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Highlights 

 Three dimensional mathematical model to describe the drying process of chicory root (Cichorium 
intibyus L.) cubes 

 Consideration of temporal variations as function of the sample humidity content for shrinkage and 
transfer properties  

 Process representation by mathematical modeling 

 Application of first principles equations and semi-empirical correlations 

 Sensitive analysis for the main mass and heat transfer parameters.  

 

Abstract  

This work presents an exhaustive three dimensional mathematical model to describe chicory 

root cubes drying process (Cichorium intibyus L.) using a Fick’s diffusion model considering a 

variable diffusion path length in three dimensions. Experimental data obtained at laboratory scale is 

used to validate the proposed model. Experiments are conducted using a forced convection 

laboratory dryer at temperatures of 60°C and 80°C and air velocities of 0.2 and 0.7 m/s to dry chicory 
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root cubes of 1 cm of side. Mathematical modeling is firstly used to represent the performance of the 

drying process with the temporal variations of the average humidity content, to determine diffusion 

coefficients, and afterwards, to obtain useful predictions on how the volumetric contraction of the 

cubes behaves under different operating conditions. The good agreements between experimental 

and predicted values prove that the proposed model can be applied to the precise description of 

experimental drying curves for chicory roots in three dimensions (3-D). In the ranges covered, the 

values of the effective moisture diffusivity were obtained between 5.63 10-5 and 8.21 10-5 cm2/s. 

Results from the analysis of rehydration and browning aspects illustrate that drying conditions have 

effects on the quality attributes of the dried samples.  

 

Keywords : 3-D; Drying; chicory roots; First-principles modeling; GAMS 

 

 

Nomenclature 

 

Symbols  
A 
a 
aw 
B 
b 
BI 

empirical coefficient (Eq. (9)) (s-1) 
dimensionless empirical coefficient (Eq. (29)) 
water activity 
empirical coefficient (Eq. (9)) (°K) 
dimensionless empirical coefficient (Eq. (29)) 
Browning index (abs.gr dm-1) 

C 
c 
cp 
d 

empirical coefficient (Eq. (9)) (g of dry matter . g of water-1) 
dimensionless empirical coefficient (Eq. (29)) 
specific heat (J . g -1 °C-1) 
dimensionless empirical coefficient (Eq. (8)) 

Deff effective diffusivity (cm2 . s-1) 
deq equivalent diameter (cm) 
Dw 

e 
f 

diffusion coefficient of water vapor (cm2 . s-1) 
dimensionless empirical coefficient (Eq. (8)) 
dimensionless empirical coefficient (Eq. (8)) 

G mass air flow (g . cm-2  . min-1) 
HS local moisture content (g of water . g of dry matter-1) 

𝐻𝑆̅̅ ̅̅  spatially averaged moisture content (g of water . g of dry matter-

1) 
h convective heat transfer coefficient (J . cm-2  min-1 °C-1) 
k mass transfer coefficient (cm . min-1) 
K thermal conductivity (W . cm-1 °C-1)  
L 
Pa 

characteristic length, sample semi-thickness (cm) 
total ambient pressure (Pa) 
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Pv 
R 

partial vapor pressure (Pa) 
Universal gas constant (J . °C-1. mol-1) 

RR Rehydration ratio (gr absorbed water. g of dry matter -1) 
T food temperature (°C) 
t 
Y 
x,y,z 
v 

drying time (minutes) 
specific humidity (g of vapor . g of dry air-1) 
coordinate axes/directions 
air velocity (m. s-1) 

 
Dimensionless groups 

 

Nu Nusselt number (-) 
Pr Prandtl number (-) 
Re Reynolds number (-) 
Sc Schmidt number (-) 
Sh Sherwood number (-) 
 
Greek symbols 

 

ΔL space grid with (cm) 

Δt temporal grid with (min) 

λfg Heat of vaporization  ( J . g water-1) 
µ viscosity (g . cm-1 min-1)   
ρ density (dry matter) (g . cm-3) 
 
Subscripts 

 

a air 
eq 
fc 
int 

equilibrium 
final condition 
interface 

s food 
sur 
o 

surface 
initial condition 

 

1. Introduction 

Chicory roots (Cichorium intibyus L.) are seasonal and highly perishable products, which, 

from an industrial point of view, require a short processing period or cold storage equipment of vast 

dimensions.  For this reason, to enable a longer availability period for the industrial production and 

thus ensure the constant supply of products, it is necessary that alternatives to provide chicory root 

during the year be created. The drying process would then be a viable alternative to reduce water 

activity of raw material and, thereby, extend its usefulness. 

Knowledge of the drying kinetics of biological materials is essential to the design, optimization 

and control of drying process (Sacilik et al., 2006). The use of validated simulation and optimization 

mathematical models are an adequate tool to define drying operating conditions with the objective 
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of preserving the retention of functional components, like antioxidants, for the particular case here 

discussed. Therefore, it is important to obtain a complete and rigorous mathematical model.    

In the field of drying modeling, different kinds of mathematical models are presented.  The 

simplest models only involve mass transfer equations (Azzouz et al., 2002; Hassini et al., 2004; Velic 

et al., 2004), assuming that the temperature gradient is too small and that it has no effect in the mass 

transfer rate. Most mathematical drying models found in the literature involve heat and mass transfer 

equations using ideal initial and boundary conditions like the equilibrium point. There is other set of 

works that postulate that shrinkage is negligible, which is not suitable for all biological materials 

(Karim et al., 2005; Park et al., 2007; Chandra Mohan et al., 2010; Jomlapelatikul et al., 2016). 

However, for vegetables, it is proved that the shrinkage phenomena occur (Liu et al., 2012; Ruiz-

López, 2012; Afaghi et al., 2013). 

Regarding to food products with high moisture content, a significant contraction during the 

drying is produced, which reduces the sample thickness. Therefore, constant length to calculate 

mass and heat transfer coefficients is not adequate. The thickness reduction occurs due to a 

moisture gradient within the particle that induces tensions in the microstructure, resulting in the 

products contraction. Furthermore, shrinkage diminishes the rate of heat transfer and spread 

processes which is extremely important during drying, since it produces a change in the necessary 

distance for the water molecules movement (Ruiz-López & García-Alvarado, 2007; Janjai et al., 

2008; Zielinska & Markowski, 2010; Milczarek et al., 2011; Thuwapanichayanan et al., 2011). 

Fick’s law of diffusion is widely implemented to describe the mass transfer during drying. 

Many works that consider the temperature effect in the diffusional coefficient have been published 

(Oliveira, 2005; Oliveira et al., 2006; Park et al., 2007; Oliveira, 2009; Askari, 2013). 

Probably, the work of Wang and Brennan (Wang, 1995) is one of the most extensive 1-D 

models in which simultaneous description of moisture and temperature profiles during the drying of 

potato slices considering non-constant physicochemical properties is presented. The authors also 

demonstrated that the shrinkage process had relevant influence on the drying behavior. Tzempelikos 

(Tzempelikos, 2015) presented 1-D mathematical model taking into account variable convective 
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coefficients and the shrinkage process during drying of cylindrical quince slices. It is important to 

highlight that according to the product geometry, descriptions in 2-D or 3-D are necessary to be 

postulated. However, few works considering 3-D mathematical models and variable coefficients are 

found in the literature because of the complexity of the non-linear equations which makes the solution 

procedure complicated and computationally demanding. Examples of unsteady tri-dimensional 

coupled heat conduction and mass diffusion mathematical model for the drying process of solid food 

but neglecting the shrinkage phenomena caused by the water movement during the diffusion 

process are the works of Askari and coworkers (2013), Lemus-Mondaca, and cowokers (2013). 

The shrinkage process affects the size of the particulates under study, which is the visible 

transformation of the geometry, then, as the length and moisture content of the particle are 

diminished during the drying time, it is assumed that mass and heat drying coefficients vary with the 

moisture content and the drying time. This phenomenon has been recognized as the main factor 

affecting water diffusivity estimation due to the shortening of water diffusion path (Ruiz-López & 

García-Alvarado, 2007; Janjai et al., 2008; Zielinska & Markowski, 2010; Milczarek et al., 2011; 

Thuwapanichayanan et al., 2011).  

Although, many researchers studied mass and heat transfer within chicory roots, their works 

were always based on the assumptions of negligible shrinkage and constant effective diffusion 

coefficient (Oliveira et al., 2006; Park et al., 2007; Oliveira, 2009; Brod, 2001).    

The objective of this study is to develop a three-dimensional drying model which takes into 

account simultaneous heat and mass transfers, accompanying temporal shrinkage of the drying 

material and variable diffusivity along the drying process. The model was validated with experimental 

laboratory results run at different drying temperatures and velocities for chicory root cubes. Drying 

temperatures and speed effects are also studied for the transfer rates and shrinkage process. Then, 

quality aspects of rehydration and browning have been analyzed for all the dried samples illustrating 

the influence of air drying temperatures and velocities on these attributes. 

 

2. Materials and Methods 
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2.1. Raw material and sample preparation  

Fresh chicory roots (Cichorium intybus L.) were provided by a nearby farmer to the city of 

Rosario (Santa Fe) Argentina. The roots were washed with an aqueous solution of neutral detergent 

and rinsed with tap water three times. Samples of approximately 700 grams were cut into cubes with 

dimension of 1 cm x 1 cm x 1 cm using a special cutting tool. 

 

2.2. Drying experiments 

Drying experiments were conducted using a forced convection laboratory dryer (Tecno Dalvo, 

Model CHC/F /I, Argentina) at temperatures of 60°C and 80°C and air velocities of 0.2 and 0.7 m/s 

according to Figueira and coworkers (2003) which obtained suitable results in the drying process of 

chicory roots at different temperatures. Drying experiments were performed in duplicate. The 

samples were placed on a stainless steel mesh tray to facilitate airflow circulation. 

In order to compute the moisture content, the partially dehydrated products’ mass was 

recorded at time intervals using a digital balance with an accuracy of ± 0.01 gram. The drying process 

was continued until the equilibrium moisture content HSeq was reached. The equilibrium moisture 

content, HSeq, was determined when no discernible weight change was observed for the dried 

samples, at that point it was assumed that the equilibrium moisture was reached. 

Measurements of temperature inside and on the surface of the samples undergoing drying 

was carried out using a type K thermocouple with 1.5 mm diameter probe (TFA Dostman GmbH, 

Wertheim, Germany). 

2.3 Rehydration evaluation 

Rehydration ratio (RR) was used to measure the water absorption ability of dried samples. 

RR was determined by immersing a wire mesh with 1 g of dried chicory root cubes in 50 ml of distilled 

water at 30 and 100 ⁰ C temperatures. The water was drained and the samples weighed at every 5 

minutes during 15 minutes and then every 15 minutes until constant weight for the samples at and 

30 ⁰ C and at every 1 minute for those at 100 ⁰ C. Triplicate samples were used. RR was calculated 

as the ratio between rehydrated and dried sample weights. 
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2.4 Non – enzymatic browning index determination 

Non enzymatic browning compounds solubilized in the rehydration water during the 

rehydration evaluation was first clarified by centrifugation at 3200xg for 10 min. The supernatant was 

diluted with an equal volume of ethanol at 95% and centrifuged again at the same conditions. Then, 

the browning index (BI) was determined in the clear extracts using a spectrophotometer (UV-1800, 

Shimatzu, Japan) at 420 nm. All measurements were done in triplicate.  

 

2.5 Statistical analysis 

The data were subjected to the analysis of variance (ANOVA) and Duncan’s New Multiple 

Range test at a confidence level of p = 0.05 using the SPSS Statistical Analysis Program for 

Windows (SPSS Inc., Chicago, IL, USA). 

 

3. Mathematical Model 

To describe moisture and temperature profiles within samples during the drying process, a 

mathematical model is proposed considering mass and energy conservation laws under the following 

assumptions: 

 The water diffuses to the surface of each particle according to Fick´s second law.     

 Initial cubes of 1 cm of side are considered. 

 Water evaporation takes place at the surface level only. Moisture movement and heat 

transfer are taking into account in the three dimensions.  

 The moisture at the surface is at equilibrium with the drying air.  

 The internal thermal resistance (chicory) is lesser than the external resistance (air), since 

the food thermal conductivity is larger than the fluid’s. Thereby, it is considered uniform temperature 

distribution within the drying material. 

 The shrinkage occurs on the six sides of each cube, but its shape does not change during 

drying.  
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 Homogeneous structure of the material is considered.  

 Air temperature is kept constant. There is sufficient air flowrate to evaporate the internal 

moisture content. 

 Moisture diffusivity depends on both solid moisture content and temperature.  

 

3.1. Mass transfer Model 

 The equations applied to describe simultaneous heat and mass transfer in a shrinking wet 

chicory cube subjected to convection boundary conditions are applied and written in 3-D Cartesian 

coordinates, which are fixed in the geometric center of the cube. Furthermore, variable physical and 

thermal properties are also incorporated in the model. 

A three-dimensional Fickian diffusion model of moisture transfer is applied to estimate the 

time evolution of the spatial distribution of the local moisture content in a chicory cube of half-

thickness L during drying, which is effectively simulating 1/8th of a cube and assuming symmetrical 

behavior in the other 7/8ths:  

𝜕(𝜌𝑠×𝐻𝑆)

𝜕𝑡
= 𝛻 (𝐷𝑒𝑓𝑓 × 𝛻(𝜌𝑠 × 𝐻𝑆))                                                                                                    (1)  

 

In this model, thermo-physical properties are considered as a function of the solid 

temperature and moisture content. Hence, for a cube in 3-D, Equation (1) takes the following 

structure.                                                                                  

 

𝜕(𝜌𝑠×𝐻𝑆)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐷𝑒𝑓𝑓

𝜕

𝜕𝑥
(𝜌𝑠 × 𝐻𝑆)) +

𝜕

𝜕𝑦
(𝐷𝑒𝑓𝑓

𝜕

𝜕𝑦
(𝜌𝑠 × 𝐻𝑆)) +

𝜕

𝜕𝑧
(𝐷𝑒𝑓𝑓

𝜕

𝜕𝑧
(𝜌𝑠 × 𝐻𝑆))                        (2)   

 

(𝑡 > 0; 0 < 𝑥 < 𝐿𝑥(𝑡); 0 < 𝑦 < 𝐿𝑦(𝑡); 0 < 𝑧 < 𝐿𝑧(𝑡) 
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where HS is the food moisture content at each instant of time; ρs is the food density; Deff is the 

effective diffusion coefficient of the moisture content; t is the drying time and L is the characteristic 

length of the sample (semi-thickness).                           

The following initial and boundary conditions are adopted to solve Equation (2): 

𝐻𝑆(𝑥, 𝑦, 𝑧, 0) = 𝐻𝑆𝑜                                                                                                                          (3)   

(𝑡 = 0; 0 < 𝑥 < 𝐿𝑥(𝑡); 0 < 𝑦 < 𝐿𝑦(𝑡); 0 < 𝑧 < 𝐿𝑧(𝑡)) 

 

−𝐷𝑒𝑓𝑓(𝑡) × (
𝜕

𝜕𝑥
(𝜌𝑠(𝑡) × 𝐻𝑆(0, 𝑦, 𝑧, 𝑡) +

𝜕

𝜕𝑦
(𝜌𝑠(𝑡) × 𝐻𝑆(𝑥, 0, 𝑧, 𝑡) +

𝜕

𝜕𝑧
(𝜌𝑠(𝑡) × 𝐻𝑆(𝑥, 𝑦, 0, 𝑡)) = 0      (4)    

(𝑡 = 0;  𝑥 = 0; 𝑦 = 0; 𝑧 = 0) 

 

−𝐷𝑒𝑓𝑓(𝑡) × (
𝜕

𝜕𝑥
(𝜌𝑠(𝑡) × 𝐻𝑆(𝑥, 𝑦, 𝑧, 𝑡)) +

𝜕

𝜕𝑦
(𝜌𝑠(𝑡) × 𝐻𝑆(𝑥, 𝑦, 𝑧, 𝑡)) +

𝜕

𝜕𝑧
(𝜌𝑠(𝑡) × 𝐻𝑆(𝑥, 𝑦, 𝑧, 𝑡))) =

𝑘(𝑡) × 𝜌𝑎( 𝑌𝑖𝑛𝑡(𝑡) − 𝑌𝑎)                                                                                                                    (5)  

(𝑡 > 0; 𝑥 = 𝐿𝑥(𝑡); 𝑦 = 𝐿𝑦(𝑡); 𝑧 = 𝐿𝑧(𝑡)) 

where 

Ya is the specific humidity in the ambient air and Yint(t) is the humidity at the air-food material 

interface. Both humidities are calculated using the following equations: 

 

𝑌𝑎 =
0.622×𝜙×𝑝𝑣(𝑇𝑎)

(𝑝𝑎−𝜙×𝑝𝑣(𝑇𝑎))
                                                                                                                           (6) 

 

where, relative humidity, ϕ, is the ratio of partial vapor pressure 𝑃𝑣  to the saturated vapor pressure 

at the same temperature and 𝑝𝑎 is the total ambient pressure. 

 

𝑌𝑖𝑛𝑡 =
0.662×𝑎𝑤×𝑝𝑣(𝑇𝑠,𝑠𝑢𝑟)

(𝑝𝑎−𝑎𝑤×𝑝𝑣(𝑇𝑠,𝑠𝑢𝑟))
                                                                                                                    (7) 
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The water activity 𝑎𝑤  is estimated using a quadratic expression of the moisture content 

obtained by the adjustment of different drying experiences, reported in Table 2:  

 

𝑎𝑤(𝑡) = 𝑑 × 𝐻𝑆̅̅ ̅̅ (𝑡)2 +  𝑒 × 𝐻𝑆̅̅ ̅̅ (𝑡) +  𝑓                                                                                              (8) 

 

Equation (5) describes that a convection mechanism is considered for the mass transfer from 

the product surface to bulk air; where k is the external mass transfer coefficient.  

It is accepted that the effective diffusion coefficient can be described by an exponential form 

considering the moisture dependence and the Arrhenius temperature influence (Karathanos, 1990; 

Parti & Dugmaniscs, 1990; Wang & Brennan, 1995; Białobrzewski & Markowski, 2004; Ruiz-López 

et al., 2004), according to Equation (9), in which A, B and C are fit parameters determined during 

the model optimization: 

                                                                                                                                                                                                                                                                

𝐷𝑒𝑓𝑓(𝑡) = 𝐴 × 𝑒𝑥𝑝 (
−𝐵

(273.15+𝑇𝑠)
) × 𝑒𝑥𝑝(𝐶 × 𝐻𝑆̅̅ ̅̅ (𝑡))                                                                            (9)                                            

                                                                                                                               

Therefore, the effective moisture diffusion coefficient, Deff (Equation 9), is a function of the 

solid temperature (Ts) and the moisture content during the drying process. Also, all these variables 

are dependent of the drying time. 

The mass transfer coefficient, k, used in Equation (5), is determined using the Sherwood 

number, Sh, calculated from the dimensionless equation reported by Mills (1995) in conjunction with 

Equations from 11 to 16: 

 

𝑆ℎ(𝑡)  =  
𝑑𝑒𝑞(𝑡)×𝑘(𝑡) 

𝐷𝑤
= 2 + 0.6 × 𝑅𝑒(𝑡)0.5 × 𝑆𝑐0.33                                                                         (10)   

µ𝑎 =
0.000001×1.4592×((𝑇𝑎+273)1.5)

(109.10+(𝑇𝑎+273))
                                                                                                      (11)    

𝜌𝑎 =
𝑀𝑎×𝑃𝑎

𝑅×(𝑇𝑎+273)
                                                                                                                              (12) 
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𝐺𝑎 =  
𝑃𝑎×𝑣×𝑀𝑎

𝑅×(𝑇𝑎+273)
                                                                                                                             (13) 

𝑑𝑒𝑞(𝑡)  = 𝐿𝑥(𝑡) × √(
6

𝜋
)                                                                                                                  (14) 

𝑅𝑒(𝑡) =
𝑑𝑒𝑞(𝑡)×𝐺𝑎

µ𝑎
                                                                                                                            (15) 

𝑆𝑐 =
µ𝑎

𝜌𝑎×𝐷𝑤
                                                                                                                                     (16) 

                                                                                                       

The estimation of the average moisture content at each instant of time in the chicory root 

cubes is obtained by integrating local moisture content over the volume. Specifically, the average 

moisture content is expressed as stated Equation (17), which can be evaluated using the Trapezium 

rule.      

                     

𝐻𝑆̅̅ ̅̅ (𝑡) =
∫ 𝐻𝑆(𝑥,𝑦,𝑧,𝑡)𝑑𝑉

𝑉

0

∫ 𝑑𝑉
𝑉

0

, 𝑡 ≥ 0                                                                                                        (17)    

3.2. Heat Transfer Model 

In addition to mass transfer, simultaneous heat transfer occurs during drying of foodstuffs, 

which is modeled as non-steady heat conduction within the product as (Białobrzewski & Markowski, 

2004):         

                                                                                 

𝜕(𝜌𝑠×𝑐𝑝𝑠×𝑇𝑠)

𝜕𝑡
=

𝜕

𝜕𝑥
(𝐾𝑠 ×

𝜕

𝜕𝑥
𝑇𝑠) +

𝜕

𝜕𝑦
(𝐾𝑠 ×

𝜕

𝜕𝑦
𝑇𝑠) +

𝜕

𝜕𝑧
(𝐾𝑠 ×

𝜕

𝜕𝑧
𝑇𝑠)                                                          (18)    

(𝑡 > 0; 0 < 𝑥 < 𝐿𝑥(𝑡); 0 < 𝑦 < 𝐿𝑦(𝑡); 0 < 𝑧 < 𝐿𝑧(𝑡) 

 

where, 𝑇𝑠 is the food temperature, cps is the food specific heat and Ks is the food thermal conductivity. 

 The following initial and boundary conditions are adopted to solve Equation (21): 

𝑇𝑠(𝑥, 𝑦, 𝑧, 0) = 𝑇𝑠𝑜
                                                                                                                             (19) 

(𝑡 = 0; 0 < 𝑥 < 𝐿𝑥(𝑡); 0 < 𝑦 < 𝐿𝑦(𝑡); 0 < 𝑧 < 𝐿𝑧(𝑡)                                              
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−𝐾𝑠(𝑡) (
𝜕

𝜕𝑥
𝑇𝑠(0, 𝑦, 𝑧, 𝑦) +

𝜕

𝜕𝑦
𝑇𝑠(𝑥, 0, 𝑧, 𝑡) +

𝜕

𝜕𝑧
𝑇𝑠(𝑥, 𝑦, 0, 𝑡) = 0                                                         (20)                                                        

(𝑡 = 0;  𝑥 = 0; 𝑦 = 0; 𝑧 = 0) 

                                     

𝐾𝑠(𝑡) × (
𝜕

𝜕𝑥
𝑇𝑠(𝑥, 𝑦, 𝑧, 𝑡) +

𝜕

𝜕𝑦
𝑇𝑠(𝑥, 𝑦, 𝑧, 𝑡) +

𝜕

𝜕𝑧
𝑇𝑠(𝑥, 𝑦, 𝑧, 𝑡))  = ℎ (𝑡) × (𝑇𝑎  − 𝑇𝑠(𝑥, 𝑦, 𝑧, 𝑡))  −  𝑘(𝑡) × 𝜌𝑎( 𝑌𝑖𝑛𝑡(𝑡) − 𝑌𝑎) × 𝜆𝑓𝑔    

(21)                                                                                                                                     

(𝑡 > 0; 𝑥 = 𝐿𝑥(𝑡); 𝑦 = 𝐿𝑦(𝑡); 𝑧 = 𝐿𝑧(𝑡)) 

   

In Equation (21), h, is the convective heat transfer coefficient and, λfg, is the heat of 

vaporization.  In this equation, the term on the left side refers to the heat conducted from the outer 

surface to the inside of the body. The first term on the right side is the heat penetrating from the 

environment to the solid body by convection, and the second term on the right side denotes the 

evaporation heat.                                                                                                                                                                                                                                                                                                                                                                                                                              

The heat transfer coefficient, h, for the chicory roots cubes is determined using Nusselt 

number, Nu, calculated from the dimensionless equation reported by Pohlhausen (1921) for Re < 

5.105 and Pr > 0.6. 

                             

𝑁𝑢(𝑡) =
ℎ𝑚 (𝑡)×𝑑𝑒𝑞(𝑡)

𝑘𝑎
= 0.332 × 𝑅𝑒(𝑡)0.5 × 𝑃𝑟0.33                                                                           (22)    

 

𝑃𝑟 =
𝑐𝑝𝑎×µ𝑎

𝑘𝑎
                                                                                                                                     (23)    

 

The thermophysical properties, specific heat, cps, and thermal conductivity, ks are estimated 

using the correlations of Choi and Okos (1986) and Singh and Heldman (1993), respectively: 

𝐶𝑝𝑠(𝑡) = 0.84 + 3.55 ×
𝐻𝑆̅̅ ̅̅ (𝑡)

1+𝐻𝑆̅̅ ̅̅ (𝑡)
                                                                                                         (24) 

𝐾𝑠(𝑡) = 1.418 × 10−3 + 4.93 × 10−3  ×
𝐻𝑆̅̅ ̅̅ (𝑡)

1+𝐻𝑆̅̅ ̅̅ (𝑡)
                                                                                (25) 
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2.3. Model Solution Strategy 

Equations (2-4, 18-21) are discretized using the central finite difference method (CFDM) and 

the implicit method. This scheme, which has first-order accuracy in time and second-order accuracy 

in space, is unconditionally stable and convergent. Equations 26 and 27 define the spatial and 

temporal variations, respectively, with M = 9 and N = 32. The values of M and N have been previously 

proved and ensure the stability of the solution with the lower computational demand.  

 

∆𝐿𝑖(𝑡) =
𝐿𝑖(𝑡)

𝑀
                                                                                                                                   (26)                    

∆𝑡 =
𝑡𝑓𝑐

𝑁
                                                                                                                                            (27) 

 

This work is the first step of a challenging project, which consists of the model-based 

optimization of a full-scale facility to obtain extracts with antioxidants properties. Therefore, this 

mathematical model will be the basis of the optimization model for the drying unit operation. The 

proposed non-linear programming model was implemented in GAMS (General Algebraic Modeling 

System) and solved using CONOPT (Singh & Heldman, 1993), an algorithm based on the reduced 

gradient method.  

Figure 1 summarizes the scheme of work. As first step, the model is used to estimate the 

parameters of the diffusion coefficient (eq. (9)) by the application of the objective function (OF) based 

on the minimization of the mean-square error (MSE) of our experimental and predicted data points 

of moisture content and size contraction and presented in eq. (31). Here, the goal is to evaluate the 

performance of the model and the implemented correlations used to describe the heat and mass 

transfer during drying. After that, OF is again implemented in order to obtain the polynomial 

coefficients that describe the contraction as a function of the moisture content, according to the 

following equation: 

𝑉(𝑡)

𝑉𝑜
= 𝑎 × 𝐻𝑆̅̅ ̅̅ (𝑡)2 + 𝑏 × 𝐻𝑆̅̅ ̅̅ (𝑡) + 𝑐                                                                                                 (28)                                             
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where a, b and c are the estimated parameters of the optimization model at different drying 

conditions. 

𝑉(𝑡) = 2(𝐿(𝑡))
3
                                                                                                                             (29) 

where L(t) is the sample semi-thickness and it is considered that the contraction is homogeneous in 

all the cube faces:  

𝐿𝑥(𝑡) = 𝐿𝑦(𝑡) = 𝐿𝑧(𝑡) = 𝐿(𝑡)                                                                                                            (30) 

𝑂𝐹 = 𝑀𝑖𝑛{𝑀𝑆𝐸} = 𝑀𝑖𝑛 {
1

𝑁
(∑ (𝐻𝑆̅̅ ̅̅

𝑒𝑥𝑝(𝑡) − 𝐻𝑆̅̅ ̅̅ (𝑡))
2𝑡𝑓

𝑡𝑜
) +

1

𝑁
(∑ (𝐿𝑒𝑥𝑝(𝑡) − 𝐿(𝑡))

𝑡𝑓

𝑡𝑜

2
)}                           (31)  

It is interesting to remark that the solution of the minimization problem is quite close to the 

real behavior of the shrinkage process. This is achieved only using well proved correlations about 

all the other critical parameters of the whole drying process. 

Well proved correlations reported in the literature are adopted to predict heat and mass 

transfer coefficients in order to reduce the model degrees of freedom and facilitate the resolution of 

the NLP model.  

Figure 1 summarizes different variables, parameters and experimental input data required to 

solve the model. In this way, the model can predict the behavior of the shrinkage process considering 

different operating conditions. As summary, the implemented model estimates the parameter of the 

diffusion coefficients (A, B and C of eq. (9)), then these coefficients are included in the model and 

the polynomial coefficients of the contraction equation (a, b and c of eq. (28)) are calculated.  

                                                  

3.4. Parameters 

 The main model parameters classified as physicochemical properties and operating 

conditions are listed in Table 1 and Table 2.  

4. Results and discussion 

4.1. Performance of the model 

Table 3 presents the corresponding value of the Mean Square error (MSE) for the 

implemented model. From the results, it is concluded that MSE are low for both cases, being the 
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model satisfactory to describe the drying process as well as the shrinkage process and obtain the 

diffusion and shrinkage parameters.  

 

4.2. Drying Kinetics 

Figure 2 and 3 show comparison of the experimental and predicted average moisture content 

profiles carried out at different air drying temperatures and velocities. It is observed that the proposed 

model accurately describes the drying kinetics for all the experiments.  

The drying time to reach the equilibrium moisture content and R2 values for all the 

experimental runs are listed in Table 4. It is observed from both figures that the air temperatures 

exercise a noticeable impact on drying rates.  As expected higher drying temperatures lead to higher 

rates of removal moisture and therefore shorter drying times due to the higher temperature 

differences between the sample and the drying medium. 

The loss of moisture is very fast during the beginning of the drying process because of the 

large difference between the moisture content of the chicory root and the moisture content 

corresponding to equilibrium with the dry air. Initially, the gradient of moisture content is high. The 

free moisture being removed increases as the rate of convection heat and mass transfer is 

increased. This initial change of the moisture content is caused by a variation of the surface 

temperature. The product temperature is gradually increased during this period. In the falling rate 

drying period, moisture in chicory roots migrated from the inside to the surface of each sample 

because the rate of moisture movement is controlled by moisture diffusion rate through the product. 

At the end of the dehydration process, the moisture profile becomes flatten and tends to lower 

moisture levels until reaching the equilibrium moisture content of the chicory roots.  

 

4.3. Sample temperature evolution 

The average experimental and estimated temperature evolutions for chicory root samples 

are compared in Figure 4. Temperature vales are not fitting data points in the model. Therefore, as 

can be observed in Figure 4, the prediction presents high accuracy. 
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 At the beginning of drying process (t < 150 minutes), the temperature of the food increases 

rapidly due to the difference between air and food temperatures; at this time, most of the heat is 

used to evaporate water at the surface. About 75% of the water has evaporated. As the heating 

period progresses, the increment in temperature attains an almost uniform profile in which it can be 

considered constant (150< t < 630 minutes) and moisture becomes near to the equilibrium values. 

Most of the heat is used to raise the temperature of the food until reach the drying air temperature 

(Ruiz-López & García Alvarado, 2007). 

 

4.4. Effective moisture diffusivities  

Estimated water effective diffusivities are plotted in Figure 5. The diffusion coefficient 

depends on sample temperature and moisture, and the estimated parameters of the Eq.(9) are 

A=1.008 (1/s), B=3205.42 (K) and C=0.058 (g d.m./g water). Water diffusion coefficient increases 

with the increment of drying air temperature as shown Figure 5. As expected, the use of higher drying 

temperatures promotes a higher water mobility in food system (Ruiz-López, 2012) and thus 

increases the effective diffusivity of mass transfer. Despite the fact that higher temperature than 

80°C are not appropriate due to the thermal degradation of antioxidant components. Furthermore, 

the effective diffusivity increases as air-drying velocity increases. However, the air velocity has not 

shown a significant influence on the diffusion coefficient for both drying temperatures. 

As indicated Figure 6, a decrease in the value of the diffusivity is evidenced as the drying 

process progresses due to the temporal moisture reduction. In the final drying period (t> 200 

minutes), the diffusivity takes a constant value corresponding to the diffusivity for the equilibrium 

moisture. Similar results were obtained by Rahman and coworkers (2007), who showed that the 

diffusivity is high at the beginning of drying and then was kept constant at the final drying period. 

Analyzing the results, it is fundamental to take into account particle shrinkage, either with a 

variable L(t) in the mass transfer model equations Eqs. (1)-(5) in order to obtain representative 

moisture transfer phenomena. 

4.5. Shrinkage 
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Experimental and predicted contraction data obtained during convective drying chicory roots 

cubes as a function of the average moisture content at different conditions are plotted in Figure 7. 

The shrinkage of the product is shown by the change in the volume of the sample. This model allows 

to reproduce in a very satisfactory way the measured values. 

At early drying times (corresponding to 𝐻𝑆̅̅ ̅̅  greater than 2.5 g water/ g d.m.), small size 

variations are evidenced on the cube samples, corresponding to the constant rate period. In this 

period, the main process is the surface water evaporation. However, during the falling rate period, 

(𝐻𝑆̅̅ ̅̅   lower than 2.5 g water/ g d.m.), large volume variations are observed in all the experimental 

runs associated with the water molecular movement during the diffusion process. Then, at the end 

of the drying process (approximately 𝐻𝑆̅̅ ̅̅   lower than 0.5 g water / g d.m.), small contraction is 

evidenced because of the low moisture transport within the solid. It was observed that the degree of 

shrinkage of chicory roots during low temperature drying is greater than with high temperature drying, 

due to surface case hardening at higher temperatures, which restrains the size reduction.  

The vegetables’ contraction results in their own stiffening, a phenomenon which is produced 

in some drying processes. As the food surface dries, which occurs in a larger rate than its nucleus’ 

dries, the internal tensions develop internal fissures (Aguilera & Stanley, 1999). The non-volatile 

compounds flow with the water by diffusion. Then, they precipitate in the product’s surface and shape 

a rind, which maintains the food’s dimensions from then on.  

Some authors reported the shrinkage process as a linear function of the sample moisture 

content (Białobrzewski, 2006; Mihoubi & Bellagi, 2008; Bacelos & Almeida, 2011). However, in this 

work, it is found that the relation between the volume ratio contraction and the moisture content is 

almost a second-order polynomial trend curve. These results are in agreement with the ones 

reported by other authors (Panyawong & Devahastin, 2007; Yan, 2008; Ruiz-López, 2012; Afaghi, 

2013).  Hence, the Equation (28) is adopted to represent the relationship between the volume ratio 

contraction and the average moisture content of chicory root cubes at different conditions of drying. 

The obtained values and the adjustment coefficients are listed in Table 5. 
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4.6. Mass and heat transfer coefficients 

The variation of mass and heat transfer coefficients for different velocities and temperatures, 

calculated with equations (10) and (22), respectively, are shown in Figures 8 and 9. It can be 

observed that both coefficients increase with the raise of the air temperature and velocity, having 

greater rate transfers for the mass and heat forced convection. From the figures, it can be 

appreciated that the changes in velocity had more effect than the changes in temperature. 

 

4.7. Prediction and confidence bands 

Figure 10 presents the confidence band (CB) and prediction band (PB) for moisture content 

against drying times. The PB is the region where 95% of the experimental data points are expected 

to be, whereas it is here observed that all obtained observations fall within. Likewise, the CB is the 

region where 95% of the regression lines are expected to be, and contains more than 50% of the 

experimental values for all the experiences here reported. Both obtained CB and PB are well 

adjusted to the experimental data points, therefore increasing the confidence on the values predicted 

for the model. Normal probability plots of residuals are also presented in Figure 11 for the 

experimental runs of chicory root drying at 60 and 80ºC. As the data points are equally distributed 

above and below the line, it is verified that they are normally distributed and no unwanted trends or 

correlations among the data points exist (skewness, presence of an undefined variable, outliers, 

among others). 

 

4.8. Sensitivity analysis 

In this section, parameters from empirical correlations implemented in the proposed model 

are varied between -30% and 30%, in order to analyze their impact to estimate the required drying 

time in order to achieve the equilibrium moisture content. Figure 12 presents spider diagrams for the 

drying process of chicory root cubes at 60 and 80ºC and both drying velocities. It is noted that similar 

trends were observed for all the experimental runs.  As can be appreciated in all figures, the water 

diffusion coefficient exerts the larger impact over the final moisture content, as it is the controlling 
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drying process. The sensitivity of this parameter is high, indicating that, moment to moment, the 

moisture content is highly dependent on the diffusion coefficient. In terms of parameter estimation, 

this indicates that minor changes in the value of this parameter affect the model. Therefore, the rest 

of the mass and heat transfer parameters have little effect on the final moisture content.  The results 

here obtained are in agreement with the results presented by da Silva (2009), who exposed that the 

diffusion is the controlling step of the process, in which higher diffusion coefficients were obtained 

for higher drying temperatures and velocities. 

 

4.9. Shrinkage analysis and prediction  

Considering the mathematical model as a prediction tool for design purposes, it is important 

the estimation of the shrinkage process and volume contraction as a function of the main operating 

variables (air temperature and velocity). This predictive tool could have a valuable implementation 

in some practical cases in which the contraction must be carefully controlled in order not to alter the 

visual characteristics of the dried samples. In previous sections, the contraction process of shrinkage 

has been analyzed as a function of the time and moisture changes during the drying process. But, 

for the analysis of the final dried product, it is preferable to evaluate in a predictive way the 

contraction regarding the drying operating conditions. Therefore, in this section a surface analysis of 

the final contraction (associated at the equilibrium moisture) is presented covering the range of the 

operating conditions validated in the model, that is air temperatures from 60 to 80 ⁰ C and air 

velocities from 0.2 m/s to 0.7 m/s. The data of final contraction obtained from different combination 

of air temperatures and velocities were fitted to different response surfaces (linear, quadratic, full 

quadratic). The best fitted corresponds to a linear response surface regression, taking the following 

equation form (Adj R2=0.8703 and R2=0.8284): 

𝑉

𝑉0
= −0.268 + 0.00665 ∙ 𝑇𝑎 − 0.0907 ∙ 𝑣                                                                                       (29) 

 

The model suitability is tested by the implementation of the R2 adjusted equations and the 

sequential squares sums for each regression coefficient of the RSM model. The ANOVA results are 
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presented in Table 6. F-value is a way of analysis of the variance between the regression of the 

square error and the real mean error. High F values mean that the response variations can be 

explained by the obtained regression equation. The purpose of the R2 adjusted values is to analyze 

the model adequacy. Here, R2 adjusted model is consistent with R2 values, therefore the predicted 

values correlate with the experimental ones. The ANOVA for the linear model of V/V0 demonstrate 

that it is significant (p<0.05). 

Surface response plots allows one to visualize the effect of the independent variables on the 

dependent variables. Figure 13 shows that the final volume contraction (V/V0) increases for lower air 

drying temperatures and velocities. At the studied operating conditions ranges, the air velocity is 

insignificant (p>0.05) having no influence on the volume contraction, but it is clear that the studied 

velocity range is not so wide. On the other hand, the air temperature is highly significant (p<0.01). 

 

4.10 Effect of the drying treatment on the rehydration ratio 

Rehydration is an important attribute to evaluate dried foodstuffs. The RR is directly related 

with the drying conditions (air drying temperature and velocity). Different physical and chemical 

changes are observed depending on the drying treatment (Noshad et al., 2012). The rehydration 

curves of chicory roots samples dried at different conditions are shown in Figure 14, which have the 

tendency to an asymptotic value for all drying conditions. Higher RR are shown for lower air drying 

temperature and velocity. It is evidenced that more severe drying treatment (higher air temperature 

and velocity) has a negative effect influence on RR, which could be associated to the stronger 

surface case hardening associated with less contraction. Lower air temperature and velocity causes 

less shrinkage with a porous structure that provides better rehydration process. These results are in 

agreement with those obtained by Giri and Prassat (2007) and Apati and coworkers (2010). 

4.11 Effect of the drying treatment on the browning index 
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Browning is another important quality attribute for dried products. It was proven that higher   

drying temperatures and velocities significantly accelerate deterioration of color samples because of 

non-enzymatic browning reactions (Xiao, 2014). Figure 15 shows the BI for each drying treatment 

and rehydration evaluation at 30 and 100. The results clearly evidence how BI increases with the air 

temperature and velocity and BI is not influenced by the rehydration treatment because it is affected 

by the drying conditions.  

5. Conclusions 

A complete three dimensional mathematical model to simultaneously describe mass and heat 

transfer of the drying process of chicory root cubes has been presented. The model considers a 

variable effective diffusion coefficient depending on the changes of the sample moisture content and 

temperature. It is developed using first principles equations through DAEs and semi-empirical 

correlations. 

The moisture distribution and the temperature development are modeled for the drying 

process of chicory root cubes in a conventional air drier with forced air flows at different temperatures 

and velocities. High accuracy is evidenced between experimental and simulated data. The proposed 

methodology represents a feasible way of estimation of the shrinkage process under the analyzed 

range of the operating variables for the cubes.  

From the analysis of the results, it is observed that the effective diffusion coefficient and the 

solid contraction is strongly more influenced by the change in the drying temperature than the air 

drying velocity. On the other hand, heat and mass transfer coefficients take higher values by the 

increase in the air drying velocity than the temperature. 

It is thus concluded that the moisture variation and contraction phenomenon must be 

considered during the drying process to accurately describe moisture transfer process. In addition, 

the developed model can be used as a useful tool to improve the operational efficiency of the drying 

stage of food products such as chicory or other vegetables in which the shrinkage process is a quality 

and control variable of interest. A further work will be focused on comparing quality aspects between 

conventional and vacuum drying.  
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Figure 1. Summary of the mathematical process model for representing the drying kinetics of chicory 
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Figure 7. Experimental and calculated sample shrinkage at v1 (0.2 m/s) and v2 (0.7 m/s) 

implementing Eq. (28) 
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Figure 9. Estimated heat transfer coefficients at v1 (0.2 m/s) and v2 (0.7 m/s) 

Figure 10. Confidence and prediction bands of moisture variation at v1 (0.2 m/s) and v2 (0.7 m/s) 

Figure 11. Normal probability plots of residuals for drying at (60 and 80) ºC and v1 (0.2 m/s) 

Figure 12. Sensitivity analysis for the required drying time to achieve the equilibrium moisture at v1 

(0.2 m/s) and v2 (0.7 m/s) 

Figure 13. Surface response of the solid volume contraction as a function of the drying temperature 

and velocity 

Figure 14. Effect of drying treatment on rehydration ratio (RR) of chicory roots for rehydration at 30 

⁰ C and 100 ⁰ C. Different letters in the same column indicate that values are significantly different 

(p-value < 0.05). 

Figure 15 Browning index of the dried samples. Different letters in the same column indicate that 

values are significantly different (p-value < 0.05). 
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Table 1. Model input data 

Shape variable or property Value Source 

HSo (g water. g dry matter-1) 3.970000 Experimental result 

Lo (Lxo, Lyo, Lzo) (cm) 0.500000  Experimental result 

Cpa (60°C) (J g-1 ºC-1) 1.008100  Geankoplis (1998) 

Cpa (80°C) (J g-1 ºC-1) 1.009000   Geankoplis (1998) 

Ka (60°C) (W m-1 ºC-1) 0.000287 Geankoplis (1998) 

Ka (80°C) (W m-1 ºC-1) 0.000302 Geankoplis (1998) 

Dw (60°C) (cm2 . s-1) 0.309000 Pakowski et al. (1991) 

Dw (80°C) (cm2 . s-1) 0.343000 Pakowski et al. (1991) 

R (J . °C-1 mol-1) 0.831500 Geankoplis (1998) 

Pa (Pa) 101325 Geankoplis (1998) 
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Table 2. Parameters of the second-order polynomial regression for Equation (8) 

Ta (°C) v (m/s) 
d e f R2 

60 0.2 -0.077 0.617 0.123 0.987 

 0.7 -0.027 0.381 0.003 0.988 

80 0.2 -0.040 0.624 0.274 0.989 

 0.7 -0.070 0.490 0.242 0.981 
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Table 3.  Adjustment data 

 

 

 

 

 

 

 

 

 

  

  MSE 

Ta  (°C) v (m/s) 
Estimation of the 
diffusivity parameters 
(Eq. 9)  

Estimation of the 
contraction 
parameters (Eq. 28) 

60 

0.2 0.085 0.064 

0.7 0.078 0.012 

80 
0.2 0.031 0.021 

0.7 0.022 0.021 
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Table 4.  Final drying times at different conditions and adjustment data 

Ta (°C) v (m/s) Drying time (min) 
HSeq (g water. g d.m.-1) 

R2 

60 

0.2 630 0.001341 ± 0.000686 0.997 

0.7 450 0.001910 ± 0.015717 0.999 

80 

0.2 405 0.002213 ± 0.001312 0.999 

0.7 375 0.000855 ± 0.000605 0.999 
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Table 5. Parameters of the second-order polynomial regression for Equation (28) 

Ta (°C) v (m/s) 
a b c R2 

60 
0.2 -0.077 0.617 0.123 0.986 

0.7 -0.027 0.381 0.003 0.987 

80 
0.2 -0.040 0.624 0.274 0.989 

0.7 -0.070 0.490 0.242 0.981 
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Table 6. ANOVA results 

Response 
variable 

Source Sum of 
square 

Degree of 
freedom 

Mean of 
square 

F-value P-value Significant 

V/V0 Model      0.029   2   0.014           8.05       0.020 * 
Constant      0.156 2   0.014     10.94   0.000 ** 
Ta      0.026  1   0.026       14.42   0.009 ** 
v      0.003 1   0.003       1.68   0.243  
Pure error      0.011  6   0.001    
Total      0.040 8     

* Significant (p < 0.05). 
** Extremely significant (p < 0.01) 
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