
Rucci et al.

RESEARCH

SWIFOLD: Smith-Waterman Implementation on
FPGA with OpenCL for Long DNA Sequences
Enzo Rucci1*†, Carlos Garcia2†, Guillermo Botella2†, Armando De Giusti1†, Marcelo Naiouf3† and Manuel

Prieto-Matias2†

*Correspondence:

erucci@lidi.info.unlp.edu.ar
1III-LIDI, CONICET, Facultad de

Informática, Universidad Nacional

de La Plata, 1900 La Plata

(Buenos Aires), Argentina

Full list of author information is

available at the end of the article
†Equal contributor

Abstract

Background: The Smith-Waterman (SW) algorithm is the best choice for
searching similar regions between two DNA or protein sequences. However, it
may become impracticable in some contexts due to its high computational
demands. Consequently, the computer science community has focused on the use
of modern parallel architectures such as graphics processing units (GPUs), Xeon
Phi accelerators and field programmable gate arrays (FPGAs) to speed up
large-scale workloads.

Results: This paper presents and evaluates SWIFOLD: a Smith-W aterman
parallel Implementation on FPGA with OpenCL for Long DNA sequences. First,
we evaluate its performance and resource usage for different kernel configurations.
Next, we carry out a performance comparison between our tool and other
state-of-the-art implementations considering three different datasets. SWIFOLD

offers the best average performance for small and medium test sets, achieving a
performance that is independent of input size and sequence similarity. In addition,
SWIFOLD provides competitive performance rates in comparison with
GPU-based implementations on the latest GPU generation for the large dataset.

Conclusions: The results suggest that SWIFOLD can be a serious contender for
accelerating the SW alignment of DNA sequences of unrestricted size in an
affordable way reaching on average 125 GCUPS and almost a peak of 270
GCUPS.

Keywords: DNA; Smith-Waterman; OpenCL; High-Performance Computing;
FPGA

1 Introduction
Biology, just like other scientific disciplines, is experiencing an exponential growth in

data from experiments. Sequencing centers, analytical facilities and individual lab-

oratories produce huge amounts of data, such as nucleotide and protein sequences,

and this phenomenon is known as data explosion [1]. One of the main challenges

for the scientific community is to extract relevant information from these data in a

reasonable time, which has motivated the collaboration of disciplines such as Biol-

ogy and Computer Science. One of the most useful operations in Bioinformatics is

the identification of similarities between two biological sequences. To compute pair-

wise similarity, the Smith-Waterman (SW) algorithm is usually employed because

of its high sensitivity. In fact, SW compares two sequences in an exact way and

produces the optimal local alignment score. The complexity of SW depends on the

input sequence lengths since the alignment process is of quadratic order. However,

Rucci et al. Page 2 of 16

the main handicap of SW resides in the long execution times and computational

resources required. This aspect has led to the use of BLAST [2] and FASTA [3],

which, although they do not guarantee the optimal solution, are considerably faster.

Despite the fact that heuristics are suitable in certain contexts, they do not always

provide valid solutions due to a loss of sensitivity [4].

In order to reduce computational times, great efforts have been made to improve

SW performance. Although a number of studies have focused on exploiting the

different levels of parallelism that are now available on modern microprocessors,

accelerating SW is still a big challenge. The parallelization of SW has been devel-

oped in two different alignment contexts: (i) a protein sequence against a genomic

database; and (ii) two long DNA sequences. The first scenario involves the construc-

tion of a matrix of moderate size which allows the alignment of several independent

sequences simultaneously [5]. However, in the context of DNA sequence, this scheme

is impracticable due to limited memory resources. For example, in the DNA case, a

single pairwise alignment of Megabase DNA sequences could involve a matrix size

of petabyte scale. The parallelization approaches in DNA alignment are based on

the wavefront method [6], in which the matrix is calculated by diagonals and all

cells in each diagonal are computed in parallel.

In the last decade, we have seen countless parallel SW approaches in both

contexts. Most of them correspond to protein alignment, and are parallelized

on high-performance computing (HPC) architectures [7] and emerging architec-

tures [8, 9, 10]. For very long sequences, such as with DNA, the number of works is

significantly lower. CPU-based alternatives include the SSW library [11] and the re-

cently released MASA framework [12] and Parasail library [13]. In the field of emerg-

ing architectures (especially hardware accelerators), two approaches that stand out

are SW# [14] and CUDAlign [15], which compute the alignment of huge DNA

sequences using multi CUDA-compatible graphics processing units (GPUs). Also,

there is an SW version for Intel Xeon Phi accelerators that is known as SWAPHI-

LS [16]. Furthermore, ad-hoc field programmable gate array (FPGA) proposals

have shown significant speedups for DNA comparison [17, 18, 19].

However, in recent years we have observed significant transitions made by mi-

croprocessor manufacturers that will have a big impact on the HPC field. With

the recent purchase of Altera by Intel in 2015, Intel has announced the incorpo-

ration of FPGA hardware in the next generation of Xeon processors. While there

are studies in the transactional field that demonstrate great advantages in terms

of performance and power consumption of large data centers equipped with these

devices [20] (it is expected that more than 30% of data centers will be equipped

with FPGAs), there is no study that confirms these advantages in other areas such

as Bioinformatics. We would like to highlight that, unlike other accelerators such as

GPUs or Xeon Phi, which have to be purchased separately, the new processors will

integrate FPGA technology so that its exploitation will be essential to accelerate

any research application. Traditionally, FPGAs were programmed at a low level

using tools based on a hardware description language (HDL), which makes algo-

rithm portability a very difficult and error-prone task. Recently, the main FPGA

manufactures have introduced a high level programming paradigm known as Open

Computing Language (OpenCL), which facilitates the portability process.

Rucci et al. Page 3 of 16

In the present study, we evaluate the performance of SWIFOLD, an SW imple-

mentation for DNA sequences of unrestricted size, on Intel’s FPGA by means of

the OpenCL paradigm. Most existing studies into FPGA-based sequence alignment

have been developed in HDL, and this limits their portability and design. We would

like to point out that both Altera and Xilinx have promoted similar implementa-

tions in the past [21, 22], but no real sequence data were used and sequence lengths

were fixed and very short, which can be radically different from real bioinformatic

contexts. The focus of this paper is not only on the performance of SWIFOLD but

also on a guide to selecting the best existing option for a non-expert user. This work

is an extension of the previous one published in [23], and the main contributions

made here are:

• The creation of a public git repository with the binary executable developed

for this paper, denoted as SWIFOLD [1].

• The development of SWIFOLD and its optimization on Intel’s Arria 10

FPGA. The choice of Arria 10 is motivated by Intel’s announcement of the

incorporation of Arria 10 FPGAs into both the new Xeon processors and

the Intel-Go platform for automotive production at the 2017 Consumer Elec-

tronics Association event (CES’2017). We would like to emphasize that the

optimized code on the Arria 10 reported accelerations of between 3× and 4×

in comparison with previous work [23].

• Additional experiments with larger DNA sequences than those used in [23].

This aspect emphasizes the independence of the SWIFOLD performance with

regards to the sequence sizes.

• A useful guide to selecting the best platform for DNA sequence alignment.

The selection depends on the matrix size and the sequence similarity, as well

as the cost of the corresponding platform.

The rest of the paper is organized as follows. Section 2 provides details of the

SW algorithm. Section 3 describes Altera’s OpenCL programming model, while

Section 4 addresses our parallelization of the SW algorithm using OpenCL on FP-

GAs. Section 5 presents the experimental results, and finally Section 6 contains our

conclusions and possible directions for future research.

2 Smith-Waterman Algorithm
The SW algorithm is widely used to obtain the optimal local alignment between

two sequences [24]. This method is based on a dynamic programming approach and

is highly sensitive since it explores all possible alignments between the sequences.

Given two sequences S1 and S2 of length |S1| = m and |S2| = n, the recurrence

relations for the SW algorithm with affine gap penalties [25] are defined as follows:

Hi,j = max{0, Hi−1,j−1 + SM(S1[i], S2[j]), Ei,j , Fi,j} (1)

Ei,j = max{Hi,j−1 − (Go +Ge), Ei,j−1 −Ge} (2)

[1]SWIFOLD is available at https://github.com/enzorucci/SWIFOLD

Rucci et al. Page 4 of 16

Fi,j = max{Hi−1,j − (Go +Ge), Fi−1,j −Ge} (3)

To identify a common subsequence, the similarity score Hi,j is computed. This

contains the score for aligning the prefixes S1[1..i] and S2[1..j]. Ei,j and Fi,j cor-

respond to the scores of prefix S1[1..i] and S2[1..j] aligned to a gap, respectively.

The scoring matrix is denoted as SM and refers to match/mismatch scores between

nucleotides. Go and Ge represent the gap open and gap extension penalties, respec-

tively. First of all, H , E and F must be initialized with 0 when i = 0 or j = 0. Then,

the recurrences should be calculated with 1 ≤ i ≤ m and 1 ≤ j ≤ n. The highest

value in the H matrix corresponds to the optimal local alignment score between

S1[1..i] and S2[1..j]. The optimal local alignment is finally obtained by following a

traceback procedure whose starting point is the maximum value in H .

From a computational point of view, it is important to highlight the computational

dependences of anyH element. Any cell can be calculated only after the values of the

upper, left and upper-left neighbors are known (see Figure 1). These dependences

impose restrictions on the ways in which H can be processed.

3 OpenCL Extension on Intel’s FPGA
OpenCL is an extended framework for coding parallel programs across heteroge-

neous platforms. It offers a standard interface for parallel computing using task-

and data-based parallelism. Currently, it is supported by most hardware devices

such as CPUs, GPUs, digital signal processors (DSPs) and FPGAs. Its definition

and updated versions have been promoted by the Khronos Group consortium, in

which most hardware vendors act as promoters.

OpenCL is based on the host-device model. While OpenCL routines called kernels

are executed on the device, the host controls the device memory and the kernel code

launch. Kernels can be seen as a piece of code which expresses the parallelism of

a program. In this programming model, a program workload is divided into work-

groups and work-items. While the task parallelism model exploits the parallelism

between tasks following a pipeline scheme, the data parallelism model exploits the

concurrent execution on different data (if non-dependence data exists). In the task

parallel model, a kernel consists of a single work-group with a unique work-item.

In the opposite sense, the data parallel model considers several work-groups com-

posed of multiple work-items. These work-groups are executed independently on a

processing element, usually in the single instruction multiple data (SIMD) manner.

The OpenCL memory model implements a particular memory hierarchy. Each

region is distinguished by access type, scope and performance. Global memory is a

high latency read-write memory accessible by all work-items and also by the host.

Local memory is shared by all work-items in the same work-group. It can be seen as

a scratchpad memory with low latency access. Private memory is only accessible by

a single work-item. Constant memory, as its name suggests, is a read-only memory

accessible by all work-items. In this sense, FPGAs are dedicated accelerators that

obey the aforementioned complex hierarchy model (see Table 1 particularized for

the FPGA used in this research).

Rucci et al. Page 5 of 16

Algorithm 1 Pseudo-code for the host implementation

1: clCreateBuffer’s(...) ⊲ Create buffers + transfer sequences to device

2: NB = n/BW ⊲ NB is the number of vertical blocks

3: for b ≤ NB do

4: clEnqueueTask(...) ⊲ Compute b-th block

5: swap(prevLastColH ,curLastColH)

6: swap(prevLastColE,curLastColE)

7: end for

8: clEnqueueReadBuffer(maxScore) ⊲ Transfer optimal score to host

One of the main advantages of OpenCL for a programmer is the abstraction of the

target platform details in the parallel coding task. In fact, it favors portability and

reduction of parallel coding effort. Note that FPGAs allow programming networks

composed of logic elements, memory blocks and specific DSP blocks. HDLs are

generally used to verify and create digital designs; however, they are complex and

error prone, and have the additional difficulty of maintaining an explicit notion of

time.

Each Intel FPGA can have multiple in-order command queues associated with it

that can execute independent commands concurrently. Kernels need to be compiled

previously using the Intel/Altera OpenCL Compiler (AOC). At the moment of

selecting a parallel programmingmodel, Intel FPGA OpenCL SDK [26] recommends

the task parallel model as the best performance choice. We should point out that

the AOC extracts efficient loop parallelism, which allows the loop to execute in a

true pipeline fashion.

4 SW Implementation
The programming aspects and optimizations applied to our implementations on

FPGA accelerated platforms are described in this section. For the sake of clarity,

the pseudo-code for the host implementation is shown on Algorithm 1. Memory

allocation and initialization are performed in OpenCL through clCreateBuffer, while

memory transfer to the host is performed by means of clEnqueueReadBuffer. Finally,

the clEnqueueTask function makes it possible to invoke kernel execution.

The task parallel programming model mentioned in Section 3 is followed to im-

plement the kernel, and its pseudo-code is presented in Algorithm 2. To reduce

memory space requirements, the H matrix is divided into vertical blocks of size

BW ×m (BW means B lock W idth). Then each block is processed in row-by-row

manner: from top to bottom, in a left to right direction, as is shown in Figure 2.

As well as improving data locality, this technique also favors the exploitation of the

private low-latency memory. In this sense, we have used two buffers to store one row

for matrices H and F . In addition, both sequences are partially copied to private

memory.

From the performance point of view, fully unrolling the inner loop represents

an essential aspect of this kernel since this technique allows the AOC to exploit

loop instruction pipelining. As a consequence, the performance improves because

more operations per clock cycle are carried out. As the compiler needs to know the

number of iterations in the compile phase, the S2 sequence must be extended with

Rucci et al. Page 6 of 16

Algorithm 2 Pseudo-code for the kernel implementation

1: kernel void SW kernel (S1, S2, m, b, match, mismatch, Go, Ge,

prevLastColH , curLastColH , prevLastColE, curLastColE, maxScore) {

2: Load the BW residues of S2 corresponding to b-th block from global memory to

private memory

3: for i ≤ m do ⊲ each row

4: Load the i-th residue of S1 from global memory to private memory

5: Read previous block data from global memory (prevLastColH and

prevLastColE)

6: #pragma unroll

7: for j ≤ BW do

8: Calculate Hi,j in private memory

9: end for

10: Write data for next block to global memory (curLastColH and curLastColE)

11: end for

12: Update maxScore in global memory (if appropiate)

13: }

dummy symbols to make its length a multiple of the fixed BW value. However,

this extension has a negligible influence on execution time since DNA sequences are

usually much larger than the BW constant. Furthermore, it is important to remark

that the AOC reports the appearance of non-real read-write dependences in private

memory associated to matrices H and F after a certain BW value, which aborts

binary kernel generation. In order to solve this issue, the innermost loop is split into

two or more loops to carry out the execution of wider blocks.

Global memory buffers are employed to solve the data dependences between adja-

cent vertical blocks mentioned in Section 2, as each block needs the last column H

and E values of the previous block. We used separate buffers to avoid read-write de-

pendences in global memory: one for reading the values from the previous block and

one for writing the values for the next block. After each kernel invocation, buffers

are swapped in the host (these buffers are colored pink and blue in Figure 2). It

is important to mention that, although in the OSWALD implementation [10] In-

tel/Altera OpenCL channels are used to communicate these data, the use of this

technique is not feasible in the context of DNA with millions of nucleotide bases in-

volved, since its size would exceed by far the channel resources available. We should

point out that although the use of these buffers could double memory consumption,

it is by far compensated on speedup terms.

In addition, to improve data transfer efficiency, host-side buffers are allocated

to be 64-byte aligned because the direct memory access mechanism is activated.

Both sequences are copied when creating the device buffers and the optimal score

is retrieved after all kernels are finished.

5 Experimental Results
In this section, we describe the tests carried out and evaluate the performance of

SWIFOLD. Additionally, we compare SWIFOLD with other existing alternatives

Rucci et al. Page 7 of 16

and provide a guide to selecting the best platform for DNA sequence alignment

according to the results obtained.

5.1 Experimental Platforms and Tests Carried Out

The experiments were performed on three systems equipped with different acceler-

ator types, namely FPGA, GPU and Xeon Phi. The main features of these systems

are described in Table 2. All the tests were carried out with real DNA sequences

from the National Center for Biotechnology Information (NCBI) [2] in order to en-

sure the relevance of this study. The test sequences are divided into three sets: small

sequences (less than 1M nucleotide bases, which generates kilo and mega-cell matri-

ces),medium sequences (from 1M to 25M nucleotide bases, which generates giga-cell

matrices), and large sequences (more than 25M nucleotide bases, which generates

up to tera-cell matrices). The accession numbers and sizes of the sequences are pre-

sented in Table 3. For the sake of validation, optimal alignment scores were also

included. The score parameters used were: +1 for match; -3 for mismatch; -5 for

gap open; and -2 for gap extension. Finally, each test was run ten times and perfor-

mance was calculated as an average of the corresponding execution times to avoid

variability.

5.2 Performance and Resource Usage Evaluation

Cell updates per second (CUPS) is a commonly used performance measure in the

SW scenario, because it makes it possible to remove dependency on the sequences

utilized for the different tests. CUPS represents the time for a complete computation

of one cell in matrix H, including all memory operations and the corresponding

computation of the values in the E and F arrays. The GCUPS metric (billions of

CUPS) is calculated with the formula m×n
t×109 , where m and n are the sizes of the

sequences and t is the computation time. In this article, the runtime t includes

device buffer creation, the transfer time of host data to the FPGA, the calculation

time of SW alignment, and the transfer-back time of the optimal score.

We have considered different kernel implementations according to integer data

type and BW value (see Table 4) to evaluate FPGA performance rates. The fol-

lowing items indicate the main differences:

• The name prefix denotes the integer data type used; i.e. int, short and char

represent 32, 16 and 8 bit integer data types, respectively.

• The name suffix denotes the BW value used; e.g. bw256 means that the BW

value was set to 256.

FPGA resource utilization and the performance achieved for our OpenCL kernel

implementations using the small and medium test sets are shown in Table 4. BW

impacts on both resource consumption and performance rates. As might be ex-

pected, larger BW values produce better performance results but at the expense of

higher resource consumption. In fact, adaptive logic modules (ALMs) are the most

affected resources: registers (Regs) and RAM blocks (RAMs) increase slightly, while

DSP blocks (DSPs) remain intact. It is important to mention that, unlike in our

previous work [23], we have been able to solve the non-real read-write dependences

[2]Sequences are available at http://www.ncbi.nlm.nih.gov

Rucci et al. Page 8 of 16

reported by the AOC for large BW values. This improvement allowed us to stress

the kernel resources in order to maximize performance.

If we consider the integer data type, we can see that the use of a smaller data

type generates better performance and less resource consumption. We can clearly

appreciate this behavior when comparing the int bw512 and short bw512 kernels:

for the same BW configuration, short bw512 presents an increment of up to 1.52×

in performance with a reduction of up to 0−0.35× in resource usage with regards

to the int bw512 version. A similar behavior is observed with the short bw512 and

char bw512 kernels: char bw512 reports an increment of up to 1.21× in performance

with a reduction of up to 0−0.35× in resource usage with regards to its short bw512

counterpart. Nevertheless, the use of narrower integer data types does not come free

and involves an significant reduction in representation range. In this sense, there

are three alignment scores out of ten that cannot be computed when using 16 bit

integer data. This fact is also observed for the experiments with the 8 bit data type,

where only three experiments could be carried out [3].

When considering sequence length, we can observe that larger workloads improve

performance in all kernels regardless of sequence similarity. The best performances

obtained are 132.43, 203.5 and 268.83 GCUPS for the int, short and char kernels,

respectively.

5.3 Performance Comparison with other SW Implementations

This subsection addresses a comparison of SWIFOLD with other SW implementa-

tions: the Xeon Phi-based SWAPHI-LS program (v1.0.12) [16], and the GPU-based

SW# [14] and CUDAlign (v3.9.1.1024) [27] programs [4]. It is important to men-

tion that we have also tested several CPU-based alternatives: the MASA/OpenMP

implementation [12], and the SSW [11] and Parasail [13] libraries. However, we

discarded all of these due to their poor performance rates. In particular, the best

performances achieved using 2×Intel Xeon E5-2670 processors were 0.5, 2.42 and

1.3 GCUPS for MASA/OpenMP, SSW and Parasail, respectively.

Table 5 presents the performance of the SWIFOLD, SWAPHI-LS, SW# and

CUDAlign implementations using the small and medium sequence test sets. It is

worth noting that the SWIFOLD performance rates belong to the best 32-bit kernel

version but faster performances for smaller data types are also reported (in brackets)

where applicable. SWAPHI-LS yields an average performance of 25.89 GCUPS and

a peak of 34.38 GCUPS, being outperformed by SWIFOLD in all scenarios. In

particular, the most impressive performance difference occurs for the small sequence

set where SWIFOLD runs on average 35.5× faster. For the rest of the tests, the

performance gain decreases but still improves by 4× on average.

Both GPU tools are very sensitive to sequence similarity since higher GCUPS

are obtained on alignments with higher scores. On the GTX980, SW# presents

an average performance of 62.68 GCUPS and a maximum performance of 120.92

GCUPS, improving upon CUDAlign by a factor of 5.34× on average for the small

dataset. CUDAlign achieves 71.23 GCUPS on average and a peak of 163.77 GCUPS

[3]The symbol ’-’ denotes an alignment that cannot be computed because the optimal score exceeds
the corresponding maximum value.
[4]Both GPU tools were configured to perform only their score version.

Rucci et al. Page 9 of 16

on the medium test set, reaching an average speedup of 1.24× with respect to SW#

implementation. On the GTX1080, SW# obtains an average performance of 124.40

GCUPS, with a maximum performance of 255.89 GCUPS. On the same GPU,

CUDAlign obtains 124.44 GCUPS on average, and 297.05 GCUPS as its peak. In

a similar way, CUDAlign runs slower than SW# for the first half of the sequence

alignments, for which the latter runs 4.3× faster on average. For the second half of

the test set, CUDAlign beats SW# by a factor of 1.12×. According to the results

obtained for the GPU implementations, we can conclude that regardless of the

GPU generation, for small sequences SW# performs better, whereas for medium

sequences CUDAlign is slightly faster. For its part, SWIFOLD yields an average

performance of 119.41 GCUPS, with a maximum performance of 132.33 GCUPS.

In this way, SWIFOLD is able to beat SW# in all tests on the GTX980 and in

the small test set on the GTX1080 (running 19.77× and 58.77× faster on average,

respectively). Compared with CUDAlign, SWIFOLD is superior on the GTX980

by a factor of 201× on average, except for the seventh and ninth alignments, for

which CUDAlign performs better because of high sequence similarity. SWIFOLD

outperforms CUDAlign when using the small dataset on both GPUs, and CUDAlign

is superior for the medium dataset, but just on the most powerful GPU.

For larger dataset inputs, we have also compared the performance of the different

tools. Table 6 presents the performance rates for the SWIFOLD, SWAPHI-LS, SW#

and CUDAlign implementations. As might be expected, SWAPHI-LS again presents

poor performance rates, obtaining 30.77 GCUPS on average and a peak of 33.66

GCUPS. SWIFOLD is able to beat both the SW# and CUDAlign implementations

on the GTX980 GPU (1.5× and 1.1× faster on average, respectively), but this result

changes for the most powerful GPU, on which the best performance is achieved

by CUDAlign: 234.8 GCUPS on average (note the high score values reflected in

Table 3).

5.4 Best platform selection for DNA sequence alignment

From the results in the previous section, we can conclude that for the alignment of

long sequences, such as in the case of DNA, the use of a general purpose pro-

cessor is not the most suitable solution, considering the poor results achieved:

MASA/OpenMP, SSW and Parasail libraries hardly obtain a maximum perfor-

mance of 2.42 GCUPS. This fact forces us to use accelerators in order to obtain

acceptable response times.

However, the choice of the optimal accelerator is not obvious since it involves an

additional purchase. According to the results obtained, the use of a Xeon Phi accel-

erator does not seem to be an appropriate solution if we consider the performance

on other accelerator types such as NVIDIA GPUs or Intel FPGAs.

The most successful implementations in this study are CUDAlign on the latest

NVIDIA GPU and SWIFOLD on an Intel FPGA. The advantage of choosing a

GPU lies in two aspects: the performance increment of successive GPU generations

and their affordable prices. However, it is important to mention that newer GPU

generations do not always provide better performance in the context of sequence

alignments using the SW method, such as with CUDASW++ software [5]. Like-

wise, it has also been observed that CUDAlign does not always provide the best

Rucci et al. Page 10 of 16

performance rates for small and medium sequence sizes. However, CUDAlign can

be considered an efficient solution on the latest GPUs for large dataset inputs or

very similar sequence pairs.

Taking into account the above analysis as well as Intel’s plans for FPGA inte-

gration into its next generation of processors, we consider that SWIFOLD can be

a good choice for long DNA sequence alignment. SWIFOLD doest not only offer

the best average performance for small and medium datasets, but also presents a

performance that is independent of data input length and sequence similarity. Ad-

ditionally, it is also competitive compared with CUDAlign on the latest generation

of NVIDIA GPUs, running 1.6× slower on average.

Finally, Table 7 summarizes the different SW implementations and the expected

performance according to the alignment size and the accelerator type, where (+)

and (-) mean better and worse options, respectively.

6 Conclusions
In this paper, we have presented and evaluated SWIFOLD. By using this tool, we

have addressed the benefits of a parallel SW implementation using OpenCL on Intel

FPGAs for DNA sequences of unrestricted size. By considering the performance of

SWIFOLD, we can conclude that:

• Larger pipelines lead to better performance but at the cost of higher resource

consumption. By splitting the innermost loop, we were able to avoid the non-

real dependences reported by AOC and, as a consequence, stress the kernel

resources in order to maximize performance.

• Data type exploitation has a significant effect on performance rates. Narrower

data types reported better GCUPS with less resource usage, but at the ex-

pense of decreasing representation width.

• Larger workloads benefit all kernels regardless of sequence similarity. In par-

ticular, the fastest 32 bit kernel reached up to 132.43 GCUPS.

• Apart from the performance benefits, the use of the OpenCL paradigm for

SWIFOLD programming facilitates the portability process, unlike the existing

HDL-based alternatives.

If we compare SWIFOLD with other SW implementations on different devices

and accelerators, we can conclude that:

• CPU-based implementations are not a suitable solution due to their unaccept-

able response times.

• With regards to Xeon Phi coprocessors, SWAPHI-LS reports the poorest

performance rates.

• In the field of GPUs, SW# performs better for small sequences whereas CU-

DAlign is slightly faster for medium and large sequences, regardless of the

GPU generation.

• For its part, SWIFOLD offers the best average GCUPS for small and medium

test sets, its performance being independent of input size and sequence similar-

ity. In addition, SWIFOLD reported competitive performance rates compared

with CUDAlign on the latest GPU generation for the large dataset.

Furthermore, according to the results obtained and in view of the wide range of

options, we have proposed a guide to selecting the best platform for DNA sequence

Rucci et al. Page 11 of 16

alignment. As the choice is not obvious, the analysis provided can be helpful to

a non-expert user at the moment of purchasing a computational platform. As a

consequence of these promising results, the following aspects will be considered for

future work:

• Since not all alignments require 32 bit integer data, and in order to look for

the best performance-width trade-off, combinations of kernels with different

integer data width will be considered.

• Since the chance of exploiting multiple devices is available in OpenCL, this

work will be extended to a multi-FPGA environment in order to find the best

workload distribution.

• As nowadays not only performance but power efficiency matters, we are in-

terested in complementing the present study with a performance vs power

analysis.

Finally, we would like to mention that the use of FPGAs for SW alignment

has been traditionally limited by their programming cost and lack of portability.

SWIFOLD solves these issues because it is a portable, parallel SW implementation

for DNA sequences of unrestricted size on Intel FPGA-based platforms. As FPGAs

are becoming increasingly popular and they are expected to be available on the

next generation of servers, we expect SWIFOLD to become a serious contender for

accelerating DNA alignment.

Competing interests

The authors declare that they have no competing interests.

Author’s contributions

ER wrote the program, conducted the experiments, analyzed the results and wrote the manuscript; CG and GB

conceived the idea, conducted the experiments and analyzed the results; ADG, MN and MP analyzed the results

and revised the manuscript. All authors read and approved the final manuscript.

Acknowledgements

This work has been partially supported by the Spanish government through research contract TIN2015-65277-R and

the CAPAP-H5 network (TIN2014-53522). Finally, we acknowledge the support of the Intel R© FPGA University

Program for donating the Arria 10 FPGA used in this research.

Author details
1III-LIDI, CONICET, Facultad de Informática, Universidad Nacional de La Plata, 1900 La Plata (Buenos Aires),

Argentina. 2Depto. Arquitectura de Computadores y Automática, Universidad Complutense de Madrid, 28040

Madrid, Spain. 3III-LIDI, Facultad de Informática, Universidad Nacional de La Plata, 1900 La Plata (Buenos Aires),

Argentina.

References

1. Marx, V.: Biology: The big challenges of big data. Nature 498(7453), 255–260 (2013). doi:10.1038/498255a

2. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped blast and

psiblast: a new generation of protein database search programs. NUCLEIC ACIDS RESEARCH 25(17),

3389–3402 (1997)

3. Pearson, W.R., Lipman, D.J.: Improved tools for biological sequence comparison. Proceedings of the National

Academy of Sciences of the United States of America 85(8), 2444–2448 (1988). doi:10.1073/pnas.85.8.2444

4. Sæbø, P.E., Andersen, S.M., Myrseth, J., Laerdahl, J.K., Rognes, T.: Paralign: rapid and sensitive sequence

similarity searches powered by parallel computing technology. Nucleic acids research 33(suppl 2), 535–539

(2005)

5. Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matias, M.: State-of-the-Art in

Smith-Waterman Protein Database Search on HPC Platforms. In: Wong, K.-C. (ed.) Big Data Analytics in

Genomics, pp. 197–223. Springer, Cham (2016). doi:10.1007/978-3-319-41279-5 6.

http://doi.org/10.1007/978-3-319-41279-5 6

6. Steinfadt, S.I.: Smith-waterman sequence alignment for massively parallel high-performance computing

architectures. PhD thesis, Kent State University (2010)

7. Rucci, E., Garćıa, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Mat́ıas, M.: An energy-aware performance

analysis of SWIMM: Smith–Waterman implementation on Intel’s Multicore and Manycore architectures.

Concurrency and Computation: Practice and Experience 27(18), 5517–5537 (2015). doi:10.1002/cpe.3598

8. Liu, Y., Wirawan, A., Schmidt, B.: CUDASW++ 3.0: accelerating Smith-Waterman protein database search by

coupling CPU and GPU SIMD instructions. BMC Bioinformatics 14:117 (2013)

Rucci et al. Page 12 of 16

Table 1 OpenCL memory model for the Intel Arria 10 FPGA and the resources available in the Arria
10 FPGA.

OpenCL FPGA Intel Arria 10 FPGA

Memory

global external 2GB DDR3

constant cache 32KB DDR3

local embedded 67Mbits

private registers 67244Kbits

9. Liu, Y., Schmidt, B.: SWAPHI: Smith-Waterman protein database search on Xeon Phi coprocessors. In: 25th

IEEE International Conference on Application-specific Systems, Architectures and Processors (ASAP 2014)

(2014)

10. Rucci, E., Garćıa, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Mat́ıas, M.: OSWALD: OpenCL

Smith-Waterman Algorithm on Altera FPGA for Large Protein Databases. International Journal of High

Performance Computing Applications, 1094342016654215 (2016). doi:10.1177/1094342016654215

11. Zhao, M., Lee, W.-P., Garrison, E.P., Marth, G.T.: SSW Library: An SIMD Smith-Waterman C/C++ Library

for Use in Genomic Applications. PLOS ONE 8(12) (2013). doi:10.1371/journal.pone.0082138

12. De O. Sandes, E.F., Miranda, G., Martorell, X., Ayguade, E., Teodoro, G., De Melo, A.C.M.A.: Masa: A

multiplatform architecture for sequence aligners with block pruning. ACM Trans. Parallel Comput. 2(4),

28–12831 (2016). doi:10.1145/2858656

13. Daily, J.: Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments. BMC

Bioinformatics 17 (81) (2016)

14. Korpar, M., Sikic, M.: SW# - GPU-enabled exact alignments on genome scale. Bioinformatics 29(19),

2494–2495 (2013)

15. de Oliveira Sandes, E.F., Miranda, G., Martorell, X., Ayguadé, E., Teodoro, G., de Melo, A.C.M.A.: CUDAlign

4.0: Incremental Speculative Traceback for Exact Chromosome-Wide Alignment in GPU Clusters. IEEE Trans.

Parallel Distrib. Syst. 27(10), 2838–2850 (2016)

16. Liu, Y., Tran, T.T., Lauenroth, F., Schmidt, B.: SWAPHI-LS: Smith-Waterman Algorithm on Xeon Phi

coprocessors for Long DNA Sequences. In: 2014 IEEE International Conference on Cluster Computing

(CLUSTER), pp. 257–265 (2014). doi:10.1109/CLUSTER.2014.6968772

17. Yamaguchi, Y., Tsoi, H.K., Luk, W.: Fpga-based smith-waterman algorithm: Analysis and novel design. In:

Reconfigurable Computing: Architectures, Tools and Applications: 7th International Symposium, ARC 2011,

Belfast, UK, March 23-25, 2011. Proceedings, pp. 181–192. Springer, Berlin, Heidelberg (2011).

doi:10.1007/978-3-642-19475-7 20. https://doi.org/10.1007/978-3-642-19475-7 20

18. Caffarena, G., Pedreira, C.E., Carreras, C., Bojanic, S., Nieto-Taladriz, O.: FPGA Acceleration for DNA

Sequence Alignment. Journal of Circuits, Systems, and Computers 16(2), 245–266 (2007)

19. Wienbrandt, L.: Bioinformatics Applications on the FPGA-Based High-Performance Computer RIVYERA. In:

Vanderbauwhede, W., Benkrid, K. (eds.) High-Performance Computing Using FPGAs, pp. 81–103. Springer,

New York, NY (2013)

20. Leopold, G.: Intel’s FPGAs Target Datacenters, Networking.

https://www.hpcwire.com/2016/10/06/intels-fpgas-target-datacenters-networking/

21. Settle, S.O.: High-performance Dynamic Programming on FPGAs with OpenCL. In: 2013 IEEE High

Performance Extreme Computing Conference(HPEC ’13), pp. 1–6 (2013)

22. Sirasao, A., Delaye, E., Sunkavalli, R., Neuendorffer, S.: FPGA Based OpenCL Acceleration of Genome

Sequencing Software. International Conference for High Performance Computing, Networking, Storage and

Analysis (SC15) (2015). http://sc15.supercomputing.org/sites/all/themes/SC15images/tech_poster/

poster_files/post269s2-file3.pdf

23. Rucci, E., Garcia, C., Botella, G., De Giusti, A., Naiouf, M., Prieto-Matias, M.: Accelerating Smith-Waterman

Alignment of Long DNA Sequences with OpenCL on FPGA. In: Rojas, I., Ortuño, F. (eds.) Bioinformatics and

Biomedical Engineering: 5th International Work-Conference, IWBBIO 2017, Granada, Spain, April 26–28, 2017,

Proceedings, Part II, pp. 500–511. Springer, Cham (2017). doi:10.1007/978-3-319-56154-7 45.

http://dx.doi.org/10.1007/978-3-319-56154-7 45

24. Smith, T.F., Waterman, M.S.: Identification of common molecular subsequences. Journal of Molecular Biology

147(1), 195–197 (1981)

25. Gotoh, O.: An improved algorithm for matching biological sequences. In: Journal of Molecular Biology, vol. 162,

pp. 705–708 (1981)

26. Intel R© FPGA SDK for OpenCL: Best Practices Guide v2017.05.08 (2017).

https://www.altera.com/en_US/pdfs/literature/hb/opencl-sdk/aocl-best-practices-guide.pdf

27. de O. Sandes, E.F., Miranda, G., de Melo, A.C.M.A., Martorell, X., Ayguadé, E.: CUDAlign 3.0: Parallel

Biological Sequence Comparison in Large GPU Clusters. In: 2014 14th IEEE/ACM International Symposium on

Cluster, Cloud and Grid Computing, pp. 160–169 (2014). doi:10.1109/CCGrid.2014.18

Figures

Tables

Rucci et al. Page 13 of 16

Figure 1 Data dependences in the alignment matrix H. Red arrows indicate the data dependences
among cells while green arrows denote cells that can be computed simultaneously.

Figure 2 Graphic representation of our OpenCL kernel implementation.

Rucci et al. Page 14 of 16

Table 2 Experimental platforms used in the tests.

Platform

FPGA GPU Xeon Phi

Host 2×Intel Xeon E5-2670 2.60Ghz 2×Intel Xeon E5-2695 v3

2.30Ghz

2×Intel Xeon E5-2695 v3

2.30Ghz

(16 cores, 32GB RAM) (28 cores, 64 GB RAM) (28 cores, 128 GB RAM)

Accelerator

Intel Arria 10 GX
NVIDIA GTX 980

Intel Xeon Phi 3120P
(Maxwell architecture, 2048

CUDA cores, 4GB RAM)

(2GB RAM)
NVIDIA GTX1080 (Knights Corner generation, 57

cores, 6GB RAM)(Pascal architecture, 2560 CUDA

cores, 8GB RAM)

Operating

System

CentOS release 6.5 Debian release 8.0 CentOS release 6.5

Compiler
Intel ICC 17.0.1.132 Intel ICC 17.0.1.132

Intel ICC 17.0.1.132
Intel FPGA OpenCL SDK 16.0 CUDA SDK 7.5

Table 3 Information of the sequences used in the tests.

Set
Sequence 1 Sequence 2 Matrix size

Score
Accesion Size Accesion Size (cells)

sm
a
ll

AF133821.1 10K AY352275.1 10K 100K 5027

NC 001715.1 57K AF494279.1 57K 3M 51

NC 000898 162K NC 007605 172K 28M 18

NC 003064.2 543K NC 000914.1 536K 291M 48

m
ed
iu
m

CP000051.1 1M AE002160.2 1M 1G 82091

BA000035.2 3M BX927147.1 3M 9G 3888

AE016879.1 5M AE017225.1 5M 25G 5220775

NC 005027.1 7M NC 003997.3 5M 35G 157

NC 017186.1 10M NC 014318.1 10M 100G 10235056

NT 033779.4 23M NT 037436.3 25M 575G 9059

la
rg
e

NC 000021.9 48M NC 006488.4 34M 1.6T 24922392

NC 000022.11 51M NC 006489.4 38M 1.9T 20133752

NC 000019.10 59M NC 006486.4 62M 3.7T 23570332

NC 000020.11 65M NC 006487.4 67M 4.4T 35488641

R
u
cci

e
t
a
l.

P
a
g
e
1
5
o
f
1
6

Table 4 Performance and resource usage comparison for the different OpenCL kernel implementations.

Kernel int bw256 int bw512 int bw1024 int bw1152 short bw512 short bw1024 short bw1536 char bw512 char bw1024 char bw1536

Integer type int (32 bits) short (16 bits) char (8 bits)

Maximum value 2147483647 32767 127

BW 256 512 1024 1152 512 1024 1536 512 1024 1536

R
es
o
u
rc
e

u
sa
g
e

ALMs 29% 49% 87% 94% 32% 52% 73% 21% 31% 41%

Regs 3% 3% 4% 4% 3% 4% 5% 3% 4% 4%

RAM 8% 8% 20% 22% 7% 18% 27% 7% 18% 23%

DSPs 0% 0% 0% 0% 0% 0% 0% 0% 0% 0%

Matrix size (cells) GCUPS

P
er
fo
rm

an
ce

100K 24.15 31.57 44.99 49.81 48.00 52.35 56.92 - - -

3M 34.94 61.59 101.89 105.14 80.71 122.72 160.44 93.03 152.75 223.1

28M 36.70 68.11 119.15 122.91 85.96 146.80 186.74 102.50 173.23 255.49

291M 37.32 69.23 122.32 126.95 87.18 149.90 195.17 105.14 181.16 268.83

1G 37.42 70.13 124.93 129.44 - - - - - -

9G 37.84 70.80 126.96 131.45 88.40 155.85 202.56 - - -

25G 37.91 70.92 127.49 131.96 - - - - - -

35G 37.93 70.94 127.47 131.98 88.71 156.43 203.51 - - -

100G 37.98 70.99 127.68 132.15 - - - - - -

575G 38.03 71.09 127.85 132.33 88.87 156.83 204.06 - - -

Rucci et al. Page 16 of 16

Table 5 Performance comparison among SW implementations using the small and medium sets.
SWIFOLD performance rates belong to the best 32-bits kernel version but faster performances from
smaller data types are also reported (between parenthesis) whenever correspond.

Implementation SWIFOLD SWAPHI-LS SW# CUDAlign SW# CUDAlign

Accelerator Intel Arria 10 GX Intel Xeon Phi 3120P NVIDIA GTX980 NVIDIA GTX1080

Matrix size (cells) GCUPS

100K 49.81 (56.92) 0.42 0.3 0.03 0.23 0.03

3M 105.14 (223.1) 7.69 7.62 1.08 7.55 1.08

28M 122.91 (255.49) 21.24 33.33 8.18 41.47 8.63

291M 126.95 (268.83) 30.67 64.53 45.89 111.60 58.24

1G 129.44 32.84 75.24 79.21 144.97 117.97

9G 131.45 (202.56) 33.9 69.54 84.05 143.50 152.63

25G 131.96 34.16 120.92 160.79 255.89 295.43

35G 131.98 (203.51) 34.38 68.84 84.43 142.12 155.19

100G 132.15 33.19 118.81 163.77 253.13 297.05

575G 132.33 (204.06) 30.36 67.55 84.84 143.51 158.13

Table 6 Performance comparison among SW implementations using the large set.

Implementation SWIFOLD SWAPHI-LS SW# CUDAlign SW# CUDAlign

Accelerator Intel Arria 10 GX Intel Xeon Phi 3120P NVIDIA GTX980 NVIDIA GTX1080

Matrix size (cells) GCUPS

1.6T 132.41 31.03 91.54 122.14 193.56 224.15

1.9T 132.41 27.86 84.93 110.77 180.34 231.91

3.7T 132.42 33.66 89.02 119.47 191.59 232.54

4.4T 132.43 30.41 95.61 132.22 138.22 250.78

Table 7 Categorized options of SW implementations on different accelerator devices. (+) and (-)
mean better and worse options, respectively.

Implementation SSW SWIFOLD SWAPHI-LS SW# CUDAlign

Device Intel Multicore Intel FPGA Intel Xeon Phi NVIDIA GPU

Matrix size (cells) Performance (GCUPS)

small - +++ + ++ +

medium - +++ + +++ +++

large - ++ + ++ +++

