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Abstract

In this paper we exploit the Continuous Wavelet Transform (CWT) on the two-
dimensional sphere S2, introduced previously by two of us, to build associated Dis-
crete Wavelet Frames. We first explore half-continuous frames, i.e., frames where the
position remains a continuous variable, and then move on to a fully discrete theory.
We introduce the notion of controlled frames, which reflects the particular nature of
the underlying theory, in particular the apparent conflict between dilation and the
compactness of the S2 manifold. We also highlight some implementation issues and
provide numerical illustrations.
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1 Introduction

Many situations in physics and medicine require the existence of suitable tools for analyzing
data on spherical manifolds. In that case, as usual, the Fourier transform (FT) is a standard
tool, which amounts to an expansion in spherical harmonics, whose support is the whole
sphere. The Fourier series on S2 is thus global and somewhat cumbersome. It turns out
that, as an analysis tool, the Continuous Wavelet Transform (CWT) has many advantages
over the FT. In particular, the spherical CWT is local and is controlled by two intuitive
operations: dilation and transport over the sphere by rotations.

Thus, quite naturally, many authors have tried to design a suitable spherical CWT,
but none of the resulting tools is completely satisfactory. At last, a rigorous, yet efficient
transform was developed by several of us, in two successive papers [4, 5]. The technique
is grounded in group theory, more precisely the coherent state approach based on square
integrable group representations [3]. The relevant group here is the conformal group of the
two-sphere S2, namely, the Lorentz group SOo(1,3). The upshot of these two papers is a
rigorous spherical CWT, together with a detailed analysis of its numerical implementation,
including a suitable discretization scheme.

The present paper is a continuation of [4, 5] and improves on them in two respects.
First, we present a detailed construction of frames associated to the spherical CWT. These
actually come in various flavors. Besides the usual discrete frames [10], semi-continuous
frames4 and the continuous frames familiar in coherent state theory [3], we also introduce
controlled and weighted frames, which are a natural generalization of plain frames. In
addition, we also propose an efficient implementation through a systematic use of the fast
spherical convolution introduced by Driscoll and Healy [11]. The resulting tool is quite
efficient, as illustrated by several examples [18, 23, 24]. It opens interesting perspectives for
practical applications in a number of fields, such as geophysics, astronomy and astrophysics,
light field processing [9], omnidirectional vision [23, 24] and medical imaging (e.g. EEG,
the sphere being a good approximation of the skull).

The paper is organized as follows. We begin by rewiewing in Section 2 the general theory
of the CWT on the two-sphere and its practical implementation. We basically follow [4, 5],
with particular emphasis on the determination of the range of the scale parameter. As a
general reference on 2-D wavelets, we use our recent monograph [7]. Then, in Section 3, we
discuss the various notions of abstract frames, discrete, continuous and half-continuous, as
well as a useful generalization of the standard concept, called a controlled frame. Section 4
is the core of the paper. Here we derive, by two different methods, a class of half-continuous
frames of spherical wavelets. We then turn to the case of fully discrete spherical frames.
Finally, numerical examples are provided to illustrate the potential of these new frames.

4Semi-continous wavelet frames are also known as Dyadic Wavelet Transforms [17].
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2 The Continuous Wavelet Transform on the 2-sphere

2.1 The general theory

The spherical CWT, as its Euclidean counterpart, is based on affine transformations. On
the 2-dimensional sphere S2, embedded in R3, the latter consist of rotations, defined by
elements ρ of the group SO(3), and dilations, parameterized by the scale a ∈ R∗

+ [4].
Let L2(S2, dµ) be the space of finite energy signals on the sphere, that is, the Hilbert
space of square integrable functions on S2, with the rotation invariant Lebesgue measure
dµ(θ, ϕ) = sin θ dθ dϕ. In that space, the basic operations we consider are represented by
the following unitary operators:

• rotation Rρ, where ρ ∈ SO(3) may be parametrized in terms of its Euler angles:

(Rρf)(ω) = f(ρ−1ω), ω ≡ (θ, ϕ). (2.1)

In this equation, ρ is a 3 × 3 rotation matrix acting on a unit vector in R3.

• dilation Da, with a ∈ R∗
+:

(Daf)(ω) = λ(a, θ)1/2f(ω1/a), (2.2)

where ωa ≡ (θa, ϕ) with tan θa

2
= a tan θ

2
; a > 0, θ ∈ [0, π], ϕ ∈ [0, 2π); and λ

is a normalization factor. Technically, this factor is a cocycle or a Radon-Nikodým
derivative, resulting from the fact that the Lebesgue measure µ is not invariant under
dilations. It is given by

λ(a, θ) =
4a2

[(a2 − 1) cos θ + (a2 + 1)]2
. (2.3)

Intuitively, the action of the dilation Da on a function f ∈ L2(S2) may be understood as
follows: project f on the plane tangent at the North Pole by a stereographic projection from
the South Pole, apply a Euclidean dilation by a to the projection and lift the resulting
function back to the sphere by inverse stereographic projection. Fig. 1 illustrates this
process by determining the image A′ ∈ S2 of a point A ∈ S2 under dilation Da.

In the language of group theory, these two affine transformations, which do not generate
a group nor commute, belong to the conformal group of the sphere S2 — the Lorentz group
SOo(3,1) – each subgroup being one component in the Iwasawa decomposition (see [4] for
details). Using these definitions, a square integrable function ψ on S2 is called an admissible
wavelet if and only if there is a finite constant c ∈ R∗

+, such that for all l ∈ N,

Gψ(l) =
8π2

2l + 1

∑

|m|6l

∫

R∗

+

da

a3
|ψ̂a(l,m)|2 < c, (2.4)
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Figure 1: Visual meaning of the stereographic dilation on S2.

where ψ̂a(l,m) = 〈Y m
l |ψa〉 is the Fourier coefficient of ψa = Daψ. Note that the existence

of (a dense set of) admissible vectors expresses the fact that the underlying representation
of SOo(3,1) is square integrable [4].

Fortunately, there exists a simpler requirement, nearly equivalent to (2.4) (strictly
speaking, the condition is only sufficient), which consists in imposing

∫

S2

dµ(θ, ϕ)
ψ(θ, ϕ)

1 + cos θ
= 0. (2.5)

It is known [4, 5] that any admissible 2-D wavelet in R2 yields an admissible spherical
wavelet by inverse stereographic projection.5 In particular, for

φ(θ, ϕ) = exp(− tan2( θ
2
)), (2.6)

which is the inverse stereographic projection on the sphere of a Gaussian, a simple example
of admissible wavelet is the Difference of Gaussians (DOG) spherical wavelet

ψ(θ, ϕ) = φ(θ, ϕ) − 1
α
[Dαφ](θ, ϕ), α ∈ R∗

+, (2.7)

which obviously satisfies (2.5).
Thus, with the action of rotations and dilations given above, the spherical CWT of a

function f ∈ L2(S2), with respect to an admissible wavelet ψ ∈ L2(S2), is defined as

Wf(ρ, a) = 〈ψρ,a|f〉 =

∫

S2

dµ(ω)RρDaψ(ω) f(ω), (2.8)

5The argument in [4, 5] is somewhat implicit. For the convenience of the reader, we give in Appendix
A a direct proof of that statement
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where (·) denotes the complex conjugation. This last expression is nothing but a spherical
correlation, i.e.,

Wf(ρ, a) = (ψa ∗ f)(ρ) ≡
∫

S2

dµ(ω′) [Rρ ψa](ω
′) f(ω′). (2.9)

The following proposition shows that the family of rotated and translated wavelets
constitutes a (continuous) frame in L2(S2), from which we derive a reconstruction formula.

Proposition 2.1. Let f ∈ L2(S2). If ψ is an admissible wavelet such that
∫ 2π

0
dϕψ(θ, ϕ) 6=

0, then

f(ω) =

∫

R∗

+

∫

SO(3)

da dν(ρ)

a3
Wf (ρ, a) [RρL

−1
ψ Daψ](ω), (2.10)

where dν(ρ) is the left Haar measure on SO(3) and the coefficients are given by (2.8). The
frame operator Lψ is defined by

[̂Lψh](l,m) = Gψ(l) ĥ(l,m), ∀h ∈ L2(S2), (2.11)

where Gψ(l) is given in (2.4).

The frame so obtained is probably not tight, in general. As a consequence, the spherical
CWT does not define an isometry. However, one has the following result, which follows
immediately from (2.10):

Corollary 2.2. Under the conditions of Proposition 2.1, the following Plancherel relation
is satisfied

‖f‖2 =

∫

R∗

+

∫

SO(3)

da dν(ρ)

a3
W̃f(ρ, a)Wf (ρ, a) (2.12)

with
W̃f(ρ, a) = 〈ψ̃ρ,a|f〉 = 〈RρL

−1
ψ Daψ|f〉. (2.13)

The proof of these results and more details on the spherical CWT and its implementa-
tion can be found in [5] (see also [7] and [15]).

2.2 The axisymmetric case

When working with axisymmetric (or zonal) functions, i.e., functions invariant under ro-
tations about the z-axis, the action of rotations is easily understood.

Let us recall that a rotation ρ ∈ SO(3) may be parametrized by its Euler angles
ϕ, θ, α ∈ S1 in the following way

ρ = ρ(ϕ, θ, α) = rzϕ r
y
θ r

z
α,

where ruγ denotes a rotation by an angle γ about the u axis. If g is an axisymmetric
function, then Rρg = R[ω]g, where [ω] = ρ(ϕ, θ, 0). In this way, if g is localized around the
North Pole η, then R[ω]g is localized around ω = (θ, ϕ) ∈ S2.
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Given [ω] = ρ(ϕ, θ, 0) ∈ SO(3), we define the correlation ⋆ : L2(S2)×L2(S2) → L2(S2)
as

(g ⋆ h)(ω) =

∫

S2

dµ(ω′)R[ω] g(ω′) h(ω′), (2.14)

to distinguish it from the complete correlation ∗ given in Eq. (2.9).
Since the stereographic dilation is radial around the North Pole, an axisymmetric

wavelet ψ on S2 remains axisymmetric after dilation. Consequently, the CWT is rede-
fined on S2 × R∗

+ by

Wf (ω, a) = (ψa ∗ f)([ω]) = (ψa ⋆ f)(ω), a ∈ R∗
+ . (2.15)

In that particular case, the reconstruction formula (2.10) becomes

f(ω) =

∫

R∗

+

∫

S2

dadµ(ω′)

a3
Wf (ω

′, a) [R[ω]L
−1
ψ Daψ](ω′), (2.16)

where Lψ is the frame operator defined in (2.11) with Gψ reducing to

Gψ(l) =
4π

2l + 1

∫

R∗

+

da

a3
|ψ̂a(l, 0)|2. (2.17)

2.3 Practical implementation

In this section, we focus on the implementation aspects of the spherical wavelet transform
associated to an axisymmetric wavelet. A more general implementation including direc-
tional wavelets may be found in [5] (we may also quote the fast implementation due to
McEwen [18]).

Equation (2.15) shows the SCWT as a spherical correlation between functions f and
ψa. The following proposition shows that the correlation has a simple expression in the
Fourier domain.

Proposition 2.3. Let f ∈ L2(S2) and let g ∈ L2(S2) be axisymmetric. Then

(̂g ⋆ f)(l,m) =

√
4π

2l + 1
ĝ(l, 0) f̂(l,m), ∀(l,m) ∈ N , (2.18)

where ĥ denotes the Fourier transform of h on S2 and N = {(l,m) : l ∈ N, m ∈ Z, |m| 6 l}.

A proof of this classical result can be found in [11] or [15].

Equations (2.18) and (2.15) suggest a fast implementation of the SCWT in the Fourier
domain, which we now detail. We recall that a function f ∈ L2(S2) is band-limited of
bandwidth β ∈ N if

f ∈ Bβ = { g ∈ L2(S2) : ĝ(l,m) = 0, ∀ (l,m) ∈ N such that l > β }. (2.19)
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We will work with data discretized on the equi-angular grid GB defined by:

GB := {(θp, ϕq) : p, q ∈ Z[2B]}, (2.20)

with Z[N ] = {0, . . . , N − 1}, θp = (2p + 1) π
4B

and ϕq = q π
B

. Actually, {θp} constitutes a
pseudo-spectral grid, localized on the zeros of a Chebishev polynomial of order 2β [8, 11].
The next result, proved in [11], will be of great importance in what follows. It shows
that there is a quadrature formula for calculating the Fourier coefficients of band-limited
functions.

Proposition 2.4. Let g ∈ Bβ with β ∈ N0. Then there exist weights wβp ∈ R∗
+ such that

ĝ(l,m) =

∫

S2

dµ(θ, ϕ) Y m
l (θ, ϕ) g(θ, ϕ) (2.21)

=
∑

p,q∈Z[2β]

wβp Y
m
l (θp, ϕq) g(θp, ϕq), (2.22)

for all (l,m) ∈ Nβ = {(l,m) ∈ N : l < β} and (θp, ϕq) ∈ Gβ . Explicitly

wβp =
2π

β2
sin(θp)

∑

k∈Z[β]

1

2k + 1
sin

(
(2k + 1)θp

)
, (2.23)

with
∑

p∈Z[2β]

∑
q∈Z[2β] w

β
p = 4π.

Equation (2.22) is in fact a Discrete Fourier Transform on the sphere. The Inverse
Discrete Fourier Transform is obtained as

g(θp, ϕq) =
∑

(l,m)∈Nβ

ĝ(l,m) Y m
l (θp, ϕq), p, q ∈ Z[2β]. (2.24)

For l and m fixed, the evaluation of (2.22) needs O(β2) operations. Then for (l,m) ∈
Nβ, i.e., β2 elements, O(β4) operations are needed. The same estimate is valid for the
computation of the inverse Fourier transform. The performance of this evaluation may be
greatly improved if we note that Y m

l (θp, ϕq) = nlm P
m
l (cos θp) e

imϕq , with Pm
l the associated

Legendre polynomial of order (l,m) and nlm a normalization constant. Then a discrete
Fourier transform on S1 may be applied on the longitude ϕq in (2.22), which yields

ĝ(l,m) =
∑

p,q∈Z[2β]

wβp g(θp, ϕq) Y
m
l (θp, ϕq) (2.25)

=
∑

p∈Z[2β]

wβp nlm ǧ(θp, m)Pm
l (cos θp), (2.26)

with ǧ(θp, m) =
∑

q∈Z[2β] g(θp, ϕq) e
−imϕq . The application of a FFT6 in longitude reduces

the complexity to O(β3 log β) operations [5]. Moreover, there exists a fast O(β2 log2 β)

6Fast Fourier Transform.
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Figure 2: Behavior of ψ̂a(l, 0) as a function of the scale a. If a = 0.01, the bandwidth of
the dilated wavelet exceeds the limit fixed by the discretization.

algorithm for the spherical Fourier transform developed by Driscoll and Healy [11]. It
combines a discrete cosine transform (DCT) over the (co)latitude θq and the recurrence
rules of Legendre polynomials [25]. A free version7 of this method, called SpharmonicKit,
may be found in [20]. These methods are also integrated into the MATLAB c© YAWtb
toolbox.8

2.3.1 The scale range

The range of the scale parameter in the continuous transform seems arbitrary. However,
this is not the case in practice. For fixing ideas, let us recall the situation for classical
wavelets on R. Even if the wavelet transform of a signal is obtained by integration over the
whole real line, in practice, data are discretized and have finite length. Hence the possible
values of the scale parameter are constrained on one side by the sampling frequency (this
gives a lower bound: the wavelet cannot oscillate more than permitted by the Nyquist
frequency) and on the other side by the length of the interval where the signal is defined
(upper bound: the wavelet should “live” inside that interval).

In the case of the spherical continuous wavelet transform, the smallest a is also con-
strained by the sampling frequency of the spherical grid. This phenomenon is displayed
on Fig. 2, where ψ̂a(l, 0) is drawn for several values of a. On this graph, we discretize ψa
on a 512×512 spherical grid according to the previous section, for a maximal permitted

7under GPL licence (General Public License [14]).
8Developed by some of us and freely (GPLly) available at http://www.fyma.ucl.ac.be/projects/

yawtb.
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bandwidth β = 256. One clearly sees that ψ̂(l, 0) is not numerically negligible for l = 255
with the choice a 6 0.01. Therefore ψa /∈ Bβ and it cannot be defined on G256.

As a matter of fact, the upper limit of the scales is also constrained by the high frequen-
cies of the dilated wavelet. Actually, the nature of the dilation produces an accumulation
of points around the South Pole, so the oscillating tails of the wavelet are compelled to
oscillate faster as a increases, even if the amplitude is negligible. The following discussion
roughly formalizes this behavior.

We are going to estimate the highest nonnegligible frequency lM(a) reached by the
dilated wavelet ψa, which determines its bandwidth. We will see that it increases not only
for small values of the scale (as expected because that corresponds to high frequencies), but
also for large ones. Our argument rests upon the fact that the bandwidth of an oscillatory
function may be estimated from the distance between its zero crossings.

Given two latitudes α and β in [0, π], let us first study the evolution of the (angular)
distance between the dilated angles αa and βa as a function of a. We get

∆αβ(a) := tan 1
2
(αa − βa)

=
tan 1

2
αa − tan 1

2
βa

1 + tan 1
2
αa tan 1

2
βa

= a

(
tan 1

2
α− tan 1

2
β

1 + a2 tan 1
2
α tan 1

2
β

)

= καβ(a) ∆αβ(1)

with

καβ(a) = a

(
1 + tan 1

2
α tan 1

2
β

1 + a2 tan 1
2
α tan 1

2
β

)
. (2.27)

If α and β are not zero, the function καβ has a unique maximum in

ã(α, β) =
1√

tan 1
2
α tan 1

2
β
. (2.28)

We also have that καβ(0) = lima→+∞ καβ(a) = 0. In other words, the distance ∆αβ(a)
increases in (0, ã] and decreases in [ã,+∞).

Now if the bandwidth of the wavelet is l0, the minimal distance between two of its zeroes
is of the order of π

l0
. Let us label those points as α and β = α + π

l0
. From the relation

∆αβ(a) = καβ(a)∆αβ(1), we can see that the bandwidth lM(a) of the dilated wavelet ψa is
approximately related to l0 by

tan
π

2 lM(a)
≃ καβ(a) tan

π

2 l0
,

that is to say,

lM(a) ≃ π

2 tan−1
(
καβ(a) tan( π

2l0
)
) . (2.29)
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Figure 3: l̆M(a) as a function of a in solid line (logarithmic representation).

Knowing the behavior of καβ(a), we can roughly say that lM(a) decreases in the interval
(0, ã] and increases in [ã,+∞) (see Fig. 3).

Taking into account that ψ̂a(l, 0) has noncompact support, another estimate of lM(a)
may be calculated as

l̆M(a) = min {L ∈ N : 0.99 ‖ψ‖2 6

L∑

l=0

|ψ̂a(l, 0)|2 6 ‖ψ‖2 }. (2.30)

For the particular case of the DOG wavelet, this function is represented in Fig. 3, in solid
line, with a ∈ [0.025, 40]. We clearly see on this figure, represented in log-log scale, a
minimum lM = 3 in a neighborhood of a = 0.8. This means that the DOG wavelet should
be discretized on an equi-angular spherical grid of 8× 8 points at least and for values of a
near 0.8 only. Besides, if we take for example a 256×256 grid (β = 128), the dilated wavelet
ψa will not be correctly discretized for a outside of the interval [amin = 0.0204, aM = 45.83]
because lM(a) is strictly bigger than l = 127 for those values. Notice that, in the Euclidean
approximation of the stereographic dilation [5], i.e.,

Daψ(θ, ϕ) ≃ 1
a
ψ( 1

a
θ, ϕ), if a≪ 1, (2.31)

the support of ψ̂a follows the rule

D̂aψ(l, 0) ≃ √
a ρ̂(al), (2.32)

for a particular function ρ̂ : R∗
+ → R given in [15]. This behavior is confirmed on Fig. 2

where the curves maxima decrease like
√
a. As for wavelets on the line, Eq. (2.32) tells
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us that the upper bound lM(a) of the support of ψ̂a varies like Ca−1, for C ∈ R. The
dashed-line of slope −1 in Fig. 3 shows this evolution in a logarithmic representation of
scales. The constant C has been estimated to 2.51 by linear regression on scales a < 0.04.

The closer the curve l̆M(a) fits this line, the better is the Euclidean approximation. Finally,
we plot in dotted-line the approximation (2.29), for a wavelet with bandwidth l0 = 6 and
α and β such that tan 1

2
α tan 1

2
β = 1. For this value of l0, this approximation gives a

good prediction of l̆M(a) for a ≪ 1 and a ≫ 1. However, it does not model correctly the

behavior of ψ̂a, in a neighborhood of a = 1.

3 Frames revisited

In this section, we describe under which conditions the parameters of the spherical contin-
uous wavelet transform can be discretized without losing the reconstruction property. We
start by recalling some basic facts about frames and then introduce a slight generalization
of the standard concept, called controlled frames.

3.1 Classical frames

Let H be a Hilbert space with scalar product 〈·|·〉 and the associated norm ‖f‖ =
√

〈f |f〉, f ∈
H.

Definition 3.1. Let Γ be a countable set. A family of vectors Ψ = {ψn ∈ H : n ∈ Γ} is a
discrete frame in H if there exist two constants 0 < A 6 B <∞ such that

A‖f‖2 6
∑

n∈Γ

|〈ψn|f〉|2 6 B‖f‖2, ∀ f ∈ H. (3.1)

The frame is called tight if A = B. When A = B = 1 and ||ψn|| = 1, ∀n ∈ Γ, the
frame is just an orthonormal basis. Given a frame Ψ, the associated frame operator L is
defined as

Lf =
∑

n∈Γ

〈ψn|f〉ψn. (3.2)

This is, of course, a bounded operator. Indeed [22]:

Proposition 3.2. If Ψ is a frame of H, the associated frame operator L is bounded and
verifies

A I 6 L 6 B I, (3.3)

where I denotes the unit operator and P 6 Q means 〈g|Pg〉 6 〈g|Qg〉, ∀ g ∈ H, for two
given operators P and Q.

It follows that the frame operator L is not only bounded, it also has a bounded inverse,
that is, it belongs to the set GL(H) [2]. We emphasize that GL(H) is the natural class of
operators in the context of frame theory. Indeed, (3.1) means that the norm ‖ · ‖ and the
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set of coefficients {〈ψn|·〉} define the same Hilbertian topology on H. And the elements of
GL(H) are precisely the natural isomorphisms for such a Hilbertian structure, exactly as
unitary operators are the isomorphisms for the Hilbert space structure defined by a given
inner product 〈·|·〉 (note the difference between a Hilbert space and a Hilbertian space:
the former is attached to a given inner product, the latter to an equivalence class of inner
products).

It is possible to reconstruct a function from its frame coefficients. Let us introduce first
a related family of vectors Ψ̃ = {ψ̃n : n ∈ Γ} defined by

ψ̃n = L−1ψn. (3.4)

Then, we have the following result:

Proposition 3.3. The family Ψ̃ is a frame with bounds 0 < B−1 6 A−1 < ∞, called the
dual frame of Ψ. Any f ∈ H can be reconstructed from its frame coefficients through

f =
∑

n∈Γ

〈ψn|f〉 ψ̃n =
∑

n∈Γ

〈ψ̃n|f〉ψn. (3.5)

See [10] for a proof. Note that if the frame is tight then ψ̃n = 1
A
ψn, and the same vectors

are used for the decomposition and for the reconstruction. In fact, 〈Lf |f〉 = A‖f‖2 for
every f ∈ H, so L = A I and L−1 = A−1 I. This is the most attractive property of a tight
frame.

Finally, when A ≃ B we can have a good approximation of the element f by setting

f ≃ 2

A +B
Lf =

2

A+B

∑

n∈Γ

〈ψn|f〉ψn, (3.6)

since in this case 2
A+B

L ≃ I.

3.2 Continuous and half-continuous frames

Several variations on the original frame concept have been studied. For instance, it is
possible to extend the original definition to the case of continuous decompositions [22], as
follows. Let C be a measurable space with measure dµ(ν). Given a family Ψ = {ψν ∈
H, ν ∈ C}, we define the frame operator

L : f ∈ H 7→ Lf =

∫

C

dµ(ν) 〈ψν |f〉ψν . (3.7)

The set Ψ is called a continuous frame if L is a bounded operator. This garantees that
L ∈ GL(H), and thus also the reconstruction of f from its wavelet coefficients {〈ψν |f〉}.

It is also possible to have a mixed set of indices where some of them are continuous
while the rest are discrete. If we note by ν ∈ C the continuous set and by n ∈ D the
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discrete one, then we say that the family Ψ = {ψν,n ∈ H : ν ∈ C, n ∈ D} is a frame if there
exist two constants 0 < A 6 B <∞ such that, ∀f ∈ H,

A ‖f‖2 6
∑

n∈D

∫

C

dµ(ν) |〈ψν,n|f〉|2 6 B‖f‖2. (3.8)

In that case, the family Ψ is called a half-continuous frame.

3.3 Controlled and weighted frames

We introduce in this section a slight variation on the definition of frames, called controlled
frames. It helps tuning the frame bounds in order to obtain a better approximation of f
by Lf (as in (3.6)).

3.3.1 Controlled frames

Definition 3.4. Let O ∈ GL(H). A frame controlled by the operator O is a family of
vectors Ψ = {ψn ∈ H : n ∈ Γ} such that there exist two constants A,B ∈ R∗

+ verifying

A ‖f‖2 6
∑

n∈Γ

〈ψn|f〉 〈f |Oψn〉 6 B ‖f‖2, (3.9)

for all f ∈ H.

In that case, the frame operator is given by

L
O
f = OLf =

∑

n∈Γ

〈ψn|f〉Oψn. (3.10)

Proposition 3.5. The family Ψ is a frame of H controlled by O ∈ GL(H) iff Ψ is a
(classical) frame of H.

This result is obtained by projecting L
O
f on f and noting that L

O
= OL. Therefore,

if Ψ is controlled by O, there are two constants A,B ∈ R∗
+ such that

A I 6 L
O

6 B I (3.11)

⇔
AO−1 6 L 6 BO−1, (3.12)

with L the classical frame operator defined in (3.2). Since there are two constants A
O
, B

O
∈

R∗
+ such that A

O
6 O 6 B

O
, we see that a frame controlled by O with frame bounds A,B ∈

R∗
+ is a genuine frame with frame bounds AB−1

O
and BA−1

O
. Conversely, if A′ 6 L 6 B′

for A′, B′ ∈ R∗
+, then A′O 6 L

O
6 B′O and A′A

O
6 L

O
6 B′B

O
, which proves (3.9).
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As a consequence, given a controlled frame Ψ, every function f ∈ H may be recon-
structed as in (3.5) without using the operator O. But when A ≃ B in (3.11), 2

A+B
L

O
is

close to the identity and we obtain a new approximation for f

f ≃ 2

A +B
L

O
f =

2

A+B

∑

n∈Γ

〈ψn|f〉 Oψn. (3.13)

Thus, if |B
O
/A

O
| < |B/A|, Eq. (3.13) gives a better approximation to f than the one

obtained using the frame operator L in (3.6). If, in addition, it turns out that Oψn is
easily computed, then we have a simple and good reconstruction of f , as desired. Thus,
while a controlled frame is equivalent to a classical frame in the mathematical sense, as
stated in Proposition 3.5, they can have very different numerical properties.

3.3.2 Weighted frames

A particular case of controlled frame occurs when the operator O is diagonal with respect
to the elements ψn of the frame Ψ, i.e., if Oψn = wnψn for wn ∈ R. Notice that, since O is
positive, we have necessarily wn > 0. This diagonalization of the operator O leads to the
concept of weighted frames.

Definition 3.6. Let Ψ = {ψn : n ∈ Γ ⊂ Z} be a family of elements of H and {wn ∈ R∗
+ :

n ∈ Γ} a sequence of strictly positive weights. We say that this family is a w-frame of H,
if there exist two constants 0 < A 6 B <∞ such that, for every f ∈ H,

A‖f‖2 6
∑

n∈Γ

wn |〈ψn|f〉|2 6 B‖f‖2. (3.14)

In fact, if wn > 0 for all n ∈ Γ, a w-frame {ψn} corresponds to the classical frame
{√wnψn}. But it will be useful to make these weights more explicit later on. It is interesting
to note that the notion of weighted frames was already present in the beginnings of frame
theory, as developped by Duffin and Schaeffer [12], in the context of the reconstruction of

band-limited signals. They have shown that if supp(f̂) ⊂ [− π
T
, π
T
], then it is possible to

reconstruct the continuous function f from an irregular sampling {f(tn)}n∈Z, by using the
frame

{
√
tn+1 − tn−1

2
hT (t− tn) : n ∈ Z}, (3.15)

where hT (t) = sinc(πt
T

). We see that in this case some strictly possitive weights wn =√
tn+1−tn−1

2
appear, which reflect the particular sampling geometry. We will see in the

sequel that similar considerations are needed for an equi-angular spherical sampling.
Even if a weighted frame may also be expressed as a classical frame, we point out that

it is possible to define a w-frame operator Lw : H → H in this context by

Lwf =
∑

n∈Γ

wn〈ψn|f〉ψn, (3.16)
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for every f ∈ H. This is an invertible operator [15] and the reconstruction formula for f
reads

f = L−1
w Lwf = L−1

w

∑

n∈Γ

wn 〈ψn|f〉ψn =
∑

n∈Γ

wn 〈ψn|f〉 ψ̃n, (3.17)

where ψ̃n = L−1
w ψn.

3.3.3 Half-continuous controlled frames

To conclude this section, let us remark that we can define half continuous frames controlled
by an operator from GL(H). In that case, taking the same notations than in Section 3.2,
a family Ψ = {ψν,n ∈ H : ν ∈ C, n ∈ D} constitutes such a frame if, for two constants
A,B ∈ R∗

+,

A ‖f‖2 6
∑

n∈D

∫

ν∈C

dµ(ν) 〈ψν,n|f〉 〈f |Oψν,n〉 6 B‖f‖2, (3.18)

for all f ∈ H and a given O ∈ GL(H). As before, it is easy to see that a half-continuous
controlled frame is equivalent to a classical half-continuous frame on H. A particular case
arises when O can be factorized in

Oψν,n = wn Õ ψν,n, (3.19)

where Õ ∈ GL(H) and wn are positive weights. Then, (3.18) becomes

A ‖f‖2 6
∑

n∈D

wn

∫

ν∈C

dµ(ν) 〈ψν,n|f〉 〈f |Õ ψν,n〉 6 B‖f‖2. (3.20)

4 Stereographic wavelet frames on the sphere

We come back to the question of the construction of spherical frames starting from the
continuous wavelet transform as presented in Section 2. ¿From now on, all wavelets will
be assumed to be axisymmetric.

Various alternative constructions of spherical wavelets have been proposed. For exam-
ple, spherical wavelets based on the lifting scheme were introduced by P. Schröder and W.
Sweldens [21]. They yield a multiresolution analysis on the sphere based on a particular
parametrization of the latter.

W. Freeden [13] defines also a transformation on S2 using a special dilation operator
defined on the Fourier domain. Polynomial spherical frames have also been introduced
in [19] where the order of the polynomials plays the role of the dilation. The drawbacks
of these methods is that they focus on the frequential aspect of the transformations. In
consequence, the spatial localization of these wavelets is either not guaranteed or precisely
controlled.

T. Bülow did succeed in getting good localization properties by using the evolution
of a spherical Gaussian governed by the heat equation on S2 [9]. Then he gets a set of
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wavelet filters by differentiation of this Gaussian. However, this approach is restricted
to the Gaussian function and thus it not as general as the one based on a stereographic
dilation applied to an arbitrary admissible wavelet on S2.

In the following sections, we present two different approaches to the construction of
semi-continuous spherical frames. The first one is a straightforward generalization of the
classical Euclidean construction. Quite naturally, however, this method does not lead to
a tight frame. Indeed, since the continuous version of the wavelet transform is not an
isometry, we cannot expect its discretization to yield a tight frame (discretization usually
reduces the quality, i.e., tightness, of frames [6]). We then show that a controlled frame may
be constructed in order to get an easy reconstruction of functions from their decomposition
coefficients. Finally, a fully discrete frame decomposition is also presented.

4.1 Half-continuous spherical frames

4.1.1 First approach

We propose to discretize the scale of the CWT but we let the position vary continuously.
We choose therefore

ω ∈ S2, a ∈ α = {aj ∈ R∗
+ : j ∈ Z, aj > aj+1}, (4.1)

which generates the half-continuous grid

Λ(α) = {(ω, aj) : ω ∈ S2, j ∈ Z}. (4.2)

To simplify these notations, we will replace in the sequel each occurence of aj by j, ψaj
=

Daj
ψ becoming for instance ψj = Djψ, and similarly Wj(ω) = 〈ψω,j|f〉.
In order to have a reconstruction of every function f ∈ L2(S2), a first possible approach

would be to impose

A‖f‖2 6
∑

j∈Z

νj

∫

S2

dµ(ω) |Wj(ω)|2 6 B‖f‖2, (4.3)

with A,B ∈ R∗
+ independent of f , and for some weights νj > 0 taking into account the

discretization of the continuous measure da/a3. In this case, the family

Ψ = {ψω,j = R[ω]Djψ : ω ∈ S2, j ∈ Z} (4.4)

constitutes a half-continuous frame in L2(S2). The following proposition transposes the
last condition in the Fourier domain (as identified by spherical harmonics).

Proposition 4.1. Let ψ be an admissible wavelet. If there are two constants A,B ∈ R∗
+

such that

A 6
4π

2l + 1

∑

j∈Z

νj |ψ̂j(l, 0)|2 6 B, for all l ∈ N, (4.5)

then (4.3) is satisfied.
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Proof : The SCWT of a function f ∈ L2(S2) in the Fourier domain is given by

Wf(ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
f̂(l,m) ψ̂a(l, 0)Y m

l (ω).

Using this expression, we obtain

∑

j∈Z

νj

∫

S2

dµ(ω) |Wj(ω)|2 =
∑

j∈Z

νj
∑

(l,k)∈N

∑

(l′,k′)∈N

4π√
(2l + 1)(2l′ + 1)

f̂(l, k) f̂(l′, k′)

ψ̂j(l, 0) ψ̂j(l
′, 0)

∫

S2

dµ(ω) Y k
l (ω) Y k′

l′ (ω)

=
∑

j∈Z

νj
∑

(l,k)∈N

4π

2l + 1
|f̂(l, k)|2 |ψ̂j(l, 0)|2

=
∑

(l,k)∈N

|f̂(l, k)|2
∑

j∈Z

4π

2l + 1
νj |ψ̂j(l, 0)|2,

where we have used the orthonormality of the spherical harmonics. The lower and upper
bounds in (4.3) are well defined if there are two constants A,B ∈ R∗

+ such that

A 6
4π

2l + 1

∑

j∈Z

νj |ψ̂j(l, 0)|2 6 B, for all l ∈ N.

�

In order to illustrate this result, let us choose a DOG wavelet (α = 1.25) and a dis-
cretized dyadic scale with a certain number of voices K ∈ N0 per octave, namely,

aj = a0 2−j/K, j ∈ Z. (4.6)

For the sake of simplicity, we replace the indices aj by j. Moreover we choose weights νj
that take into account the discretization of the continuous measure da/a3, which means

νj =
aj − aj+1

a3
j

=
21/K − 1

21/K a2
j

. (4.7)

We have estimated the bounds A and B, respectively, by the minimum and the maxi-
mum of the quantity

S(l) =
4π

2l + 1

∑

j∈Z

νj |ψ̂j(l, 0)|2, (4.8)

over l ∈ [0, 31] and for K = 1, 2, 3, 4. The function S(l) is represented on Fig. 4 for K 6 3
and the results are shown in Table 1. We see that for K > 2, the ratio B/A converges
towards the value 1.8107. We thus do not obtain a tight frame, for which we should have
A = B. As can be checked on the graph, however, S(l) quickly tends to a constant for
l > 5. The problem mostly comes from a severe “dip” in the graph of S(l) (Fig. 4) for
small values of l (l 6 3).
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Figure 4: The function S(l) for l ∈ [0, 31) and K = 1, 2, 3. First Approach.

K A B B/A
1 0.5281 0.9658 1.8288
2 0.6817 1.1203 1.8107
3 0.6537 1.1836 1.8107
4 0.6722 1.2171 1.8107

Table 1: Estimation of the bounds A and B as a function of the extremum of S(l) for some
values of K. First approach.
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4.1.2 Second approach

Trying to converge to a tight frame, we adopt now a second approach for our half-continuous
discretization. We start from the Plancherel relation defined in Corollary 2.2 and determine
under which conditions we can obtain a controlled frame. That is, for two frame bounds
A,B ∈ R∗

+, we want

A‖f‖2 6
∑

j∈Z

νj

∫

S2

dµ(ω) Wj(ω) W̃ j(ω) 6 B‖f‖2, (4.9)

where f ∈ L2(S2) and W̃j(ω) = 〈R[ω]L
−1
ψ Djψ|f〉. The operator L−1

ψ controlling the frame
is the continuous frame operator defined in the Fourier domain by

L̂−1
ψ f(l,m) = G−1

ψ (l)f̂(l,m),

where Gψ is given in (2.17). It is bounded with bounded inverse, i.e., Lψ ∈ GL(H), if and
only if the wavelet ψ is admissible.

Proposition 4.2. If there exist two constants A,B ∈ R∗
+ such that

A 6
4π

2l + 1
Gψ(l)−1

∑

j∈Z

νj |ψ̂j(l, 0)|2 6 B, for all l ∈ N, (4.10)

then (4.9) is satisfied.

Proof : As in the previous proposition, we start from the Fourier coefficients

Wf(ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
f̂(l,m) ψ̂a(l, 0)Y m

l (ω).

Then W̃f(ω, a) = 〈R[ω]L
−1
ψ Daψ|f〉 reads

W̃f(ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
Gψ(l)

−1 f̂(l,m) ψ̂a(l, 0)Y m
l (ω),

since the frame operator depends only on l and commutes with rotations.
Using these expressions for the coefficients and the fact that spherical harmonics are

orthonormal, we find

∑

j∈Z

νj

∫

S2

dµ(ω) Wj(ω) W̃j(ω) =
∑

(l,k)∈N

|f̂(l, k)|2
∑

j∈Z

4π

2l + 1
Gψ(l)−1 νj |ψ̂j(l, 0)|2.

Then, inequalities in (4.9) are verified if there exist two constants A,B ∈ R∗
+, such that

A 6
4π

2l + 1
Gψ(l)−1

∑

j∈Z

νj |ψ̂j(l, 0)|2 6 B, for all l ∈ N.
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Figure 5: The function S(l) for l ∈ [0, 31[ and K = 1, 2, 3. Second Approach.

�

Note that, for aj = a02
−j/K ,

Gψ(l) = lim
K→∞

4π

2l + 1

∑

j∈Z

νj |ψ̂j(l, 0)|2, (4.11)

since the weights νj discretize the continuous measure da/a3 (in other words, Gψ is well
approximated by Riemann sums). Therefore, we obtain a good approximation of Gψ by
taking a large K in the previous equation. We will set K = 10.

Given this scale discretization and using the same wavelet and the same weights νj as
in the first approach, the new quantity

S(l) =
4π

2l + 1
Gψ(l)−1

∑

j∈Z

νj |ψ̂j(l, 0)|2 (4.12)

has been evaluated. It is drawn on Fig.5 for several values of K. The previous “dip” at
small l has disappeared and the oscillations occuring at K = 1 are almost inexistent for
K = 3. This is confirmed in Table 2, where the values of A and B have been estimated by
the infimum and the supremum of S(l) on l ∈ [0, 31], respectively. We see that the ratio
B/A tends quickly to 1 as K increases. A tight frame is thus reachable using the controlled
frame approach.

4.1.3 Reconstruction

A function f ∈ L2(S2) can be reconstructed from its coefficients Wj(ω) as soon as the
family Ψ = {ψω,j : ω ∈ S2, j ∈ Z} constitutes a (classical) half-continuous frame.
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K A B B/A
1 0.7313 0.7628 1.0431
2 0.8747 0.8766 1.0021
3 0.9242 0.9254 1.0014
4 0.9503 0.9512 1.0009

Table 2: Estimation of the bounds A and B as a function of the extremum of S(l) for some
values of K. Second approach.

Proposition 4.3. Let α = {aj : j ∈ Z, aj > aj+1} be a sequence of scales. If ψ is an
axisymmetric wavelet such that, for two constants A,B ∈ R∗

+,

A 6 gψ(l) =
4π

2l + 1

∑

j∈Z

νj |ψ̂j(l, 0)|2 6 B, ∀ l ∈ N, (4.13)

then,

f(ω) =
∑

j∈Z

νj

∫

S2

dµ(ω′)
[
R[ω]ℓ

−1
ψ Daj

ψ
]
(ω′)Wf(ω

′, aj)

=
∑

j∈Z

νj [ψj ⋆ Wj ](ω),

where ℓψ is the operator defined in the Fourier domain by

[̂ℓ−1
ψ h](l,m) = g−1

ψ (l) h(l,m). (4.14)

and ψj = ℓ−1
ψ ψj is the dual function of ψj.

The proof is similar to the proof of Proposition 4.2, replacing Gψ by gψ. The new
operator ℓψ is nothing but the discretization of Lψ defined in (2.17). According to this
proposition, the family Ψ can be interpreted as a tight frame controlled by the operator
ℓ−1
ψ .

We have seen in Section 2.3.1 that there exists a limit scale ã ∈ R∗
+ such that, for

increasing a ∈ [ã,+∞[, the support of ψ̃a stops contracting towards low frequencies and
starts growing again towards high frequencies. We will lump together all wavelets having
this behavior into a single scaling function ζ defined by

|ζ̂(l,m)|2 = δm,0

−1∑

j=−∞

νj |ψ̂j(l, 0)|2. (4.15)

On the example depicted in Fig. 3, ã ≃ 0.8. Thus we can safely take ã = 1, corresponding
to j = 0. This justifies the upper bound in the sum (4.15). However, the weights νj ∝ a−2

j

decrease rapidly for j → −∞ (large scales), so that only the last few terms, with |j]
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small, will contribute significantly to the sum, which entails that the function ζ is mainly
concentrated at low frequencies. This behavior can be seen again on Fig. 3 and can also
be checked numerically.

In addition, if the analyzed signal f is band-limited, i.e., there is a bandwidth β ∈ N0

such that f ∈ Bβ (a frequent situation for signals on the sphere), we may define a residual
function with

|η̂(l,m)|2 = 1l[0,β[(l) δm,0

∞∑

j=J+1

νj |ψ̂j(l, 0)|2, (4.16)

where J is the maximal resolution such that the support of ψ̂j(l, 0) is contained in [0, β[.

This function will catch the high frequency components of f omitted by ψ̂j for j ∈ [0, J ].
With these two functions, the reconstruction formula reads

f(ω) = [ ζ ⋆ S](ω) +

J∑

j=0

νj [ψj ⋆ Wj ](ω) + [η ⋆ H ](ω), (4.17)

with S(ω) = 〈R[ω] ζ|f〉, ζ = ℓ−1
ψ ζ , H(ω) = 〈R[ω] η|f〉 and η = ℓ−1

ψ η.

4.2 Discrete spherical frames

As a last step, we will now completely discretize the CWT on the sphere. First, the scales
are discretized as previously, namely

a ∈ α := {aj ∈ R∗
+ : aj > aj+1, j ∈ Z}.

Then we choose the positions on an equi-angular grid of resolution j and of size 2βj×2βj
(βj ∈ N), i.e.,

ω ∈ Gj := {ωjpq = (θjp, ϕjq) ∈ S2 : θjp =
(2p+ 1)π

4βj
, ϕjq =

qπ

βj
, p, q ∈ Z[2βj ]}. (4.18)

As explained in Section 2.3, the grid Gj allows to sample perfectly any function of band-
width βj .

The complete grid finally reads as follows :

Λ(α,β) = {(aj , ωjpq) : j ∈ Z, p, q ∈ Z[2βj ] }, (4.19)

for a set of bandwidths β = {βj ∈ N : j ∈ Z}. In this case, for an axisymmetric admissible
mother wavelet ψ ∈ S2, the family

Ψ = {ψjpq = R[ωjpq ]Djψ : j ∈ Z, p, q ∈ Z[2βj ] } (4.20)

constitutes a weighted frame controlled by the operator L−1
ψ , if there are two constants

A,B ∈ R∗
+ such that, for any f ∈ L2(S2),

A‖f‖2 6
∑

j∈Z

∑

p,q∈Z[2βj]

νjwjp Wj [p, q] W̃j[p, q] 6 B‖f‖2, (4.21)
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with Wj [p, q] = 〈ψjpq|f〉, W̃j[p, q] = 〈L−1
ψ ψjpq|f〉, and where the quadrature weights wjp =

w
βj
p are defined in (2.23). The product νj wjp replaces the continuous measure a−3da dµ(θ, ϕ)

of the continuous framework.

Proposition 4.4. Consider the discretization grid Λ(α,β) defined in (4.19). Given an
axisymmetric admissible wavelet ψ on S2, define the quantities

S ′(l) =
∑

j∈Z

4πνj
2l + 1

1l[0,β)
(l) G−1

ψ (l) |ψ̂j(l, 0)|2, (4.22)

δ = ‖X‖ ≡ sup
(Hl)l∈N

‖XH‖
‖H‖ , (4.23)

where the infinite matrix (Xll′)l,l′∈N is given by

Xll′ =
∑

j∈N

2πνj cj(l, l
′)

βj
1l[2βj ,+∞)(l + l′)G−1

ψ (l) |ψ̂j(l, 0)| |ψ̂j(l′, 0)| (4.24)

and cj(l, l
′) =

(
2(l + βj) + 1

)1/2(
2(l′ + βj) + 1

)1/2
. If we have

0 6 δ < K0 6 K1 < ∞, (4.25)

where K0 = inf l∈N S
′(l) and K1 = supl∈N

S ′(l), then the family (4.20) is a weighted spherical
frame controlled by the operator L−1

ψ , with frames bounds K0 − δ, K0 + δ.

The proof of this proposition is quite technical and may be found in Appendix B.

The evaluation of ‖X‖ could be complex when the size of X is infinite. In practice,
however, we work with band-limited functions f ∈ L2(S2) of bandwidth βM ∈ N0. In this
case ‖X‖ can be replaced by the norm of the finite matrix (Xl,l′ )06l,l′<βM

.
We have estimated the bounds of a spherical DOG wavelet frame in the case βM = 128,

using a dyadically discretized scale (with K = a0 = 1 in (4.6)), while the bandwidth
associated to the grid size supporting each resolution j was fixed to

βj = β02
|j|, β0 ∈ N, (4.26)

where β0 is the minimal bandwidth associated to ψ1. The last equation takes into account
the particular nature of the stereographic dilation on S2. Indeed, for the DOG wavelet, Fig.
3 shows that the (numerical) support of ψ̂j increases roughly with 2|j|. Table 3 presents the
results of the evaluation of K0, K1 and δ as well as the bounds of the associated frames.
One can see that condition (4.25) is satisfied for β0 > 4. However, a tight frame cannot
be obtained by increasing β0. Indeed if β0 tends to infinity, the spherical grids at each
resolution become finer and finer and we approach half-continuous frames. But, as seen
in the previous section, this single voice discretization of the scale is not sufficient for
producing a tight frame.
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K0 K1 δ A = K0 − δ B = K1 + δ B/A
β0 = 2 0.6691 0.7644 344.2417 − − −
β0 = 4 0.7313 0.7736 0.0607 0.6707 0.8343 1.2440
β0 = 8 0.7313 0.7736 0.0014 0.7299 0.7751 1.0618

Table 3: Evaluation of K0, K1 and δ on the functions f ∈ L2(S2) at bandwidth 128.

4.2.1 Approximate reconstruction

As explained in Section 3.3.1, the frame Ψ = {ψjpq} controlled by L−1
ψ provides a simple

approximate reconstruction formula if the bounds A and B are sufficiently close. In this
case, indeed, we have

f(ω) ≃ 2

A+B

∑

j∈Z

∑

p,q∈Z[2βj ]

νjwjp Wj [p, q] [L−1
ψ ψjpq](ω). (4.27)

Let us assume that f is a band-limited function, i.e., f ∈ BβM
, for a certain βM ∈ N.

Therefore, f may be discretized without loss of information on a grid GJ , where J ∈ N0 is
the maximal resolution of the grid such that βJ = βM. As in the half-continuous case, the
residual function η defined in (4.16) can be used to catch the high frequencies left over by
the restriction j 6 J .

This leads to the approximate reconstruction formula

A+B

2
f(ω) ≃

J∑

j=−J

∑

p,q∈Z[2βj]

νjwjp Wj[p, q] [L−1
ψ ψjpq](ω) + · · ·

+
∑

p,q∈Z[2βM]

H [p, q] [L−1
ψ ηpq](ω), (4.28)

where H [p, q] = 〈ηpq|f〉 and ηpq(ω) = [R[ωJpq] η](ω).
Notice that a scaling function could be defined to gather wavelets in the range j < −J .

However, wavelet coefficients at these resolutions are practically negligible since the weights
νj decrease with j as 22j . The approximation of f by the new frame operator

L′
ψf =

2

A+B

J∑

j=−J

∑

p,q∈Z[2βj ]

νjwjp Wj[p, q] L
−1
ψ ψjpq + · · ·

+
2

A+B

∑

p,q∈Z[2βM]

H [p, q] L−1
ψ ηpq, (4.29)

may be largely improved by using the conjugate gradient algorithm [17], which computes
iteratively, from L′

ψ, the reconstruction of f that we would obtain with the dual wavelets
of ψn. Note the latter cannot be obtained explicitly, because we cannot control the effect
in Fourier space of the undersampling implied by the successive grids.
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4.2.2 An example

To conclude, we will now decompose and reconstruct a particular example of spherical data,
namely, the global average elevation map of the Earth. The original data f (Fig. 6(a))
represent elevations relatively to the mean level of the oceans (in meters) and are recorded
on an equi-angular grid of 512×512 points (βM = 256).

The mother wavelet used for the frame decomposition is the DOG (α = 1.25). The
parameters of the multi-scale grid Λ(α,β) are a0 = 1 and β0 = 4, for scales and bandwidths
discretized as in (4.6) (with K = 1) and (4.26). According to the original spherical grid
(βM = 256), the maximum resolution is thus J = 6. The values Wj [p, q] have been obtained
by computing Wf (ω, aj) on the maximum grid GJ , and by estimating then the coefficients
Wf(ωjpq, aj) by bilinear interpolation of the coefficients Wf(ωJp′q′ , aj) on the sub-grid Gj .
We use this method because this grid is not included into the maximum one, i.e., Gj * GJ
for all |j| < J . Figs. 6(b), 6(c) and 6(d) show respectively wavelet coefficients W0[p, q],
W3[p, q] et W6[p, q]. We clearly see the multiscale decomposition of f on grids adapted to
data resolution. We may remark also that the Himalaya mountains behave like a singularity
accross scales.

For the approximate reconstruction of the elevation map, the function Gψ(l) used in the
definition of the operator Lψ has been first estimated with the help of (4.11) taking K = 10
voices. In addition, the ratio 2

A+B
occuring in (4.27) has been set to 1.3289 from the results

shown in Table 3. The difference f − L′
ψf between original data and the reconstruction is

given on Fig. 7(a). As shown by the amplitudes of this difference (given in percentage of
the maximum of f), the reconstruction L′

ψf is very close to f .
A better reconstruction yet is obtained with the conjugate gradient algorithm. Fig.

7(b) displays the difference between f and the approximation f (3) computed after only 3
steps. The amplitudes of f − f (3) are tiny in comparison with those of f −L′

ψf (about 600
times smaller). This effect appears also in the relative errors :

‖f − L′
ψf‖

‖f‖ ≃ 1.1 %, (4.30)

‖f − f (3)‖
‖f‖ ≃ 2 10−3 %. (4.31)

5 Outcome

In this paper, we have designed frames of spherical wavelets. Our construction has two
distinguished features. First, it is based on the spherical continuous wavelet transform
introduced in [4, 5]. Thus we use genuine spherical wavelets, whose multiscale localization
is precisely controlled. Second, our sampling scheme makes use of the very simple equi-
angular grids, which are widespread in spherical data processing.

We have introduced two variants of spherical frames. The first one, the quasi-continuous
frames, features a continuous translation variable and discrete scales, very much in the idea
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(a) (b)

(c) (d)

Figure 6: Decomposition of the Earth elevation map. (a) Global average elevation data
(512×512 equi-angular grid). The elevations are relative to the mean level of the oceans
(in meter). (b) W0[p, q]. (c) W3[p, q]. (d) W6[p, q].
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(a) (b)

Figure 7: (a) Difference between the elevation map f and its approximation Lf . (b)
Difference between f and its reconstruction f (3) obtained after three iterations of the
conjugate gradient algorithm. For (a) and (b), the values are in percentage of the maximum
value of the original data.

of the Dyadic Wavelet Transform. The second one yields fully discrete frames, where all
parameters are sampled. A careful analysis of these constructions led us to introduce the
idea of controlled frames, which reflect in this case the particular nature of the spherical
theory. Working with equi-angular grids allowed us to introduce fast algorithms based on
the fast spherical Fourier transform. Finally we have tested these frames on a set of natural
data, using successively two particular reconstruction procedures.

Spherical wavelet frames offer a very flexible tool whenever data are inherently bound
to spherical geometry. This is particularly the case in astronomy and astrophysics, where
spherical wavelets have become one of the main tools for analyzing the Cosmic Microwave
Background. But it is also true in fields such as geophysics and remote sensing, for example.
Spherical wavelet frames offer a way to model efficiently functions that are deformations of
a spherical base and could thus be of interest in computer graphics [9, 16]. In computational
vision, spherical frames seem a strong candidate to study efficiently the plenoptic function.
They also share a strong common geometric base with conformal (projective) vision [23, 24,
1]. Finally, with the development of Image Based Rendering and omnidirectional cameras,
spherical wavelets clearly provide a natural way of processing these new sources of data.

27



Appendix A: Stereographic construction of spherical

wavelets

In this appendix, we give a direct proof of the central result of the theory of spherical
wavelets [this proof originates from a discussion with M.Fornassier and H. Blauhut; we
thank them both].

Proposition A.1. Any admissible wavelet on L2(R2) yields an admissible wavelet on
L2(S2) by inverse stereographic projection.

Proof. As stated in [4], the stereographic projection (see Fiq. 1) is the map Ξ : L2(S2, dµ) →
L2(R2, r dr dϕ) given by

Ξ : f(θ, ϕ) 7→ 2

1 + r2
f(2 arctan r, ϕ). (A.1)

The map Ξ is unitary and satisfies the intertwining relation

ΞDa = Dp
a Ξ, (A.2)

where Da is the stereographic dilation (2.2) on S2 and Dp
a is the usual unitary plane

dilation, defined as
Dp
a f(r, ϕ) = a−1f(a−1r, ϕ). (A.3)

The admissibility of a wavelet ψ ∈ L2(S2) can be written as

I =

∫

SO(3)

dν(ρ)

∫ ∞

0

da

a3
|〈RρDaψ|φ〉|2 < ∞, ∀φ ∈ L2(S2), (A.4)

where dν is the invariant (Haar) measure on SO(3) and Rρ is the rotation matrix associated
to ρ ∈ SO(3).

Introducing the unitary map Ξ, we get

I =

∫

SO(3)

dν(ρ)

∫ ∞

0

da

a3
|〈Daψ|R−1

ρ φ〉L2(S2)|2

=

∫

SO(3)

dν(ρ)

∫ ∞

0

da

a3
|〈ΞDaψ|ΞR−1

ρ φ〉L2(R2)|2

=

∫

SO(3)

dν(ρ)

∫ ∞

0

da

a3
|〈Dp

a Ξψ|ΞR−1
ρ φ〉L2(R2)|2.

Defining ψp ≡ Ξψ, we obtain finally

I =

∫

SO(3)

dν(ρ)

∫ ∞

0

da

a3
|〈Dp

a ψ
p|ΞR−1

ρ φ〉L2(R2)|2. (A.5)
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Consider the inner integral

I(ρ) =

∫ ∞

0

da

a3
|〈Dp

a ψ
p|ΞR−1

ρ φ〉L2(R2)|2. (A.6)

If ψp is an admissible wavelet on L2(R2), this integral converges, since ΞR−1
ρ φ ∈ L2(R2)

for any φ ∈ L2(S2).
In addition, for any φ ∈ L2(S2), I(ρ) is a continuous function of ρ ∈ SO(3). The latter

being compact, this function is bounded. Therefore,

I =

∫

SO(3)

dν(ρ) I(ρ) (A.7)

also converges, again by the compactness of SO(3). This means that ψ ∈ L2(S2) is an
admissible spherical wavelet.

Appendix B: Proof of Proposition 4.4

Let us define
S =

∑

j∈Z

∑

p,q∈Z[2βj]

νjwjp Wf (ωjpq, aj) W̃f(ωjpq, aj).

Since

Wf(ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
f̂(l,m) ψ̂a(l, 0)Y m

l (ω)

and

W̃f (ω, a) =
∑

(l,m)∈N

√
4π

2l + 1
Gψ(l)−1 f̂(l,m) ψ̂a(l, 0)Y m

l (ω),

we have

S =
∑

j∈N

∑

p,q∈Z[2βj]

∑

(l,m)∈N

∑

(l′,m′)∈N

4π√
(2l + 1)(2l′ + 1)

f̂(l,m) f̂(l′, m′)

νjwjpG
−1
ψ (l) ψ̂aj

(l, 0) ψ̂aj
(l′, 0) Y m

l (ωjpq) Y m′

l′ (ωjpq)

=
∑

j∈N

4πνj
∑

(l,m)∈N

∑

(l′,m′)∈N

f̂(l,m) f̂(l′, m′)√
(2l + 1)(2l′ + 1)

G−1
ψ (l) ψ̂aj

(l, 0) ψ̂aj
(l′, 0)

∑

p,q∈Z[2βj]

wjp Y
k
l (ωjpq) Y

k′
l′ (ωjpq).
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If l + l′ < βj, the product Y m
l Y

m′

l′ having order l + l′ [25], the weight wjp provides the
quadrature formula [8, 11]

∑

p,q∈Z[2βj]

wjp Y
m
l (ωjpq) Y m′

l′ (ωjpq) =

∫

S2

dµ(ω) Y m
l (ω) Y m′

l′ (ω) = δll′δmm′ , (B.8)

for all |m| 6 l and all |m′| 6 l′. Therefore, the sum S splits in two parts

S =
∑

j∈N

∑

p,q∈Z[2βj ]

∑

(l,m)∈N
(l′,m′)∈N
l+l′<2βj

. . . +
∑

j∈N

∑

p,q∈Z[2βj]

∑

(l,k)∈N (l′,m′)∈N
l+l′>2βj

. . .

= C +D.

The first term C, where (B.8) is valid, reduces to

C =
∑

j∈N

4πνj
∑

(l,m)∈N
l<βj

1
(2l+1)

|f̂(l,m)|2G−1
ψ (l) |ψ̂aj

(l, 0)|2

=
∑

(l,m)∈N

|f̂(l,m)|2
∑

j∈N

4πνj
(2l + 1)

1l[0,βj[(l)G
−1
ψ (l) |ψ̂aj

(l, 0)|2.

If (4.25) is verified, then
K0‖f‖2 6 C 6 K1‖f‖2. (B.9)

Let us analyze the part D. Since Y m
l (ωjpq) = Y m

l (θjp, 0) eimϕjq , with θjp = 2p+1
4βj

π et

ϕjq = qπ
βj

, we find

∑

q∈Z[2βj ]

Y m
l (ωjpq) Y m′

l′ (ωjpq)

= Y m
l (θjp, 0) Y m′

l′ (θjp, 0)
∑

q∈Z[2βj ]

e
i (m−m′) qπ

βj

= 2βj Y
m
l (θjp, 0) Y m′

l′ (θjp, 0)
∑

t∈Z

|m+2tβj |6l′

δm′,m+2tβj

= 2βj
∑

t∈Z

|m+2tβj |6l′

Y m
l (θjp, 0) Y

m+2tβj

l′ (θjp, 0) δm′,m+2tβj

= 2βj
∑

t∈Z

1l[−l′,l′](m+ 2tβj) Y
m
l (θjp, 0) Y

m+2tβj

l′ (θjp, 0) δm′,m+2tβj
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So,

D =
∑

j∈N

8πνj βj
∑

(l,m)∈N

∑

l′∈N

∑

t∈Z

1l[2βj,+∞[(l + l′) 1l[−l′,l′](m+ 2tβj)√
(2l + 1)(2l′ + 1)

f̂(l,m) f̂(l′, m+ 2tβj)

G−1
ψ (l) ψ̂aj

(l, 0) ψ̂aj
(l′, 0)

∑

p∈Z[2βj ]

wjp Y
m
l (θjp, 0) Y

m+2tβj

l′ (θjp, 0).

Therefore,

|D| 6
∑

j∈N

8πνj βj
∑

(l,m)∈N

∑

l′∈N

∑

t∈Z

1l[2βj ,+∞[(l + l′) 1l[−l′,l′](m+ 2tβj)√
(2l + 1)(2l′ + 1)

|f̂(l,m)| |f̂(l′, m+ 2tβj)|

Gψ(l)
−1 |ψ̂aj

(l, 0)| |ψ̂aj
(l′, 0)|

∑

p∈Z[2βj ]

wjp |Y m
l (θjp, 0)| |Y m+2tβj

l′ (θjp, 0)|

6
∑

j∈N

4πνj
∑

(l,m)∈N

∑

l′∈N

∑

t∈Z

|f̂(l,m)| |f̂(l′, m+ 2tβj)| 1l[−l′,l′](m+ 2tβj)

1l[βj,+∞[(l + l′)G−1
ψ (l) |ψ̂aj

(l, 0)| |ψ̂aj
(l′, 0)|

where we used the fact that |Y m
l | 6

√
2l+1
4π

for all (l,m) ∈ N , and
∑

p∈Z[2βj]
wjp = 4π

2βj
.

The sums on m and t can be bounded since

∑

t∈Z

∑

|m|6l

|f̂(l,m)| |f̂(l′, m+ 2tβj)| 1l[−l′,l′](m+ 2tβj)

6
∑

t∈Z

[ ∑

|m|6l

|f̂(l,m)|2 1l[−l′,l′](m+ 2tβj)
]1/2 [ ∑

|m|6l

|f̂(l′, m+ 2tβj)|2 1l[−l′,l′](m+ 2tβj)
]1/2

6
[∑

t∈Z

∑

|m|6l

|f̂(l,m)|2 1l[−l′,l′](m+ 2tβj)
]1/2 [∑

t∈Z

∑

|m|6l

|f̂(l′, m+ 2tβj)|2 1l[−l′,l′](m+ 2tβj)
]1/2

6
[ ∑

|m|6l

|f̂(l,m)|2
[2l′ + 1

2βj
+ 1

]]1/2 [∑

t∈Z

l+2tβj∑

m′=−l+2tβj

|f̂(l′, m′)|2 1l[−l′,l′](m
′)
]1/2

6
[ ∑

|m|6l

|f̂(l,m)|2
[2l′ + 1

2βj
+ 1

]]1/2 [∑

t∈Z

∑

m′∈Z

|f̂(l′, m′)|2 1l[−l,l](m
′ − 2tβj) 1l[−l′,l′](m

′)
]1/2

6
[ ∑

|m|6l

|f̂(l,m)|2
[2l′ + 1

2βj
+ 1

]]1/2 [∑

t∈Z

l′∑

m′=−l′

|f̂(l′, m′)|2 1l[−l,l](m
′ − 2tβj)

]1/2

6
[ ∑

|m|6l

|f̂(l,m)|2
[2l′ + 1

2βj
+ 1

]]1/2 [ ∑

|m′|6l′

|f̂(l′, m′)|2
[2l + 1

2βj
+ 1

]]1/2

6 (2βj)
−1

(
2(l + βj) + 1

)1/2(
2(l′ + βj) + 1

)1/2 [ ∑

|m|6l

|f̂(l,m)|2
]1/2 [ ∑

|m′|6l′

|f̂(l′, m′)|2
]1/2

,
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applying the Cauchy-Schwarz inequality first on the sum over m and then on the sum over
t. Therefore,

|D| 6
∑

l,l′∈N

[ ∑

|m|6l

|f̂(l,m)|2
]1/2 [ ∑

|m′|6l′

|f̂(l′, m′)|2
]1/2

χ(l, l′)

with

χ(l, l′) =
∑

j∈N

2πνj cj(l, l
′)

βj
1l[2βj ,+∞[(l + l′)G−1

ψ (l) |ψ̂aj
(l, 0)| |ψ̂aj

(l′, 0)|.

and cj(l, l
′) =

(
2(l + βj) + 1

) 1
2
(
2(l′ + βj) + 1

) 1
2 .

Denoting F 2
l =

∑
|m|6l |f̂(l,m)|2, we obtain with the Cauchy-Schwarz inequality

|D| 6
∑

l∈N

Fl
∑

l′∈N

χ(l, l′)Fl′

6 ‖F‖‖XF‖
= ‖f‖‖XF‖,

with F = (Fl)l∈N, ‖F‖2 =
∑

l∈N
|Fl|2 = ‖f‖2, X =

(
χ(l, l′)

)
l,l′∈N

and (XF )l =
∑

l′∈N
χ(l, l′)Fl′.

If (4.25) is satisfied, we have

|D| 6 ‖f‖ ‖X‖ ‖f‖ = δ ‖f‖2,

with the norm

‖X‖ = sup
(Gl)l∈N

‖XG‖
‖G‖ .

The proof of the theorem is provided by noting that

0 < (K0 − δ)‖f‖2 < C − |D| 6 S 6 C + |D| < (K1 + δ)‖f‖2 < ∞.
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[25] N.J. Vilenkine, Fonctions spéciales et théorie de la représentation des groupes, Dunod,
Paris, 1969.

34


