geometry of certain Tonnetze with
a kind of voice leadings which he calls “parsimonious”. This is moving from one tone to a
contiguous tone on the torus Tonnetz. Although this kind of voice leadings seem to have
more to do with acoustic or harmonic proximity [33] rather than motion by a few close notes

4Surface already introduced in the 19th century that can be regularly tiled into 12 pentagons.
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at a time, Tonnetze allow us to decompose Tone space into different fibers: the tori. This
brings a sort of better understanding into the geometry of this complex space. The geometry
of Tonnetze is spelled out by a set of transformations called contextual transformations (the
group generated by LPR operations in case of the Öttingen-Riemann Tonnetz). It was
shown by Lewin in his analysis of Schoenberg’s Opus 23, No. 3, and in general by Fiore
and Satyendra [13] (with a slightly different definition of contextual group) that a quotient
of the group of contextual transformations is precisely isomorphic to the dual of the 24 T´
and I´forms of any pitch segment xx1, . . . , xny [see also 10]5.

3. Pitch classes, Operators and Tilings

Our main objects will be pitch classes of length n. These classes will be vectors whose
entries are real numbers representing pitches modulo 12Z. A pitch shift of 12 is an oc-
tave shift and so pitches live in a circle of length 12 (where 0 ” 12) and pitch classes
of length n are elements of an n´dimensional torus T

n “ pR{12Zqn. That is, we regard
only the octave shift symmetry “O” from the “OPTIC” set of symmetries6 considered in
[1], [see also 34]. Most of the time we will be concerned with the set of integer pitches
t0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11u “ Z12 which are in one to one correspondence with the notes
of the chromatic scale tC,C# “ D5, D,D# “ E5, E, F, F# “ G5, G,G# “ A5, A, A# “
B5, Bu7. These twelve number classes allow addition and multiplication operations as usual
numbers do, but always computing the positive remainder of the division by 12. For instance
p´7q.5 “ 5.5 “ 25 “ 1; 10 ` 7 “ 17 “ 5.
3.1. Main Definitions

The usual translation and inversion operators are defined in Z12: Tnpxq :“ x`n, with n P Z12,
x P Z12 and Ipxq :“ ´x with x P Z12. Also, Inpxq :“ Tn ˝ Ipxq “ ´x`n, n P Z12 and x P Z12

is the inversion around n. Remember that when making computations with these operators
all of them should be carried out in Z12. The group generated by tI, T1u (the T {I group) is
isomorphic to the dihedral group D12. His elements are tT0, T1, . . . , T11, I0 “ I, I1, . . . , I11u
and the following relations hold I2 “ Id, T 12

1
“ Id, I ˝ T1 ˝ I “ T´1

1
. Here Id “ T0 is the

identity operator and the power Tm
1

“ Tm means compose T1 m times.
Each of these operators are defined component-wise on vectors: Tmxx1, x2, . . . , xny :“

xTmpx1q, Tmpx2q, . . . , Tmpxnqy, and Imxx1, x2, . . . , xny :“ xImpx1q, Impx2q, . . . , Impxnqy. On
segments of length n we define our contextual operators to be the operators pij with i ‰ j,
1 ď i, j ď n, defined as follows8:

pijxx1, x2, . . . , xny :“ Ixi`xj
xx1, x2, . . . , xny. (DEF. 1)

5This paper has a nice account for the dictionary between notes and the integers mod 12.
6The vectors will be ordered classes. However, later on we will have to consider the “OP” equivalence,

that is octave shift and permutations of the vector entries. This is the symmetrization of the torus T
n:

SpTnq “ T
n{Sn.

7For short we will denote t “ 10, e “ 11.
8These definition already appears in [13] but comes from earlier work by Lewin et al.
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All of them have order 2, namely p2ij “ Id, and they satisfy some relations that we will state
later.

We also consider the permutation operators τij and σ, 1 ď i ă j ď n. τij transposes only
the i and j coordinates of the vector while σ ciclicaly permutes each coordinate:

τijxx1, . . . , xi, . . . , xj , . . . , xny :“ xx1, . . . , xj, . . . , xi, . . . , xny.

σxx1, x2, . . . , xn´1, xny :“ xx2, x3, . . . , xn, x1y.

The full symmetric group Sn, which has n! elements, is generated by τi,i`1 and σ, for any
i ě 1. Other sets of generators are the following tτ12, τ23, . . . , τn´1,nu; tτ12, τ13, . . . , τ1nu; and
any set containing a 2-cycle and an n-cycle.

3.2. Some Lemmas

In order to prove statements about our contextual operators we find useful to represent them
by matrices with entries in Z12. Operations with matrices should be carried out in Z12 and
statements about matrices will transfer to statements about the elements of the group. So
the contextual operators (as well as the elements of Sn) can be thought of as linear operators
while the elements of the T {I group are in the affine group. Namely, Tm is translation by
the vector xm,m, . . . ,my and Im is inversion plus translation by xm,m, . . . ,my.

We define a new linear operator. For any set of four indexes i, j, h, k, 1 ď i, j, h, k ď n

let

T hk
ij xx1, x2, . . . , xny :“ Txh`xk´xi´xj

xx1, x2, . . . , xny. (DEF. 2)

In case one of the upper indices coincides with a lower index we cancel them and write for
short T k

j “ T ik
ij .

Lemma 1. The contextual operators pij, 1 ď i ă j ď n, satisfy the following relations.

pij ˝ phk “ T hk
ij , for any i, j, k, l, (1)

σi´1 ˝ pi,i`1 “ p12 ˝ σi´1, 2 ď i, (2)

τij ˝ phj “ phi ˝ τij , h ă i ă j, (3)

τ2i ˝ p1i “ p12 ˝ τ2i, 3 ď i. (4)

Proof. First notice that by (DEF. 1) we have pij “ pji. So we consider those pij with i ă j.
We have that pij ˝ phkxx1, x2, . . . , xny “ pijIxh`xk

xx1, x2, . . . , xny. Now λ “ Ixh`xk
pxiq `

Ixh`xk
pxjq “ 2pxh ` xkq ´ pxi `xjq, and applying Iλ to an element Ixh`xk

pxrq “ xh `xk ´ xr

we get xh ` xk ´ xi ´ xj ` xr. This shows (1).
Compute p12σ

i´1xx1, x2, . . . , xny. Evaluated on each coordinate xr gives σi´1px1q `
σi´1px2q ´σi´1pxrq “ xi ` xi`1 ´ σi´1pxrq, and this is precisely the left hand operator
in (2) when evaluated on the coordinate xr. This proves (2) in case i ă n. If i “ n we make
the convention i ` 1 “ 1 and the result also hods.
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Since τij exchanges the entries xi and xj , the right hand side of (3) on coordinate xr takes
the value xh ` xj ´ xr if r is different from either i or j. On xi the right hand side is equal
to xh and on xj is equal to xh ` xj ´ xi. An easy checking gives the same values on the left
hand side of (3). Finally (4) is a consequence of (3). ˝

Lemma 2. The set of operators pij’s and T hk
ij ’s satisfy the following with respect to a trans-

lation Tm and inversion I.

pij ˝ Tm “ Tm ˝ pij for any i, j, indices and m P Z12, (5)

pij ˝ I “ I ˝ pij for any indices i, j, (6)

T hk
ij ˝ Tm “ Tm ˝ T hk

ij for any i, j, h, k, indices and m P Z12, (7)

T hk
ij ˝ I “ I ˝ T hk

ij for any indices i, j, h, k. (8)

Thus, any subgroup generated by a set of T hk
ij ’s is abelian. Moreover, T hk

ij “ T h
i ˝ T k

j ,

pT hk
ij q´1 “ T

ij
hk, and the subgroup generated by any puv and T hk

ij is isomorphic to the dihedral
group D12.

Proof. To show (5) we check the formula for m “ 1. pijT1xx1, x2, . . . , xny “ pijxx1 ` 1, x2 `
1, . . . , xn `1y “ xxi `xj ´x1 `1, xi `xj ´x2 `1, . . . , xi `xj ´xn `1y “ T1pijxx1, x2, . . . , xny.
Formula (6) is also straight forward pijIxx1, x2, . . . , xny “ pijx´x1,´x2, . . . ,´xny “ x´xi ´
xj ` x1,´xi ´ xj ` x2, . . . ,´xi ´ xj ` xny “ Ipijxx1, x2, . . . , xny. By virtue of formula (1)
we get (7) and (8) from (5) and (6). Any subgroup generated by a set of T hk

ij ’s is abelian
because of (DEF. 2) and (7). Also, since puv has order 2 and T hk

ij has order 12 in general9,
it will suffice to prove that puvT hk

ij puv “ pT hk
ij q´1. Now puvT

hk
ij puv “ puvpijphkpuv “ T ij

uvT
uv
hk “

T
ij
hk “ pT hk

ij q´1
˝

3.3. Coxeter groups

As remarked in [3.1] after (DEF. 1), the operators pij ’s are symmetries. However, because of
equation (1) they satisfy ppijphkq12 “ Id since pT hk

ij q12 “ T 12

xh`xk´xi´xj
“ T12pxh`xk´xi´xjq “ T0.

So at least, the group generated by these contextual transformations is a quotient of the
Coxeter group abstractly10 generated by pij’s and with relations p2ij “ ppijpklq

12 “ Id.

Definition 3. A Coxeter group is a group defined by a set of generators tR1, R2, . . . , Rsu
and relations tR2

i “ pRiRjq
mij “ Id, 1 ď i ď s, mij ě 2 positive integers for i ă ju.

9We make the distinction between T hk
ij applied to a generic pitch class and to a particular pT {Iq set

generated by a fixed pitch class xx1, x2, . . . , xny. In the first case, since any values for the entries of the
vector can occur (in particular, a vector for which xh ` xk ´ xi ´ xj “ 1), we get that pT hk

ij q12 “ Id. As for

the second case, the order of T hk
ij can be any divisor of 12, namely 2, 3, 4, 6, or 12.

10This means that we are regarding the pij ’s as the generators of a Coxeter group merely with the relations
satisfied by Coxeter groups and no extra relation.
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Coxeter groups are usually infinite but have nice geometric realizations as reflections
about hyperplanes in n-dimensional Euclidean spaces [9, chap. 9]. Also, some of these
groups are presented with two generators (one of them a reflection), and in these cases the
target space is a surface [9, chap. 8].

The symmetric group Sn can be presented with different sets of generatos and rela-
tions [9, chap. 6] and in particular as a quotient of a Coxeter group in the generators
tτ12, τ23, . . . , τn´1,nu.

3.4. Regular Tilings

LPR operations on a triadic segment are just the operations induced by the group G3

generated by tp12, p13, p23u [10]. The Öttingen-Riemann torus is constructed by associating
with the segment xx1, x2, x3y an oriented equilateral triangle with consecutive vertices t1, 2, 3u
in correspondence with the notes of the segment. Then one reflects this “Tile” along the side
ij (meaning reflecting by pij) and glues the two tiles along the common side. One continues
in this way by applying all the elements of G3 and hopes for the tiles to match together into
a surface S.

A Tiling on a surface S by a convex polygon T (for instance a regular polygon) is
the action of a group on S such that you can cover the surface S with translations of T by
elements of the group in such a way that two tiles are either disjoint, they meet at a common
vertex or they meet along a common side (perfectly interlocking with each other). “Tilings”
or “Tessellations” with a pattern Tile T on a surface S are not always possible; they depend
on the shape of the tile and the topology of the surface. Tilings on the plane R2 or the sphere
S
2 (polyhedra) described in a mathematical fashion were basically initiated by Kepler in his

book [23]. Tilings in the plane with different shapes, patterns and group of symmetries are
thoroughly studied in [18] and polyhedra in [8]. A more recent account on Tessellations and
Symmetries is in the beautiful book by Conway et al. [7].

The problem of finding a Tiling on a surface S by a number F of equal regular (possibly
curved) polygons with p sides such that at each vertex the same number q of (incident)
polygons meet is called the problem tF, p, qu on S. When there is no regarding of the number
F of tiles or faces we call it simply the problem tp, qu on S. Solving this problem depends
on the group of automorphisms that a surface S admits and an attempt to classifying them
is done in a series of papers (at least up to genus 101) by Conder et al. [5, 6]. For instance,
as well known, the only possible Regular Tessellations on the sphere S

2 are the usual regular
simple polyhedra:

1. the regular tetrahedron t3, 3u, with group of symmetries of order 12: A4 (the even
permutations in S4),

2. the cube t4, 3u and the octahedron t3, 4u, with group of symmetries of order 24: S4,

3. the dodecahedron t5, 3u and the icosahedron t3, 5u, with group of symmetries of
order 60: A5 (the alternating group of S5).
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Figure 3: incidence for the segment x0, 1, 9y at vertex 0

In general, if a finite Tessellation on a surface S is found, the number of faces divides the
order of the group of symmetries. On the torus the only possible Regular Tessellations are
of type t4, 4u, t6, 3u and t3, 6u. In this case any number of faces are allowed as long as they
close up to a torus.

An exploration of the possibility of drawing Regular Tilings in Computer Graphics is
given in the paper by van Wijk [36].

3.5. Trichords

Now we deduce the abstract structure of the group G3 defined in [3.4] in order to explain
the construction of the torus. By formula (2) we have p23 “ σ´1p12σ and p13 “ σ´2p12σ

2.
Therefore it is natural to map G3 into the group generated by tp12, σu. In order to say
something about this new group we try to find relations between p12 and σ. Write them as

matrix operators: p12 “
´

0 1 0
1 0 0
1 1 ´1

¯
, σ “

´
0 1 0
0 0 1
1 0 0

¯
. Then z “ σp12 “

´
1 0 0
1 1 ´1

0 1 0

¯
, and one checks

by computing successive powers of z that z6 “ Id. So the group generated by tp12, σu is
contained in the “rotation” group: xA,B | A2 “ Id, B3 “ Id, pB´1Aq6 “ Idy. Such groups
appear precisely as generator groups of Regular Tilings. The introduction of σ together
with the contextual transformations (inversions) pij’s makes sense geometrically since σ is a
rotation of the triangle vertices.

We make the following algebraic convention: glue the triangle associated to the ordered
vector xx1, x2, x3y with the triangle associated with xx1, x4, x2y along the side xx1, x2y, if and
only if x4 “ Ix1`x2

px3q.

Example 3. We show in the following example the successive tiles about the first vertex
by applying z: x0, 1, 9y

z
ÝÑ x0, 4, 1y

z
ÝÑ x0, 3, 4y

z
ÝÑ x0, e, 3y

z
ÝÑ x0, 8, ey

z
ÝÑ x0, 9, 8y

z
ÝÑ x0, 1, 9y.

Pictorically we see this in Figure 3.
By reflecting along the different sides of the triangles we can complete the 24 tiles of the
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Figure 4: minimal torus for x0, 1, 9y

T {I class for x0, 1, 9y. In this case p13p23 “ T 2

1
acts as T1 (translation by 1). So, by acting

with G3 on the given pitch segment, we get the full set of translated and inverted pitch
classes associated with x0, 1, 9y.

A minimal Tiling containing the 24 elements of the T {I translates of x0, 1, 9y is pictured
in Figure 4.

In this example p12p23 “ T 3

1
” T9, and p12p13 “ T 3

2
” T8. By lemma 2, T8 and T9

commute. They are the usual translations on the torus of Figure 4 moving a unit in each
direction. Now, the subgroup generated by T8 and T9 is Z3 ‘ Z4 » Z12, and since G3

(restricted to the pitch segment) is generated by tp12, T8, T9u, lemma 2 tells us that G3 is
isomorphic to the dihedral group D12. Therefore Figure 4 is a geometrical representation of
G3 ‚ x0, 1, 9y – pT {Iq ‚ x0, 1, 9y11.

3.6. Tetrachords

A similar analysis for the group G4 is more involved. This group is generated by tp12, p13, p14,
p23, p24, p34u. An alternative set of generators is tp12, T

3

2
, T 4

2
, T 3

1
, T 4

1
, T 34

12
u. So, basically we

have Z2 generated by p12 and the abelian subgroup generated by tT 3

2
, T 4

2
, T 3

1
, T 4

1
u.

T 34

12
is ruled out since it is the sum of T 3

1
and T 4

2
: for these abelian operators which act

as translations the composition means sum of translations.

11All these considerations should be possible (with little modification in lemmas 1, 2 and definitions 1, 2)
for pitch classes generated by translation and τI inversion, where τ P Sn is a trasposition: the pT {τIq group.
For instance if τ “ R is the retrograde then we will have the RI-chains. Geometrical representations with
RI-chains involved are in the paper by Joseph Straus [31].
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Now, these generators share relations and we would like to find a linearly independent
set of generators.

We immediately have the relation T 3

2
´ T 4

2
“ T 3

1
´ T 4

1
“ T 3

4
. Therefore, we are left with

three generators tT 3

1
, T 3

2
, T 4

1
u which in general are linearly independent. Indeed, let λ1, λ2,

λ3 be numbers in Z12 such that λ1T
3

1
` λ2T

3

2
` λ3T

4

1
“ 0, that is λ1px3 ´ x1q ` λ2px3 ´ x2q `

λ3px4 ´ x1q “ 0 for any triple of xi’s in Z12. Clearly the only possible λi’s are equal to 0.
If however we work with the pT {Iq set generated by a fixed segment xx1, x2, x3, x4y, then
relations will appear and the group will be smaller (a subgroup of Z2 ˙ pZ12 ‘ Z12 ‘ Z12q).

We cannot map G4 into a rotation group as in the case of G3. Indeed, we have by
formulas (2) and (4) that p23 “ σ´1p12σ, p34 “ σ´2p12σ

2, p14 “ σ´3p12σ
3, p13 “ τ23p12τ23,

and p24 “ σ´1p13σ. Namely, besides the cycle σ and symmetry p12 one has to introduce the
transposition τ23.

Instead, we consider the subgroup rG4 generated by tp12, p23, p34, p14u which maps into

the group generated by tp12, σu. Representing these as matrix operators p12 “

ˆ
0 1 0 0
1 0 0 0
1 1 ´1 0

1 1 0 ´1

˙
,

σ “

ˆ
0 1 0 0
0 0 1 0
0 0 0 1
1 0 0 0

˙
, one gets z “ σp12 “

ˆ
1 0 0 0
1 1 ´1 0

1 1 0 ´1

0 1 0 0

˙
, with z4 “ Id.

This corresponds to the ro-
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Figure 5: minimal torus for pitch class x0, 1, 3, 5y

tation group for a Tiling on the
plane by squares. Here σ is ro-
tation around the square center
and z around each vertex. In
the general case rG4 is generated
by tp12, T

3

1
, T 4

2
u, with T 3

1
, T 4

2
, lin-

early independent (namely rG4 –
Z2 ˙ pZ12 ‘ Z12q).

Example 2. Restricting to the
pitch class x0, 1, 3, 5y we have the
translations generating the abe-
lian subgroup of rG4: T 3

1
” T3

and T 4

2
” T4. This is Z4 ‘ Z3 »

Z12. Figure 5 shows the mini-
mal torus which is generated by
the action of rG4. Also in here,
the whole set class scp0135q is
obtained. The action along the
sides of the square tiles by the
generators of rG4 is transversal
to the action by tT3, T4u. No-
tice that these translations have real meaning in terms of numbers and that they define

10



where the Torus sits.
However, there may be degeneracies to this model. For instance, consider the following.

Example 3. The segment x0, 3, 6, 9y whose pT {Iq orbit possess several symmetries. Here, the
action of rG4 just repeats four squares and its abelian subgroup is generated by pT6, T6q. We
get a torus out of eight square tiles but not the whole orbit pT {Iq‚x0, 3, 6, 9y (see Figure 6).
Even the abelian subgroup of the full G4 generated by pT6, T3, T9q would not give the whole
T {I orbit. In this case we get three connected components: rG4‚x0, 3, 6, 9y, rG4‚x1, 4, 7, ty,
and rG4‚x2, 5, 8, ey, whose union is the whole set class scp0369q.

4. Triangle groups and Surfaces

It was said in [3.3] that the group generated by the contextual transformations pij’s is
a quotient of a Coxeter group. We tie this with the Triangle groups that we consider as a
special kind of Coxeter groups which have geometrical realizations as Tilings on surfaces.
Definition 4. given three positive integers h, k, l ě 2, A triangle group ∆gph, k, lq is a group
generated by three reflections R1, R2, R3 satisfying the relations R2

1
“ R2

2
“ R2

3
“ pR1R3qh “

pR3R2qk “ pR2R1ql “ Id, and possibly other relations associated with a surface Sg.

These are groups of reflections of regular trian-

0 0

0

0 00

0

0 0

3

3

3

3

6

66

69

9 99

99

33

TT6 6

Figure 6: minimal torus for x0, 3, 6, 9y

gulations on surfaces, that is triangulations associ-
ated with Regular Tessellations. Any surface can
be subdivided by triangles but not every surface
contains a Regular Tessellation by polygons with
a certain number of faces (problem tF, p, qu cited
in [3.4]). For instance, if a surface Sg contains a
Regular Tiling by squares12, then each square is
subdivided into triangles with vertices at the cen-
ter and middle edges as shown in Figure 7. There
is a fundamental triangle T (yellow) and its mirror
reflections (red, blue and green) about the edges.
The composition of two of these reflections gives a
rotation around one of the black hinges (the ver-
tices of the triangle). This system of rotations is
called a rotation group (as mentioned in [3.5]).

The surface Sg is covered by applying all possible sequences of reflections Ri’s to the
triangle T or by applying all possible sequences of rotations R “ R1R3, S “ R3R2 and
T “ R2R1 (around the triangles vertices) to the fundamental polygon13.

The group generated by tR, S,Tu is an important subgroup of ∆gph, k, lq which has
index 2. It is called a von Dyck group and can be characterized as follows ∆`

g ph, k, lq “
tR, S,T, such that Rh “ Sk “ Tl “ RST “ Id, plus other relations depending on the surface
Sgu.

12This only happens if the surface is a Torus or the plane.
13This assumes that the Tiling is already given and therefore all the vertices of the triangulation.
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There is more structure to this: the fundamental triangle T associated with the triangle
group ∆gph, k, lq has angles π{h, π{k, π{l.

Spherical triangles satisfy 1{h ` 1{k ` 1{l ą 1

T R T

R R T

R T

R T

R R T R R T

1

1

1

2
2 2

3

3 3

Figure 7: triangle motions for a square

and only a finite number of configurations14 are
possible. Triangles in the plane or Torus satisfy
1{h ` 1{k ` 1{l “ 1 and also a finite number of
cases are possible. However, the most interesting
cases correspond to hyperbolic triangles: those for
which the inequality 1{h ` 1{k ` 1{l ă 1 holds.

The triangle groups related to the problem tF,
p, qu are those of the form ∆gp2, q, pq15. Their cor-
responding von Dyck groups (we write them as
∆`

g p2, q, pq) can be presented as generated by R

and S, one of them of order 2. Indeed, writing
T “ S´1R, we can present the von Dyck group as
follows: ∆`

g p2, q, pq “ tR, S, such that R2 “ Sp “
pS´1Rqq “ Id, plus relations depending on the sur-
face Sgu.

We will be mainly concerned with orientable16 closed surfaces (that is without boundary).
These surfaces are classified by their genus g (an integer g ě 0). This is the number of holes
they have or the number of handles attached to a sphere. For instance the genus of a sphere
is 0 and that of a torus is 1. All the surfaces of genus g ą 1 fall into the Hyperbolic realm.
Figure 8 pictures a surface of genus 4. If a surface Sg of genus g has a Tiling by convex17

polygons and V “number of vertices, E “number of edges, F “number of faces for this
Tiling, then the Euler-Poincaré Characteristic: χpSgq :“ V ´ E ` F is an integer number
which does not depend on the Tiling considered on Sg. We have the following.

χpSgq “ V ´ E ` F “ 2 ´ 2g (9)

If a surface Sg of genus g ą 1 has a Tiling by regular p´gons with incidence q at each
polygon vertex, then there is an induced barycentric Tessellation by hyperbolic right triangles
with angles π{p, π{q. These triangles are in correspondence with the elements of the group

14These configurations are related to the regular polyhedra [3.4].
15This is because when doing barycentric subdividion of a regular polygon we get right triangles and so

h “ 2.
16Not those like the Möbius band or the projective plane.
17We exclude polygons like Star polygons because they may be misleading when computing the Euler-

Poincaré characteristic. The safest way to compute the Euler-Poincaré characteristic is to use a triangulation
on Sg.

12



Figure 8: a genus g “ 4 surface

∆gp2, p, qq and its order can be computed by the formula [see 21]

|∆gp2, p, qq| “
(Hyperbolic Area of Sgq

(Hyperbolic Area of the p2, p, qq ´ triangleq
“ (10)

“
´2πχpSgq

pπ
2

´ π
p

´ π
q
q

“
8pqpg ´ 1q

pp ´ 2qpq ´ 2q ´ 4
(11)

Remark 1. Formula (11) holds also for the sphere (just put g “ 0).

Remark 2. If on a surface Sg of genus g we can solve the problem tF, p, qu, then by taking
apart the polygons and counting edges we get qV “ 2E “ pF . Thus, χpSgq “ 2Ep1

p
` 1

q
´ 1

2
q.

So, another way of writing Formula (11) is the following |∆gp2, p, qq| “ 4E “ 2pF “ 2qV .

Remark 3. As long as we know the number of faces (edges or vertices) of a regular Tessellation
of type tp, qu on a surface Sg we can compute its genus:

g “ 1 ´
χpSgq

2
“ 1 `

1

2
p
1

2
´

1

p
´

1

q
qpF. (12)

Remark 4. There is still another formula which allows us to compute the Euler-Poincaré
characteristic in case we know the number of faces F and vertices V of a regular tp, qu Tiling
on Sg:

pp ´ 2qpq ´ 2q “ 4

ˆ
1 ´

χpSgq

V

˙ ˆ
1 ´

χpSgq

F

˙
(13)

Remark 5. The full triangle group ∆p2, p, qq18 takes a fundamental right triangle with angles
π{p, π{q in the Poincaré Disk and moves it to cover the whole Disk giving a pattern that
also contains p-gons where q polygons meet at each vertex19. One obtains such patterns
as pictured in Escher Limit Circle drawings20. This group is infinite and for each surface
Sg containing a regular tp, qu Tiling, the group ∆gp2, p, qq is the quotient of ∆p2, p, qq by a
subgroup containing at least the dihedral group preserving the p-gon.

18This is Definition 4 without the relations for the surface Sg.
19As shown in the picture (2,3,7)-triangle Tiling.
20See for instance http://www.josleys.com/show_gallery.php?galid=325.
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5. Group structure and local incidence

Consider now a pitch segment xx1, x2, . . . , xny, xi P Z12 for 0 ď i ď n and assume that we
allow the contextual transformations generated by tp12, p23, . . . , pi,i`1, . . . , pn1u. The group
generated by these inversions is denoted rGn. This group is contained in a bigger group Gn

generated by all the inversions pij ’s. As in [3.6] rGn is mapped into the group generated by
tp12, σu and later on we will show that this is a von Dyck group.

We describe the structure and basis of Gn and rGn.
Proposition 1. The group of contextual inversions Gn is isomorphic to the semidirect prod-
uct of Z2 and the abelian group Z

n´1

12
. Bases for this last abelian group are given by

tT 2

1
, T 3

1
, . . . , T n

1
u or tT 2

1
, T 3

2
, . . . , T n

2
u.

The group of contextual inversions rGn is isomorphic to Z2 ˙ Z
n´2

12
if n is even and to

Z2 ˙ Z
n´1

12
in case n is odd. Bases for the abelian parts in these two cases are:

tT 3

1
, T 4

2
, T 5

1
, . . . , T n

2
u if n is even,

tT 2

1
, T 3

1
, T 4

2
, . . . , T n´1

2
, T n

1
u if n is odd.

Proof. Gn is generated by tp12, p13, . . . , p1n, p23, p24, . . . , p2n, p34, . . . , p3n, . . . , pn´1,nu and also
by p12 and the abelian generators tT 3

2
, . . . , T n

2
, T 3

1
, . . . , T n

1
, T 34

12
, . . . , T 3n

12
, . . . , T

n´1,n
12

u. Since
we have in additive notation T hk

ij “ T h
i `T k

j (see Lemma 2), the set tT 3

2
, . . . , T n

1
, T 3

1
, . . . , T n

1
u

already generates the abelian piece. Now, since T 3

1
´ T 3

2
“ ¨ ¨ ¨ “ T n

1
´ T n

2
“ T 2

1
, we are left

with the generators tT 2

1
, T 3

1
, . . . , T n

1
u which are readily seen to be generically independent.

The remaining conclusions about Gn follow from Lemma 2.
rGn is generated by tp12, p23, p34, . . . , pn´1,n, p1nu. So, p12 and the abelian piece gener-

ated by tT 3

1
, T 34

12
, . . . , T

n´1,n
12

, T n
2

u define the whole group. Suppose that n “ 2k and write
these generators as tT 3

1
, T 3

1
` T 4

2
, T 4

2
` T 5

1
, . . . , T 2k´1

1
` T 2k

2
, T 2k

2
u. Then, an equivalent set

of generators is tT 3

1
, T 4

2
, T 5

1
, T 6

2
, . . . , T 2k´1

1
, T 2k

2
u, and these are n´ 2 independent generators.

Therefore, rGn – Z2 ˙ Z
n´2

12
.

If n “ 2k ` 1 the generators of the abelian piece are tT 3

1
, T 3

1
` T 4

2
, T 4

2
` T 5

1
, . . . , T 2k´1

1
`

T 2k
2
, T 2k

2
` T 2k`1

1
, T 2k`1

2
u. We can replace this set with tT 3

1
, T 4

2
, . . . , T 2k

2
, T 2k`1

1
, T 2k`1

2
u or the

equivalent set tT 2

1
, T 3

1
, T 4

2
, . . . , T 2k

2
, T 2k`1

1
u. These generators are equivalent to any of the

given bases for the abelian part of G2k`1. So, in this case rG2k`1 “ G2k`1. ˝

What is the image of a single pitch segment class xx1, x2, . . . , xny under rGn? Do we
recover the whole set class pT {Iq‚xx1, x2, . . . , xny? Obviously rGn‚xx1, x2, . . . , xny is contained
in pT {Iq‚xx1, x2, . . . , xny because pij’s are made up of translations Tm’s and inversion I.

If n is odd a condition for rGn‚xx1, x2, . . . , xny to equal pT {Iq‚xx1, x2, . . . , xny is the fol-
lowing:

Condition 1. There exist integer numbers λ2, λ3, . . . , λn, such that

λ2px2 ´ x1q ` λ3px3 ´ x1q ` ¨ ¨ ¨ ` λnpxn ´ x1q ” 1 mod 12.
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This makes sure that by applying T1 P rGn. We use the equality deduced in Proposition
1 rGn “ Gn and the first basis of Gn. The operator Op “ pT 2

1
qλ2 ˝ pT 3

1
qλ3 ˝ ¨ ¨ ¨ ˝ pT n

1
qλn

is translation by 1 when applied to the segment xx1, x2, . . . , xny. Now, the operator p12 ˝
pOpqp´x1´x2q applies like I on the segment.

In case n is even we use

Condition 2. There are integer numbers λ3, λ4, . . . , λn, such that

λ3px3 ´ x1q ` λ4px4 ´ x2q ` λ5px5 ´ x1q ` ¨ ¨ ¨ ` λn´1pxn´1 ´ x1q ` λnpxn ´ x2q ” 1 mod 12.

The proof that this suffices is similar to that of Condition 1. We observe that since there
are many bases for rGn, other conditions are possible to obtain rGn‚xx1, x2, . . . , xny“ pT {Iq‚
xx1, x2, . . . , xny.

As a counterexample, the pitch segment x0, 2, 4, 6, 8y does not satisfy Condition 1. Either
we treat it as a pathological case, or we deal with it as a particular case, aside from the
considerations we are explaining in this article.

5.1. The gluing procedure

We map rGn into the group generated by tp12, σu as follows (using Formula (2)):
p23 “ σ´1p12σ, p34 “ σ´2p12σ

2, . . . , p1n “ σ´pn´1qp12σ
n´1.

0

0

1

1

3

5

7

p

6

8

t

12

σ

z

Figure 9: matching a
pentagon

As we did in [3.5] for triangles, we consider the regular poly-
gon of n sides Pn associated to the segment xx1, x2, . . . , xny, and
glue it to the polygon associated with σp12xx1, x2, . . . , xny“ xx1,

Ix1`x2
px3q, . . . , Ix1`x2

pxnq, x2y along the side xx1, x2y (Figure 9).
Namely, the element z “ σp12 is a rotation around the vertex x1

that takes one polygon into the next and σ´1 is rotation of the
polygon vertices.

The order of z is the incidence at each vertex. For instance,
by successively rotating with z the polygon of Figure 9 we get
back the pitch x0, 1, 3, 5, 7y after 10 times: x0, 1, 3, 5, 7y

z
ÝÑ x0, t, 8,

6, 1y
z
ÝÑ x0, 2, 4, 9, ty

z
ÝÑ x0, t, 5, 4, 2y

z
ÝÑ x0, 5, 6, 8, ty

z
ÝÑ x0, e, 9, 7, 5y

z
ÝÑ x0, 2, 4, 6, ey

z
ÝÑ x0, t, 8, 3, 2y

z
ÝÑ x0, 2, 7, 8, ty

z
ÝÑ x0, 7, 6, 4, 2y

z
ÝÑ

x0, 1, 3, 5, 7y.
We can picture this in the Poincaré Disk with 10 meeting

pentagons (see Figure 10).
Transporting these prescriptions along all sides and vertices

we get a surface which is regularly tessellated by equal polygons
of n sides. If the Tiling is finite the surface is closed since each
edge belongs to two and only two faces (there are no free edges
belonging to only one polygon) and each vertex has the same number of incident edges (this
is the order of z). Thus the group generated by tp12, σ

´1u is a von Dyck group of a regular
Tessellation on a surface of genus g since it can be described by generators and relations as
tp12, σ

´1, such that p2
12

“ σn “ pσp12qq “ Id plus relations coming from Sgu.
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Proposition 2. Assume the pitch segment xx1, x2, . . . , xny induces a Regular Tessellation
by regular polygons of n sides on a closed surface of genus g. Then, the incidence of the
polygons at each vertex is n for even n and 2n if n is odd. Therefore, the group generated
by p12 and σ is isomorphic to ∆`

g p2, n, nq if n is even and ∆`
g p2, n, 2nq if n is odd.

Proof. It is enough to show that q “ n if n is even and q “ 2n if n is odd. We have that
p12p23 . . . p1n“p12σ

´1p12σ
´1 . . . p12σ

´1 “ pσp12q
´n “ z´n. On the other hand, p12p23p34p45 . . .

pn´1,np1n“T 3

1
p12T

34

12
p12T

45

12
. . . p12T

n´1,n
12

p12T
n
2
. If n “ 2k we write z´n “ T 3

1
p12T

34

12
p12T

45

12
. . .

p12T
2k´1,2k
12

p12T
2k
2

“ T 3

1
T 12

34
T 45

12
. . . T 12

2k´1,2kT
2k
2

“ T 3

1
T 1

3
T 2

4
T 4

2
T 5

1
. . . T 1

2k´1
T 2

2kT
2k
2

“ Id. This

shows zn “ Id for n even. If n “ 2k ` 1, z´n “ T 3

1
T 12

34
T 45

12
. . . T 12

2k´1,2kT
2k,2k`1

12
p1,2k`1 “

T 2k`1

1
p1,2k`1. However, by Lemma 2 z´2n “ T 2k`1

1
p1,2k`1T

2k`1

1
p1,2k`1 “ T 2k`1

1
T 1

2k`1
“ Id.

This shows the proposition. ˝

5.2. Mapping rGn

Let us call by N the image of rGn into the von Dyck group. Then it is readily seen that
this group is normal. Indeed, p12Np12 Ď N and σNσ´1 Ď N. We just check this on the
generating elements of N. Therefore we can make sense of the quotient group ∆`

g p2, n, nq{N
(n even) and the quotient group ∆`

g p2, n, 2nq{N (n odd). These quotients are isomorphic
to Zm “ xpσ plus relations induced by Sgy where m divides n. Namely, in both cases N is
a normal subgroup of index m in a von Dyck group. On the other hand we have the exact
sequence of groups 1 Ñ Ab Ñ rGn Ñ N Ñ 1, where Ab is an abelian subgroup of rGn. That
is Ab is a subgroup of Zn´2

12
for n even and a subgroup of Zn´1

12
for n odd.

We give an example to see how these groups look like.

Example 4. Consider the pitch segment x0, 4, 7, t, 2y and use the basis of Proposition 1.
We see that the abelian part of rG5 is generated by the translations in four different

directions T 2

1
” T4, T 3

1
” T7, T 4

1
” T10, and T 5

1
” T2. In this case, any element of rG5 is

written in the form p12T
λ1

4
T λ2

7
T λ3

10
T λ4

2
, where the λi’s are integer exponents. Condition 1 is

readily checked and therefore the image N of rG5 is isomorphic to the dihedral group D12.
Indeed, the operator T

j
i is written as T

j
i “ Id ` Cj ´ Ci where Ci is a 5 ˆ 5 matrix with

zero entries everywhere except in he i-th column where all entries are 1. One checks that
pT j

i qλ “ Id ` λpCj ´ Ciq and these matrices go down to Id ` λTxj´xi
as they are restricted

to the segment pT {Iq-orbit. D12 is the group generated by two letters s, t with relations
s12 “ t2 “ 1, tst “ s´1, and the isomorphism with N is produced by sending p12 Ñ t,
T1 Ñ s. Since N » D12 and has index 5 into ∆`

g p2, 5, 10q, then by Formula (11) one gets
24 ˆ 5 ˆ 2 “ |∆gp2, 5, 10q| “ 20pg ´ 1q. Thus, a surface containing the group generated
by p12 and σ must have genus 13. However this is not the surface containing an action of
the whole group rG5 acting on the orbit. For this we have to compute the kernel of the
morphism ϕ : Z4 Ñ Z12 defined as ϕpλ1, λ2, λ3, λ4q “ 4λ1 ` 7λ2 ` 10λ3 ` 2λ4 so that we
get the isomorphism Ab » Z

4{Kerϕ. To determine Kerϕ we notice that it is generated
by the vectors te1 “ p0, 10, 0, 1q, e2 “ p0, 2, 1, 0q, e3 “ p1, 8, 0, 0q, e4 “ p0, 12, 0, 0q, e5 “
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p3, 0, 0, 0q, e6 “ p0, 0, 6, 0q, e7 “ p0, 0, 0, 6qu. Also te1, e2, e3, e4u generates Kerϕ and is an
independent basis for it. Any element in Z

4 can be written in terms of this basis of Kerϕ

as follows pµ1, µ2, µ3, µ4q “ µ1e3 ` µ3e2 ` µ4e1 ` 1

12
pµ2 ´ 8µ1 ´ 2µ3 ´ 10µ4qe5. Clearly, we

obtain Ab » Z
4{Kerϕ » Z12.

Consider a genus g closed surface Sg

0 1

3

5

7

6

8

t

9
4

2
45

t
8

6

5

7

9

e

6

4

2

3
8

t
8 7

2
4

6

Figure 10: ten pentagons incidence

on which we have a Tessellation of type
tn, nu for n even or tn, 2nu if n is odd.
Moreover, let us assume the set of faces
contain at least the 24 faces associated
with the pT {Iq´forms of a given pitch
class segment xx1, x2, . . . xny. That is, F “
24N . What would the Euler-Poincaré
characteristic and the minimal possible
genus of Sg be? This problem depends
on the possibility of embedding a Graph
on a surface of genus g. A topological
connected Graph (i.e. points joined by
arc segments) can always be embedded
into a surface of some genus g. Even into
a non-orientable surface. However deter-
mining the minimum embedding genus g
is a very difficult problem that belongs to
Topological Graph Theory [see 19, chap.
7], [also 17].

Putting p “ q “ n and F “ 24N in Formula (12) we get g “ 1 ` 6pn ´ 4qN for n even.
In the n odd case p “ n, q “ 2n and we get g “ 1 ` 6pn ´ 3qN .

In Table 1 we shows for small n the Tessellation type on Sg for the corresponding pitch
class segment and what could the minimal genus be if a Tessellation of that type is found on
Sg. Warning: the genera shown in the table only reflect the formulas obtained. This does
not mean that you would get a Tiling representing the pitch set class scpx1x2 . . . xnq with
the minimal genus displayed in the table. The only certain values for this hold in genus 1.

Remark 6. A generic pitch class segment holds a very high genus. Indeed, suppose we can
view the group of inversions rGn as a group of automorphisms on a surface of genus g, then
by a famous theorem of Hurwitz, the order of rGn is bounded above by 84pg ´ 1q. Thus, in

the case of n odd Proposition 1 would tell us that g ě 1 `
|Z2˙Z

n´1

12
|

84
“ 1 ` 2ˆ12n´1

84
. This is

g ě 495 if n “ 5. However, as seen in Example 4, rG5 cuts down to a group of order 2ˆ122 for
the pitch segment x0, 4, 7, t, 2y, i.e. g ě 1 ` 2ˆ122

84
ě 5. Latter we will see that this example

holds a much higher genus.
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Table 1: Incidence and possible genera for small pitch class segments

n pitch segment Tiling type genus formula possible values
3 xx1, x2, x3y t3, 6u g “ 1 1
4 xx1, x2, x3, x4y t4, 4u g “ 1 1
5 xx1, x2, x3, x4, x5y t5, 10u g “ 1 ` 12N 13, 25, 37, 49, 61
6 xx1, x2, x3, x4, x5, x6y t6, 6u g “ 1 ` 12N 13, 25, 37, 49, 61
7 xx1, x2, x3, x4, x5, x6, x7y t7, 14u g “ 1 ` 24N 25,49, 73, . . .
8 xx1, x2, x3, x4, x5, x6, x7, x8y t8, 8u g “ 1 ` 24N 25,49, 73, . . .
9 xx1, x2, x3, x4, x5, x6, x7, x8, x9y t9, 18u g “ 1 ` 36N 37, 73, . . .
10 xx1, x2, x3, x4, x5, x6, x7, x8, x9, x10y t10, 10u g “ 1 ` 36N 37, 73, . . .
11 xx1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11y t11, 22u g “ 1 ` 48N 49, . . .
12 xx1, x2, x3, x4, x5, x6, x7, x8, x9, x10, x11, x12y t12, 12u g “ 1 ` 48N 49, . . .

6. Minimal model surface and pentachords

6.1. A Tiling containing 24 pentagons

In a similar way as did in Example 4 we will work with a fixed pitch segment xx1, x2, x3,

x4, x5y and its pT {Iq orbit. We assume that this pitch segment satisfies Condition 1.
Then the image N of rG5 into the group gen-

Figure 11: icosahedron

erated by tp12, σu is the dihedral group D12. If a
Tiling by pentagons with vertex incidence 10 ex-
ists on a genus g surface Sg, then the von Dyck
group ∆`

g p2, 5, 10q contains N with index 5. The
same computation we did in Example 4 holds and
shows that the genus is g “ 13.

The problem here is the existence of such a
Tiling on a surface of genus 13. Fortunately, such
a Tiling exists and it is related to a surface already
studied by Felix Klein [22] in connection with the
solutions of the quintic equation: the Bring sur-
face21. The Bring surface is a surface of genus 4

and can be viewed as a triple branched cover of the
icosahedron [see 35, for such matters]. The Bring
surface possess a Regular Tessellation of type t5, 5u
consisting of twelve hyperbolic pentagons whose centers map to the vertices of the the sphere

21In the literature is called Bring curve. Here we use the dictionary “algebraic complete curves over the
complex numbers” ” “closed smooth surfaces with complex structure” (or Riemann surfaces, in honor of the
mathematician Bernhard Riemann).
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with icosahedral Tessellation (an inflated icosahedral balloon framed at its vertices). The 12

vertices of the pentagons are branched (with branch index 2) over the same vertices of the
Tessellated sphere (each one fifth p2π{5, 2π{10, 2π{10q-hyperbolic triangle of a hyperbolic
pentagon maps onto a p2π{5, 2π{5, 2π{5q-spherical triangle of the icosahedral Tessellation of
the sphere). This Tessellation was explained in W. Threlfall book [32, 35] and can be viewed
in Figure 1222 as its image into the Poincaré Disk.

The pentagonal tiles Pi’s are numbered 1 to 12 with repeated tiles in the Figure since we
are in the Poincaré Disk. The vertices are the red points labeled by ta, b, c, d, e, f, g, h, i,
j, k, mu. The fundamental domain of the surface is the union of the 10 quadrilaterals in-
cident at the center of P1 and forming a regular icosagon (violet dashed boundary) with
identification of sides.

Cutting with scissors this icosagon and gluing equivalent sides of its border we get a
genus 4 surface tessellated by 12 pentagons (some pentagons are recovered by rearranging
their triangular pieces).

Indeed, this t5, 5u Tessellation has a set of 12 vertices and 30 edges, so the Euler-Poincaré
characteristic is χ “ 12´ 30` 12 “ ´6, corresponding to genus 4. The relations satisfied by
the sides of the icosagon (labeled Ai and Bi, i “ 1, . . . , 5) are given in Threlfall’s book [32, see
p. 22]. They are A1B1A2B2A3B3A4 B4A5B5 “ Id, A1A4A2A5A3 “ Id, and B1B3B5B2B4 “
Id.

Now we proceed to take two copies of this tessellated genus 4 surface, make cuts along 6

disjoint edges in each sheet and glue the sheets along each pair of edges (lips) produced in
the cuts. We get in this way a two sheeted cover Γ of the Bring surface B which is branched
over the 12 points ta, b, c, d, e, f, g, h, i, j, k, mu. One way of choosing the cuts is the fol-
lowing: edge(a,k)=P10 X P11, edge(b,c)=P1 X P3, edge(d,e)=P1 X P6, edge(f,j)=P8 X P12,
edge(h,m)=P2 XP5, edge(i,g)=P9 XP12. The new surface Γ has an induced Tessellation con-
sisting of 24 hyperbolic pentagons, 12 vertices and 60 edges, but at each vertex 10 pentagons
meet. Indeed, as we turn around a vertex we cover 5 pentagons; by crossing the cut we go
into the other sheet and with another turn we cover the remaining 5 pentagons that meet
around the chosen vertex. Therefore, Γ carries a Tiling of type t5, 10u and has invariants
χpΓq “ 12 ´ 60 ` 24 “ ´24, and g “ 13.

On the other hand, Hurwitz formula gives the same result: χpΓq “ 2.χpBq ´ ramification
index “ 2.p´6q ´ 12.p2 ´ 1q “ ´24.

From what it was said in this paragraph we have the following:

Proposition 3. There is a surface Γ of genus 13 which carries a Tiling by 24 hyperbolic
pentagons of type t5, 10u. This surface is a 2-cover of the Bring surface B branched over the
12 vertices of the t5, 5u Tessellation of B. The von Dyck group ∆`

13
p2, 5, 10q exists and has

order 120.

22This is essentially a picture due to Threlfall with some modifications by Weber.
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Figure 12: Tessellation of Bring surface by 12 pentagons
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6.2. Construction of the surface model

We cannot claim that the genus 13 surface Γ is the model we are looking for. Indeed, by
starting with any pentachord pitch class segment from a given tile in Γ and walking trough
all tiles by the inversions in rG5 we find inconsistencies. That is clear because as said in
Example 4 the surface Γ is not acted by the whole group rG5.

Start with a fundamental tile T : this is a pentagon (hyperbolic) with labeled vertices, and
the labels are numbers within the (chromatic) pitch set t0, 1, 2, 3, 4, 5, 6, 7, 8, 9, t, eu23. The
labels of T correspond to a given ordered pitch segment xx1, x2, x3, x4, x5y. The group rG5 has
the inversions G “ tp12, p23, p34, p45, p15u as generator set and relations contained at least in
R “ tp2

12
“ p2

23
“ p2

34
“ p2

45
“ p2

15
“ pp12p23p34p45p15q2 “ Id, commuting relations among the

products pijpklu.
A walk in G is a finite sequence w “ pp1, p2, . . . , pnq where pi P G for i “ 1, . . . , n.

The set W of all walks24 has a group structure by concatenation of walks: pq1, q2, . . . , qmq ˝
pp1, p2, . . . , pnq “ pp1, p2, . . . , pn, q1, q2, . . . , qmq; the identity of W is the empty walk p q25.

Two walks that differ by having two consecutive equal entries p P G more (or less) are
said to be equivalent. The set of equivalent classes ĂW has a group structure induced by that
of W and each class has a unique member (called reduced walk) without two consecutive
p P G [27, Ch. 2].

Since we identify pentagonal tiles with ordered sequences xx1, x2, x3, x4, x5y, we act on
them with the group ĂW as follows: w‚xx1, x2, x3, x4, x5y “ pp1, p2, . . . , pnq‚xx1, x2, x3, x4, x5y “
pn . . . p2p1xx1, x2, x3, x4, x5y, where pp1, p2, . . . , pnq is the reduced walk in the class w and the
last action is the rG5 action.

In this way the defined actions of ĂW and rG5 on tiles are both left actions. Moreover,
there is a surjective homomorphism ϕ : ĂW Ñ rG5 defined by ϕpp1, p2, . . . , pnq “ pn . . . p2p1.

Now starting from a given tile T , consider the union of all translated tiles w ‚ T by
reduced walks representing the elements w P ĂW , i.e. U “

Ť
wP ĂW w ‚ T . Then ĂW acts on

U by shuffling the tiles of U 26. Recalling the gluing procedure we explained in [5.1], we
can endow U with a structure of topological space: it is a simply connected space, a tree
of pentagons in which two pentagons w1 ‚ T and w2 ‚ T are glued along a side if and only
if w2 ‚ T “ ppw1 ‚ T q or w1 ‚ T “ ppw2 ‚ T q for some p P G . Each pentagon bounds on the
sides with other 5 pentagons, and in order to visualize and fit an infinite set of pentagons
together in that way we need to embed this into an infinite dimensional space.

Let K be the kernel of ϕ. Then we construct the quotient space ĂU “ U {K as the
set of orbits K ‚ u, with u P U . This space is a Hausdorff space because the action of ĂW
(hence that of K ) on the locally compact space U is discrete and proper [see 15, Th. I.6.7].

23Actually, any pitch set with abelian group operations on it could be used for this purpose, e.g. a diatonic
group pZ7,`q.

24In other contexts these are called words.
25This means do not move.
26In U all tiles w ‚ T are different and numbered by ĂW .
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Moreover, it has an induced Tiling by the elements of rG5 “ Z2 ˙ Z
4

12
: ĂU “

Ť
gP rG5

gT is a
closed surface.

The restriction of the basis tT 2

1
, T 3

1
, T 4

1
, T 5

1
u for Z

4

12
to T gives a smaller group rGT »

Z2 ˙ pZ12 ‘ AbT q. Namely, we are assuming that there is an exact sequence 1 Ñ AbT Ñ
rGT Ñ D12 Ñ 1 and a surjective map rG5

π
Ñ rGT Ñ 1. Now, the kernel of π can be pulled

back via ϕ and give the discrete group HT Ă ĂW . We have a new tiled closed surface
rVT “ U {HT “

Ť
gP rGT

gT .

The group rGT acts on rV discretely and at most with a finite set of fixed points. Indeed,
Z2 is generated (for instance) by the inversion p12 which moves each tile to a different one
but has the middle point of the glued tiles gT and p12gT fixed. The translations in the
normal subgroup Z12 ‘ AbT act without fixed points27.

We are in the following situation:

1. A tiled closed surface rVT with a discrete action of GT on it.

2. An exact sequence 1 Ñ AbT Ñ rGT Ñ D12 Ñ 1 and a discrete action of D12 on a tiled
genus 13 surface Γ (see [6.1]).

We want to relate these two pieces of data28.
The group AbT of translations act on rVT properly discontinuously29, thus the map rVT Ñ

rVT {AbT “ rΓ is a covering map and the closed surface rΓ is built with 24 pentagonal tiles and
the group D12 acts discretely on rΓ by shuffling tiles.

Now if we identify fundamental pentagonal tiles on Γ and rΓ and give an isomorphism of
the acting groups D12, we can extend this identification to a homeomorphism between Γ and
rΓ that preserves pentagonal faces, sides and vertices.

Summing-up, we can state the following:

Theorem 1. Let xx1, x2, x3, x4, x5y “ T be a pitch class satisfying Condition 1 and such that
rGT (the restriction of rG5 to the pitch class) fits into an exact sequence 1 Ñ AbT Ñ rGT Ñ

D12 Ñ 1, where AbT is an abelian group of order n. Then, there is a tiled surface rV of type
t5, 10u containing all tile occurrences of T under rGT assembled so that two pentagons have a
common side if and only if one is a transform of the other by an inversion in G . The surface
rV is an n-covering (non-branched) of a surface Γ of genus 13 having a Tiling by 24 hyperbolic

pentagons. The Tiling of rV has 24n hyperbolic pentagons and genusp rV q “ 12n ` 1.

27This is because the tiles associated to T
j
i xa, b, c, d, ey and xa, b, c, d, ey either are equal (in whose case the

translation is trivial) or do not intersect. If they are different and have a common point they must be glued
along a side by an inversion p, so that pT

j
i fixes the tile of xa, b, c, d, ey, and therefore all tiles, but this is

impossible for it would mean T
j
i “ p.

28Other foundations for this situation and the construction in [6.2] are found in the paper [30] and bibli-
ography therein and the book [11].

29Namely, each point v P rVT has a neighborhood such that all its translates by AbT are pairwise disjoint.
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Proof. Condition 1 already implies the exactness of the group short sequence. The arguments
above and [6.1], [6.2] show that there is a surface rV with a Tiling by pentagons and an n-
covering rV Ñ Γ where Γ is the genus 13 surface which is a 2´ 1 ramified cover of the Bring
surface. As Γ has a Tiling of type t5, 10u by 24 pentagons, then rV has 24n pentagonal faces
and since we have a covering map, the incidence of the pentagons at each pentagon vertex is
preserved. Hurwitz formula yield χp rV q “ nχpΓq “ ´24n (because there is no ramification)
and the genus Formula (12) give gp rV q “ 12n ` 1, which shows the statement. ˝

Example 5. In the pitch segment xC,E,G,B5, Dy of example 4 we found that AbT »
Z12. Theorem 1 show that the surface on which the pentagonal tiles fit together has genus
g “ 12.12 ` 1 “ 145. It is easy to see that the Stockhausen Klavierstück III pentachord
xC,C#, D,D#, F#y, the Schoenberg Op. 23/3 pentachord xB5, D, E,B, C#y, and the
pentachords xC,D,E, F, Ay and xC,D,E5, G, A5y used by A. Tcherepnin in Ops. 51, 52,
and 53, also have the same pattern. Indeed, in each case one proves that AbT » Z12 and
they satisfy Condition 1. Thus, these pentachords under the contextual inversions of rG5 “ G5

produce a Tiling on a genus 145 surface.

7. Conclusion and Remarks

The genus 145 surface constructed can be viewed as a 24 sheeted covering of the Tiling
appearing in Figure 12 (with identifications). Keeping track of the tile and sheet we are
in may be kind of difficult in terms of computer graphics, however, a space representation
obtained by the methods in [36] or [29] seems to be harder due to the high genus.

This Tonnetz representation may be useful and applicable in describing tone paths
through similar pentachords using real time software that involves sound, images and media
like Max/MSP/Jitter by Cycling ’7430 .

A surface similar to Γ but in the situation where one has other scales like in Koechlin or
Stravinsky’s Examples 1, 2 (diatonic Z7) need to be addressed particularly. Our genus 13

surface would not work since the dihedral group D7 is not contained in the von Dyck group
∆`

13
p2, 5, 10q. So another highly symmetric surface is needed possessing a Tiling t5, 10u by

pentagons.
Also in order to model hexachords, heptachords, etc. other surfaces like Γ with appropri-

ate Tessellations (t6, 6u, t7, 14u, etc.) have to be found. Then our procedures and methods
can be applied in a similar fashion.

We notice that what is basically important is not precisely the Tiling of a surface but a
graph containing the pitch information (or other musical information) embedded into some
space (eventually a surface as we did it here). This reverts the problem of representing
some kind of musical data to that of “Graph Drawing”31 and most papers in Music Theory

30http://cycling74.com/.
31There is an active community of mathematicians and yearly proceedings on this subject

http://www.graphdrawing.org/.
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take this approach [24, 4, 12, 16, 28, 14]. We pursued here the embedding of a pentachord
network graph into a closed surface, which is in principle a harder problem than a singular
Graph Drawing. By representing the dual Tessellations any pentachord is a vertex in the
dual graph, edges relate contiguous pentachords and tiles (now decagons) close up the graph
to a surface. Here a walk is a real path in this graph from vertex to vertex. This dual graph
is very interesting and a well known object in Graph Theory: the Cayley Graph32 of our
group rG5 with generating set G (or that of the group rGT with the restricted generators).

For the purpose of algebraic calculations it is easier to consider a multidimensional torus33

with translations in Z12 (i.e. a higher dimensional analog of the Öttingen-Riemann Tonnetz).
This paradigm is understandable to the light of curves and their Jacobians. Any surface
(Riemann surface or complete algebraic complex curve) Γ34 of genus g can be embedded into
its Jacobian JacgpΓq [26], which is a 2g-dimensional real torus35 with algebraic operations.
The torus where the translations T

j
i occur is isogenous to the Jacobian of Γ (i.e. either a

covering or a quotient of it). So we say that in the Jacobian of Γ one can interpret or merge
both, the Tiling of the surface Γ and the translations of the group rG5, as we did in the
examples of Figures 4 and 5 for the genus 1 case. Of course, beyond genus 1 we do not have
nice graphic representations for these tori.

Assume we have a set of generators G “ tp1, p2, p3, p4, p5u for the group rG5 so that we can
write pi`1 “ p1ti, i “ 1, 2, 3, 4, where the ti’s are translations in Z12. The group rG5 consists
of the reflection p1 “ p and the translations tt1, t2, t3, t4u. How should we encode the data
for a single path in these generators? For instance p5p3p2p4 “ pt4.pt2.pt1.pt3 “ t´1

4
t2t

´1

1
t3,

where we have used ptp “ t´1 for any translation. Another example gives p5p3p2p4p5 “
pt4.pt2.pt1.pt3.pt5 “ t´1

4
t2t

´1

1
t3t

´1

5
p. We can give the following rule in case the reduced path

contains only the generators in G \tpu.
1. if length of path is even change each occurrence of pi`1 in an odd position by t´1

i and
each occurrence of pi`1 in an even position by ti.

2. if length of path is odd do the same as in 1. but insert p at the end.

Some other examples when the path starts with p and then follows by elements in G \tpu:
pp5p4p3p2 “ p.pt4.pt3.pt2.pt1 “ t4t

´1

3
t2t

´1

1
p, or pp5p4p3 “ p.pt4.pt3.pt2 “ t4t

´1

3
t2. In these

cases we go by the rule.

1. if length of path is even change each occurrence of pi`1 in an odd position by ti, each
occurrence of pi`1 in an even position by t´1

i and delete the initial p.

32Information on this in [19].
33However, we eventually lose the possibility of having a space representation.
34Here I am not specifying which Γ to take. It could be the genus 4 Bring surface of our setting, or the

genus 13 curve in Proposition 3, or the genus 145 curve of Example 5. Making this precise requires further
developement.

35JacgpΓq ” pR{Zq2g
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2. if length of path is odd do the same as in 1. but insert p at the end.

In case the path has several occurrences of p, we separate it into segments with a starting
p and apply to each successive segment the rules above. An example will clarify this where
we have put for short number i instead of pi: 3241541451323 “ p324qp154qp145qp1323q “
t´1

2
t1t

´1

3
pp154qp145qp1323q “ t´1

2
t1t

´1

3
t´1

4
t3t3t

´1

4
pp1323q “ t´1

2
t1t

´1

3
t´1

4
t3t3t

´1

4
t´1

2
t1t

´1

2
p “ t2

1
t´3

2

t3t
´2

4
p.

References

[1] Callender, Clifton, Ian Quinn, and Dmitri Tymoczko. 2008. “Generalized Voice
Leading Spaces.” Science 320: 346–348.

[2] Cohn, Richard. 1997. “neo-Riemannian Operations, Parsimonious Trichords,
and their ‘Tonnetz’ Representations.” Journal of Music Theory 41(1): 1–66.

[3] Cohn, Richard. 1998. “Introduction to neo-Riemannian Theory: A Survey and
a Historical Perspective.” Journal of Music Teory 42(2): 167–180.

[4] Cohn, Richard. 2003. “A Tetrahedral Model of Tetrachordal Voice-Leading
Space.” Music Theory Online 9(4).

[5] Conder, M., Dobcsányi„ P. 2001. “Determination of all regular maps of small
genus.” Journal of Combinatorial Theory, Series B 81, 224–242.

[6] Conder, M., 2006. “Orientable regular maps of genus 2 to 101.”
http://www.math.auckland.ac.nz/˜conder.

[7] Conway, J. H., Burgiel, H., Goodman-Strauss, C. 2008. “The Symmetries of
Things.” A.K. Peters.

[8] Coxeter, H. S. M. 1974, “Regular Complex Polytopes.” Cambridge University
Press. London and New York.

[9] Coxeter, H. S. M., Moser, W. O. J. 1980. “Generators and Relations for Discrete
Groups.” Springer-Verlag, Berlin, 1957. Fourth edition 1980.

[10] Crans, Alissa S. Fiore, Thomas M. and Satyendra, Ramon. 2009. “Musical
actions of dihedral groups.” Amer. Math. Monthly 116, no. 6, 479–495.

[11] Davis, Michael W. 2008. “’The Geometry and Topology of Coxeter Groups”.
Princeton University Press. Princeton and Oxford.

[12] Douthett, Jack and Peter Steinbach. 1998. “Parsimonious Graphs: A Study in
Parsimony, Contextual Transformations, and Modes of Limited Transposition”.
Journal of Music Theory 42/2: 241–63.

[13] Fiore, Thomas M. Satyendra, Ramon. 2005. “Generalized Contextual Groups.”
Music Theory Online 11(3).

25

http://www.math.auckland.ac.nz/~conder


[14] Fitzpatrick, Michael. 2011. “Models and Music Theory: Reconsidering David
Lewin’s Graph of the 3-2 Cohn Cycle”. Music Theory Online, 17/1.

[15] Godbillon, Claude. 1971. “Éléments de Topologie Algébrique”. Hermann, Paris.

[16] Gollin, Edward. 1998. “Some Aspects of Three-Dimensional ‘Tonnetze”. Journal
of Music Theory 42/2: 195–206.

[17] Gross, Jonathan L., Tucker, Thomas W. 2001. “Topological Graph Theory.”
Dover Publications, New York. First published in 1987 by John Wiley & Sons,
New York.

[18] Grünbaum, B., Shepard, G. C. 1986. “Tilings and patterns.” W. H. Freeman
and Company, New York.

[19] Gross, J., Yellen, J. Editors. 2004. “Handbook of Graph Theory.” Discrete
Mathematics and its Applications Series. CRC Press, London, New York.

[20] Jedrzejewski, Franck. 2006. “Mathematical Theory of Music”. Collections
Musique/Sciences. Editions DELATOUR FRANCE/Ircam-Centre Pompidou.

[21] Karcher, Hermann; Weber, Matthias. “The geometry of Klein’s Riemann sur-
face.” The eightfold way, 9–49, Math. Sci. Res. Inst. Publ., 35, Cambridge Univ.
Press, Cambridge, 1999. Preprint available online: doi=10.1.1.47.1879.

[22] Klein, Felix. 1884. “Vorlesungen über das Ikosaeder und die Auflösung der Gle-
ichungen vom fünften Grade”, Teubner, Leipzig. Reprinted Birkhäuser, Basel,
1993 (edited by P. Slodowy); translated as Lectures on the icosahedron and
the solution of equations of the fifth degree, Kegan Paul, London, 1913 (2nd
edition); reprinted by Dover, 1953.

[23] Kepler, J. 1619. “Harmonices mundi.” Linz. Translated as The harmony of the
world by E. J. Aiton et al., Philadelphia, Amer. Philos. Society, 1997.

[24] Lewin, David. 2007. “Generalized Musical Intervals and Transformations.” Ox-
ford University Press. Oxford and New York. Originally published in 1987 by
Yale University Press.

[25] Lewin, David. 2007. “Musical Forms and Transformations. Four Analytic Es-
says.” Oxford University Press. Oxford and New York. Originally published in
1993 by Yale University Press.

[26] Mumford, David. 1977. “Curves and their Jacobians”. The University of Michi-
gan Press.

[27] Robinson, Derek John Scott. 1995. “A Course in the Theory of Groups”. Grad-
uate Texts in Mathematics. Springer Verlag, New York, Berlin, Heidelberg.
Second edition.

[28] Rockwell, Joti. 2009. “Birdcage Flights: A Perspective on Inter-Cardinality
Voice Leading”. Music Theory Online 15.5.

26



[29] Séquin, C. H. 2007. “Symmetric embedding of locally regular hyperbolic tilings”.
In Proc. BRIDGES 2007 Conference, San Sebastian, 379–388.

[30] Singerman, David. 1988. “Universal tessellations”. Revista Matematica de la
Universidad Complutense de Madrid. Vol. 1, No. 1, 2, 3, 1988, 111–123.

[31] Straus, Joseph N. 2011. “Contextual-Inversion Spaces.” Journal of Music The-
ory 55:1, Spring 2011, 43–88.

[32] Threlfall, W. 1932. “Gruppenbilder”, Abh. Sächs. Akad. Wiss. Leipzig Math.-
Natur. Kl. 41:6 (1932), 1–59.

[33] Tymoczko, Dmitri. 2009. “Three Conceptions of Musical Distance.” In Math-
ematics and Computation in Music, eds. Elaine Chew, Adrian Childs, and
Ching–Hua Chuan, 258–273. Heidelberg: Springer.

[34] Tymoczko, Dmitri. 2011. “A Geometry of Music : Harmony and Counterpoint
in the Extended Common Practice.” Oxford Studies in Music Theory. Oxford
University Press, New York.

[35] Weber, Matthias. 2005. “Kepler’s Small Stellated Dodecahedron as a Riemann
Surface.” Pacific Journal of Mathematics, Vol. 220, No. 1, 167–182.

[36] van Wijk, Jarke J. 2009. “Symmetric Tiling of Closed Surfaces: Visualization
of Regular Maps.” ACM Transactions on Graphics, Vol. 28, No. 3, Article 49.

27


	1 Introduction
	2 Tone networks
	3 Pitch classes, Operators and Tilings
	3.1 Main Definitions
	3.2 Some Lemmas
	3.3 Coxeter groups
	3.4 Regular Tilings
	3.5 Trichords
	3.6 Tetrachords

	4 Triangle groups and Surfaces
	5 Group structure and local incidence
	5.1 The gluing procedure
	5.2 Mapping n

	6 Minimal model surface and pentachords
	6.1 A Tiling containing 24 pentagons
	6.2 Construction of the surface model

	7 Conclusion and Remarks

