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Abstract

Relation-changing modal logics are extensions of the basic modal logic
with dynamic operators that modify the accessibility relation of a model
during the evaluation of a formula. These languages are equipped with
dynamic modalities that are able, for example, to delete, add, and swap
edges in the model, both locally and globally. We study the satisfiability
problem for some of these logics. We first show that they can be trans-
lated into hybrid logic. As a result, we can transfer some results from
hybrid logics to relation-changing modal logics. We discuss in particu-
lar, decidability for some fragments. We then show that satisfiability is,
in general, undecidable for all the languages introduced, via translations
from memory logics.
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1 Introduction

Modal logics [18, 16] were originally conceived as logics of necessary and possible
truths. They are now viewed, more broadly, as logics that explore a wide range
of modalities, or modes of truth: epistemic (“it is known that”), doxastic (“it
is believed that”), deontic (“it ought to be the case that”), or temporal (“it has
been the case that”), among others. From a model-theoretic perspective, the
field evolved into a discipline that deals with languages interpreted on various
kinds of relational structures or graphs. Nowadays, modal logics are actively
used in areas as diverse as software verification, artificial intelligence, semantics
and pragmatics of natural language, law, philosophy, etc.

As we just mentioned, from an abstract point of view, modal logics can be
seen as formal languages to navigate and explore properties of a given relational
structure. If we are interested, on the other hand, in describing how a given
relational structure evolves (through time or through the application of certain
operations) then classical modal languages seem, a priori, to fall short of the
mark. Of course, it is possible to statically model the whole space of possible
transformations as a graph, and use modal languages at that level, but this
soon becomes unwieldy (see [5, 19] for some results using this approach). It is



also possible to represent model update conditions as parts of the model itself,
and interact with them by means of the classical modal language. This is the
approach taken by Gabbay’s in his study of reactive Kripke frames [23, 24].
Alternatively, it is possible to use standard relational models, and use modal
languages with dynamic modalities encoding the desired changes.

There exist several dynamic modal logics that fit in this last approach. A
clear example are the dynamic operators introduced in dynamic epistemic log-
ics (see, e.g., [39]). These operators are used to model changes in the epistemic
state of an agent by removing edges from the graph that represents the infor-
mation states the agent considers possible. A less obvious example is given by
hybrid logics [11, 17] equipped with the down arrow operator | which is used to
‘rebind’ names to the current point of evaluation. Finally, a classical example
is sabotage logic introduced by van Benthem in [38]. The sabotage operator
deletes individual edges in a graph and was introduced to model the sabotage
game. This game is played on a graph by two players, Runner and Blocker.
Runner can move on the graph from node to accessible node, starting from a
designated point, and with the goal of reaching a given final point. Blocker, on
the other hand, can delete one edge from the graph every time it is his turn.
Runner wins if he manages to move from the origin to the final point, while
Blocker wins otherwise. Van Benthem turns the sabotage game into a modal
logic, where the (global) sabotage operator (gsb) models the moves of Blocker,
and is interpreted on a graph M at a point w as:

M, w = (gsb)p iff there is an edge (u,v) of M such that Moy W Eoe

where M(_u,v) is identical to M except that the edge (u,v) has been removed.
The moves of Runner, on the other hand, can be modeled using the standard ¢
operator of classical modal logics.

More recently, sabotage logic was proposed as a formalism for reasoning
about formal learning theory [25]. Learning can be seen as a game with two play-
ers, Teacher and Learner, where Learner changes his information state through
a step-by-step process. The process is successful if he eventually reaches an in-
formation state describing the real state of affairs. The information that Teacher
provides can be interpreted as feedback about Learner’s conjectures about the
current state of affairs, allowing him to discard inconsistent hypotheses. From
this game-theoretical perspective, the interaction between Teacher and Learner
can be modeled using operators similar to those of sabotage logic.

The dynamic approach seems appealing and flexible: it is easy to come up
with situations that nicely fit and extend the examples we mentioned. Discover-
ing alternative routes for Runner in van Benthem’s sabotage game, or possible
shortcuts that Learner can take in learning theory can be modeled by adding
new edges to the graph. Swapping an edge can be used to represent other sce-
narios such as changing the direction of a route, or allowing Learner to return
to a previous information state. All these primitives can be turned into a modal
logic in order to obtain a formal language for reasoning about these scenarios.

Motivated by applications like the ones we just described, in this article we
investigate three dynamic primitives that can change the accessibility relation
of a model: sabotage (deletes edges from the model), bridge (adds edges to a
model), and swap (turns around edges), both in a global version (performing
changes anywhere in the model) and local (changing adjacent edges from the



evaluation point). The particular operators we will investigate should be seen
as just examples of the possibilities offered by the framework, with no intention
of being complete or comprehensive. Intuitively, they were chosen because they
represented simple, different ways in which a relation could be updated.

The six primitive operators we will discuss in this article were introduced
in [3] where we investigated their expressive power and the complexity of their
model checking problem. We presented tableaux methods for relation-changing
modal logics in [4]. In [5] we studied local swap logic, in particular its decidabil-
ity problem and its relation with first-order and hybrid logics. Global sabotage
logic, together with some variants of relation-changing logics, have been inves-
tigated in [14, 15]. In [6] a general framework for representing model updates is
defined. Connections with dynamic epistemic logic were introduced in [12, 13].

Contributions. In this article, we focus on the decidability problem of relation-
changing logics. We first show that these logics can be seen as fragments
of hybrid logics. We consider hybrid logics because they can naturally simu-
late the semantics of relation-changing operators. We introduce translations to
HL(E, ), the basic modal logic extended with nominals, the down arrow binder
J, and the universal modality E. The translations were implemented in the hy-
brid logic prover HTab [27], which can now be used as a tool for satisfiability
checking and model building for relation-changing logics. We then show that all
the relation-changing logics presented are undecidable, by means of reductions
from memory logics — a weaker version of hybrid logics [1, 32].

This article presents and extends, in a uniform way, results that have been
incrementally obtained in recent years. Translations from relation-changing
logics to hybrid logics were investigated in [7]. The undecidability results have
been established in [29, 19, 5, 30, §].

Outline. The article is organized as follows. In Section 2 we introduce the
syntax and semantics of relation-changing modal logics. In Section 3 we intro-
duce hybrid extensions of the basic modal logic, and encode relation-changing
operators into them. In Section 4 we present undecidability results. An imple-
mentation of the translations from Section 3 is described in Section 5, together
with some examples. Finally, we conclude with some remarks and future work
in Section 6.

2 Relation-Changing Modal Logics

In this section, we formally introduce extensions of the basic modal logic with
relation-changing operators. We call these extensions Relation-Changing modal
logics (RC for short). For more details and motivations, we direct the reader
to [19].

Definition 1 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM ==p|-p oA | Qv | #p,

where p € PROP, 4 € {(sb), (br), (sw), (gsb), (gbr), (gsw)}, and ¢,¢ € FORM.
Other operators are defined as usual.



Let ML (the basic modal logic) be the logic without the {(sb), (br}), (sw), (gsb),
(gbr), (gsw)} operators, and ML(#) the extension of ML allowing also ¢, for
& < {(sb), {br), (sw), (gsb), (gbr), (gsw)}

In particular, ML((sb), (gsb)), ML((br), (gbr)), and ML({sw), (gsw)) will
be called Sabotage Logic, Bridge Logic, and Swap Logic, respectively.

Semantically, formulas are evaluated in standard relational models, and the
meaning of the operators of the basic modal logic remains unchanged (see [16]
for details). When we evaluate formulas containing relation-changing operators,
we will need to keep track of the edges that have been modified. To that end,
let us define precisely the models that we will use.

Definition 2 (Models and model updates). A model M is a triple M =
(W,R,V), where W is a non-empty set whose elements are called points or
states; R C W xW is the accessibility relation and the elements in R are called
edges or arrows; finally V : PROP — P(W) is called the valuation. We define
the following notation:

(sabotaging) Mg = (W, Rg,V), with Rg = R\S, S C R.
(bridging) ME = (W,RE, V), with R = RUS, S C (WxW)\R.
(swapping) L= (W, R, V), with R = (R\S1)US, S C R™1.

Intuitively, Mg is obtained from M by deleting the edges in S; similarly,
M:g adds the edges in S to the accessibility relation, and Mg adds the edges in
S as inverses of edges previously in the accessibility relation. These operators
can be seen as particular cases of the jump functions introduced in [22], or the
model update functions from [6].

Let w be a state in M, the pair (M, w) is called a pointed model; we will
usually drop parenthesis and write M, w instead of (M, w). In the rest of this
article, we will use wv as a shorthand for {(w,v)} or (w,v); context will always
disambiguate the intended use.

Definition 3 (Semantics). Given a pointed model M, w and a formula ¢, we
say that M, w satisfies ¢, and write M, w |= ¢, when

M,wEp it weV(p)

M,w E - iff  M,w e

MwEpAy it MwkEpand M,wEY

M, w = Op iff  for some v € W s.t. (w,v) € RM, v
¢ iff  for some v e W s.t. (w,v) € R,M,,v k= ¢
(bryo  iff for some v € W s.t. (w,v) € R, M}, ,vE
(sw)yp iff  for some v € W s.t. (w,v) € R,M,,vE@
(

(

A~ N SN

gsbyp iff for some v,u € W, s.t. (v,u) € RRM,, ,wkE ¢
gbr)p iff  for some v,u € W, s.t. (v,u) € R, M, wkE ¢
(gsw)p iff  for some v,u € W, s.t. (v,u) € R, M}  w = .

We say that  is satisfiable if for some pointed model M, w, M, w = ¢.

The meaning of the relation-changing operators (sb) (local sabotage), (br)
(local bridge), (sw) (local swap), (gsb) (global sabotage), (gbr) (global bridge)
and (gsw) (global swap) should be clear from the semantic conditions above.
The local operators alter one arrow which is adjacent to the point of evaluation
(deleting, adding and swapping it, respectively) while the global versions can
change an arrow anywhere in the model.



3 Translations to Hybrid Logics
3.1 Hybrid Logic

We introduce several extensions of the basic modal logic ML. The existential
modality [26], written Ep, extends ML in the following way:

M,wiEEp iff for someve W, M,vE .

In words, Ep is true at a state w if ¢ is true somewhere in the model. The E
operator, with its dual A, has been extensively investigated in classical modal
logic [35].

Now we consider several traditional ‘hybrid” operators (see [11] for details):
nominals, the satisfaction operator, and the down-arrow binder. The basic
hybrid logic HL is obtained by adding nominals to ML. A nominal is a propo-
sitional symbol that is true at exactly one state in a model. Fix the signature
(PROP,NOM), with NOM C PROP. For n € NOM, we require that its valua-
tion is a singleton set, i.e., there is a single state w such that V(n) = {w}. In
addition to nominals, hybrid logic typically involves the satisfaction operator.
Given a nominal n and a formula ¢, the satisfaction operator is written n:p.
The intended meaning is “p is true at the state named by n”. Its semantics is
given by the following clause:

Mw Ene it M,vE ¢ where V(n) = {v}.

Observe that if the language has the E operator and nominals, then n:p is
definable as E(n A ¢).

Finally, consider the down-arrow binder, written |. Let the valuation V*
be defined by V¥ (n) = {w} and V,(m) = V(m), when n # m. The semantic
condition for | is the following:

(W,R,V),wElnge iff (W, R V) wl=e.

The language HL(:, ) is a reduction class of first-order logic, and it is, hence,
undecidable [17, 36]. It remains undecidable even with a single accessibility
relation, no satisfaction operators, and only nominal propositional symbols [2].
HL(E,]) is equivalent to first-order logic, since | can define the operators 3 and
V when combined with E and A.

HTab [27] is a theorem prover and model builder for hybrid logic. It handles
the hybrid logic HL(E, |) and guarantees termination of any input formula that
lacks the | binder. It is based on a tableaux calculus and it can output a model
when the input formula is satisfiable.

The logic HL(E, }) is not able to modify the accessibility relation of a model.
However, it can use the binder to name states and, hence, it can refer to specific
edges in the model. This will be exploited by the translations introduced in the
next section.

3.2 Simulating Relation-Changing Operators with Hybrid
Logics

Relation-changing logics and hybrid logics with the | binder are two families
of logics that are dynamic in their own way. The dynamicity of RC logics is



quite obvious: they are able to modify the accessibility relation in a model in an
explicit way. On the other hand, hybrid logics carefully move nominals around,
avoiding to touch anything else in the model. If we consider both formalisms,
it would seem that hybrid logics are the gentler and weaker of both. But this is
not true. Hybrid logics have the advantage of surgical precision over RC logics.
Being able to name states of the model turns out to be a crucial advantage. As
we will see, it is possible to manipulate edges by naming pairs of states using
the pattern Jz.Qly.o. We use this naming technique to simulate edge deletion,
addition, and swapping.

Our translations are parametrized over a set of pairs of nominals S C NOM x
NOM. For a given RC formula ¢, we write its translation as a hybrid formula
(¢)s. When translating a formula, S will originally be empty and, during the
translation, it will store pairs of nominals that we will use to simulate edges
affected by the relation-changing operators we encounter.

Intuitively, we simulate updates by recording possible affected edges using
nominals and |. As a result, in all the relation-changing logics we will consider,
the RC formula (v cannot be simply translated into a hybrid formula {(¢)%,
even though we have ¢ at our disposition in the hybrid language, because in the
source language ¢ is interpreted over the updated accessibility relation. Instead,
diamond-formulas need to be translated in a way that takes into account the
edges that should be considered as deleted, added, or swapped. This is why
the translation of diamond-formulas involve the ¢ operator mixed with specific
considerations about the set of altered edges S.

Consider Sabotage Logic with either the local or global operator. We use
the set S € NOM x NOM to represent sabotaged edges, i.e., edges that have
been deleted in a given updated model.

Definition 4 (Sabotage to Hybrid Logic). Let S € NOM x NOM. Define the
translation () from formulas of ML((sb), (gsb)) to formulas of HL(E, ) as:

Ps= »
(p)s = —(¥)s
(PAY)s= (P)s A W)
(Op)s = In.O(—belongs(n, S) A (¢)s)
((sb)p)s = In.O(=belongs(n, S) A Lm.(©)s,nm)
((gsb)p)s = Lk.Eln.O(=belongs(n, S) A Lm.k:(¢)s0mm)

where n, m and k are nominals that do not appear in S, and:

belongs(n, S) = \/ (y N nux).
zy€eSs

Some explanations are in order to understand the translation. First, given
some model M = (W, R, V) and some set S C NOM x NOM, the formula
In.Q(—belongs(n, S)) is true at some state w € W if there exists some state
v such that (w,v) € R and there is no pair of nominals (z,y) € S such that
(V(x),V(y)) = (w,v). Observe that the cases for (sb) and (gsb) modify the set
of deleted pairs in the recursive call to the translation by adding an edge named
nm. In the (sb) case, n names the evaluation state of the formula, while in the
(gsb) case, n names some state anywhere in the model.

We will now prove that the translation preserves equivalence. We start by
introducing some preliminary notions and definitions.



First, notice that all nominals used in the translation are bound exactly once.
We can, then, define the following unequivocal notation: let S € NOM x NOM,
we define S = {(z,9) | (z,y) € S}, where 7 is the state named by the nominal
n € NOM under the current valuation of a model.

Second, when considering the truth of a translated formula () in some
model M = (W, R, V'), one question that may arise is what should be the initial
valuation of the nominals that appear in (). Because all nominals in (¢)’, are
bound by |, the truth value of (¢)s does not depend on their initial valuation.
Even if these symbols are not treated as nominals in the original model M
they will be interpreted correctly when evaluating (¢)%. This enables us to talk
about equivalence preservation of the translation over the same model M.

Theorem 5. For M = (W,R,V) a model, w € W, and ¢ € ML({sb), (gsb))
we have:

Muw ke iff Mk (@,

Proof. We use structural induction on the relation-changing formula, the induc-
tive hypothesis being:

Mg w = iff (WR V) wk(9)s

with S € NOM x NOM, and V' is exactly as V except that for all (z,y) € S,
there are v,u € W such that V’/(z) = v and V'(y) = u. Boolean cases are
straightforward, so we only prove the non-trivial inductive cases.

¢ = Q¢ For the left to right direction, suppose Mz, w E 0. Then there
is some v € W such that (w,v) € Ry and Mz,v = 9. Because (w,v) ¢ S,
then there is no (x,y) € S such that (z,7) = (w,v). By inductive hypothesis,
we have M,v |= (¢)%, and because we can name w with a fresh nominal n,
we obtain (W, R, V), v |= —belongs(n, S) A (). Therefore, we have M, w |=
In.O(—belongs(n, S) A (¢)%), and as a consequence we get M, w = (¢)%.

For the other direction, suppose M,w [= (¥)s. Then we have M,w =
In.O(—belongs(n, S) A (¥)%s). Then, (W, R, V"), w = O(—belongs(n, S) A (¥)s),
and, by definition, there is some v € W such that (w,v) € R, (W, R, V.*),v =
—belongs(n,S) and (W, R,V,"),v = (¥)s. Because we have —belongs(n, S),
there is no (z,y) € S such that (Z,y) = (w,v), which implies (w,v) € R if
and only if (w,v) € R%. On the other hand, by inductive hypothesis we have
Mg, v E 1, then we have Mg, w E 0.

¢ = (sb)1: For the left to right direction, suppose Mz, w [= (sb)1). Then there
is some v € W such that (w,v) € Ry and (M3z),,,v = . This is equivalent

to say Mz v = 1. Because (w,v) ¢ S, then there is no (z,y) € S such that
(Z,9) = (w,v) (®). By inductive hypothesis we have (W, R, (V")¥)? ), v E
(V) 'sUnm» Where V' is exactly as V' but it binds all the nominals which appear
in S. By definition, we get (W, R, (V")¥)),v = Im.(¥)s nm, and by (®) we
have (W, R, (V')¥)),v = —belongs(n,S) A lm.(¢)s ,m- Then (by definition)
(W,R,V'),v = In.0(—belongs(n, S) A Im.(¥)'snm), and, as a consequence, we
have (W, R, V"), v = ().

For the other direction, suppose (W, R, V'), w |= (¥)s, i.e., W, R, V"), w =
In.O(—belongs(n, S)AIM.(¢¥)'snm), Where V' is exactly as V but it binds all the
nominals which appear in S. Then, we have (W, R, (V')%), w = O(—belongs(n, S)
ALIm.(V)'sunm), and, by definition, there is some v € W such that (w,v) €



R, (W,R,V),v [= —belongs(n,S) and (W, R, V), v = Im.(¢)spm- Then,
(W, R, (V)2 ), v = (¥)sunm- Because we have —belongs(n, S), there is no
(z,y) € S such that (%,y) = (w,v), which implies (w,v) € R if and only if
(w,v) € Rg. On the other hand, by inductive hypothesis we have Mz v =
1, and thus we have Mz, w = (sb)y.

© = (gsb)t: this case is similar to the previous one. O

For Bridge Logic, we use the set B C NOM x NOM to represent new edges
added by the dynamic operator. The translation of { should be able to consider
edges in B. This explains why the translation of ¢ is a disjunction: either we
traverse an edge that is in the original model or an edge in B.

Definition 6 (Bridge to Hybrid Logic). Let B C NOM x NOM. We define the
translation ( )z from formulas of ML({br), (gbr)) to formulas of HL(E,]) as:

P)p= P
(o) = ~(9)p
(A= (P A W)
(Op)s = In.Elm( (n:Om V belongs(n, B)) A (¢)5
(b)) = In.Elm.(-n:0m A —belongs(n, B) A (¢)5unm)
((gbryp)s = lk.Eln.Elm.(-n:0m A —belongs(n, B) A k:(¢)5Unm)

where n, m and k are nominals that do not appear in B, and belongs is defined
as in Definition 4.

Theorem 7. For M = (W,R,V) a model, w € W, and ¢ € ML({br), (gbr)),
we have:

Muw kg iff Mo (@)

Proof. A similar reasoning to the proof of Sabotage Logic can be done with the
following inductive hypothesis:

MEwk e iff (W,RV'), 0wk (¢)5

with B C NOM x NOM, and V"' is exactly as V except that for all (z,y) € B,
there are v,u € W such that V'(z) = v and V'(y) = . O

We finish with the case of Swap Logic. A different translation, for the local
case only, is given in [5]. As we did for Sabotage Logic, we use S € NOM x NOM
to represent the set of deleted edges, i.e., the edges that should not be possible
to traverse in a given updated model. Indeed, swapping a non-reflexive edge of
a model has the effect of deleting it, along with adding its inverse. This implies
that S~! is a set of edges that we can currently traverse.

To ensure this, the translation treats (sw) and (gsw) carefully. Three cases
should be taken into account. The first one is when a reflexive edge is swapped
either locally or globally. In this case, the translation continues with the set S
unchanged, but it ensures the presence of a reflexive edge: at the current state
for (sw) with |{n.0Qn; or anywhere in the model for (gsw) with E{n.0n.

The second case is when an irreflexive edge that has never been swapped
before is swapped. Here we need to ensure that the edge is present in the model,
that it is irreflexive, and that neither this edge nor its inverse is in S. We then
add the nominals that name it to S before moving on with the translation.



The last case is when we traverse an already swapped edge. That is, for some
xy € S, we traverse the edge referred to by the nominals yz. In this case, we do
not need to require the presence of any new edge in the model. We assume to
be standing at the state named by y and that the rest of the formula is satisfied
at z, but we remove zy from S and add yx. Why not just remove zy from the
set S since swapping some edge twice just makes it return to its configuration in
the original model? This is not always the case: if some edge and its symmetric
are both present in the initial model, the action of swapping one of them twice
is not supposed to restore its symmetric. yx is added to S to ensure that the
symmetric edge is no longer present.

Definition 8 (Swap to Hybrid Logic). Let S C NOM x NOM. We define the

translation () from formulas of ML({sw), (gsw)) to formulas of HL(E, |) as:
(P)s= P
(=¢)s = ~(¢)s
(P AP)s = (p)s A(¥)s
(O@)s = (In.O(—belongs(n, S) A (¢)5)) v isSat(S™1, (#)f)
((w)p)g = (Indn A (o))
L O(=mn A —belongs(n, S U S™H) A Lm.(¢) s nm)

n.

\é (y A ( )(S\zy)ny)

Eln.On A (¢)s)

k.E{n.O(—n A —belongs(n, S U S™) A m.k:(¢)s5mm)
\/ ( ) (S\zy)Uyz

yeS

(
v
v

where n, m and k are nominals that do not appear in S, belongs is defined as
in Definition 4, and

isSat(S, ) = \/ (z A yp).

zy€eS

The formula isSat(S, (¢)) says that the translation of ¢ is satisfiable at
the end of some of the edges belonging to S. Note that the translation maps
formulas of ML({sw)) to the less expressive HL(:,]), i.e., the E operator is not
required.

Theorem 9. For M = (W,R,V) a model, w € W and ¢ € ML({sw), (gsw))
we have:

Muw ke iff Mk (@),

Proof. Again, a similar reasoning to the proof of Sabotage Logic can be done
with the following inductive hypothesis:

Mgil , W ': ¥ it <W R7 V,>’w ': (90){9

with S € NOM x NOM, and V’ is exactly as V except that for all (z,y) € S,
there are v, u € W such that V'(z) = v and V'(y) = u. O

3.3 Decidable Fragments

Interesting decidable fragments of hybrid logics with binders have been found
over time. Such decidable fragments are convenient for our relation-changing



logics in the light of the (computable) translations presented in Section 3. First,
let us consider restricting the satisfiability problem over certain classes of mod-
els. The following logics are known to be decidable over the indicated classes:

- HL(E,|) over linear frames (i.e., irreflexive, transitive, and trichotomous
frames [21, 34], this includes (N, <)),

- HL(E,|) over models with a single, transitive tree relation [34],
- HL(E,|) over models with a single, S5, or complete relation [34],

- HL(:,]) over models with a single relation of bounded finite width [37];
as a corollary, also over finite models.

Since the translations preserve equivalence, we get:

Corollary 10. The satisfiability problem for all relation-changing modal logics
over linear, transitive trees, S5, and complete frames is decidable.

Corollary 11. The satisfiability problem for local sabotage and local swap logics
over models of bounded width is decidable.

Curiously, these results mean that relation-changing modal logics are decid-
able over certain classes of models, even if the modifications implied by evalu-
ating RC formulas yield models that do not belong to such class. For instance,
these two facts are simultaneously true: sabotage logic is decidable on the class
of S5 models, and deleting edges in an S5 model can yield a non-S5 model.

Now, let us turn to syntactical definitions of decidable fragments. We recall
that local sabotage and local swap can be translated to HL(:,]). Consider
formulas of HL(:,|) in negation normal form. HL(:,|) \ OJO is the fragment
obtained by removing formulas that contain a nesting of [, | and again [J. This
fragment is decidable [37].

Our translations use the | binder in many places, but we can make them a
little more economical in that sense, at the expense of losing succinctness.

Take the following case for ML((sb)):

(Op)s = In.O(—belongs(n, S) A ()%)-

Instead of using the down-arrow binder and later ensuring that we did not take
a deleted edge by using —belongs(n, S), we can do the following. For all pairs of
nominals (z,y) € S, the current state w satisfies one combination of the truth
values of the nominals x. Let X be the set of true nominals = at w. Then,
(¢)s should be true at some accessible state v that should not satisfy any of the
corresponding y nominals for all x € X.

Then, the translation becomes:

©Op)s= V. (Aaxn A-zro( A~y (@)s))

X Cfst(S) zeX ¢ X y€esnd(S,X)

where fst(S) = {z | (z,y) € S} and snd(S, X) ={y | (z,y) € S,z € X}.
In the case of ML({(sw)) we can do the same. For (sw), ¢ was translated as

(0@)s = (In.O(-belongs(n, S) A (¢)5)) v isSat(S™1, (#)%)-

10



Here the isSat(S™!, ()) disjunct does not use the | binder, while the first
disjunct is similar to the case of local sabotage, and can be replaced by:

(Op)s = Vi (A zA A=en0C A~y A(9)s)

X Cfst(S) zeX ¢ X y€esnd(S,X)
vV isSat(STL, (¢)%).

Let 4 be either (sb) or (sw) and B be either [sb] or [sw]. The following patterns
in RC formulas result in the shown patterns in the hybrid formula obtained by
the translations:

RC pattern | Produced pattern
O O
¢ J
| JOl

By considering these new versions of the translations, and by taking into
account the syntactic decidable fragment of HL(:,]) mentioned above, we can
establish the following result:

Corollary 12. The following fragments are decidable on the class of all rela-
tional models:

- ML((sb)) \ {mm WO, M mem}
- ML((sw)) \ {HE, B0, Om, mem}

where M is etther O or K.

3.4 Comparing Expressive Power

We have introduced translations for the six relation-changing modal logics from
Section 2 into hybrid logic. In some cases (for the local version of swap and
sabotage), the obtained formulas fall into the fragment HL(:,). On the other
hand, for encoding the rest of the logics we need also to use the universal
modality E. An interesting question is whether we can obtain translations from
hybrid to relation-changing logics, i.e., if some of the relation-changing logics
considered in this article are as expressive as some hybrid logic. Let us define
first, the expressive power comparisons we will use.

Definition 13 (£ < L'). We say that £ is at least as expressive as L (notation
L < L) if there is a function Tr between formulas of £ and £’ such that for
every model M and every formula ¢ of £ we have that

M p it M =L Tr(p).

M is seen as a model of £ on the left and as a model of £" on the right, and we
use in each case the appropriate semantic relation =, or =,/ as required.

L' is strictly more expressive than £ (£ < L") if £ < £’ but not £' < L.
Finally, we say that £ and £’ are incomparable if £ £ £ and L' £ L.

In [3, 5, 19, 6] we discussed the expressive power of relation-changing modal
logics by introducing their corresponding notions of bisimulations and using
them to compare the logics among each other. We concluded that they are all
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incomparable in expressive power." As a consequence, we conclude that it is not
possible that two of them capture the same fragment of hybrid logic. In fact, we
will prove that all the relation-changing logics considered here are strictly less
expressive than the corresponding hybrid logic in which they are translated.

Theorem 14. Let 4, € {{(sb), (sw)}, we have ML(¥1) < HL(:,]). For 45 €
{{gsb), (gsw), (br}, (gbr)}, we have ML(#3) < HL(E,]).

Proof. For any of the logics mentioned above, we have translations into the
corresponding hybrid logic. Now we need to prove that these translations do
not cover their entire target language (modulo equivalence). In order to do
that, we provide bisimilar models for relation-changing modal logics which can
be distinguished by some hybrid formula. In Figure 1, we show two pairs of
models already introduced in [6] that cover all possibilities of bisimilarity.

’ M, w ‘ M w' ‘ Bisimilar for ‘
ML({sw))
Q G Y| ML((br))
w w " ML((gsw))
ML((gbr))

o—> 0

. l || M

Figure 1: Bisimilar models

The two models in the first row can be distinguished by the formula |n.On,
which establishes that the only successor of the evaluation point is itself. This
formula is true at M, w and false at M’ w’. Models in the second row can be
distinguished by the formula [n.Qlm.n:0Om, which says that from the evalua-
tion point it is possible to arrive to the same state in one or two steps. This is
true at M, w but false at M’ w’. O

Notice that both hybrid formulas we introduced above belong to the frag-
ment HL(:, ), i.e., it was not necessary to use the E operator. This means that
even though we use E in some of the translations (and we strongly believe that
it is essential for some encodings) there are fragments of HL(:,]) that cannot
be captured by relation-changing modal logics.

4 Undecidability of Relation-Changing Logics

As we mentioned, we will prove that the satisfiability problem of the relation-
changing logics introduced are undecidable by reductions from memory logics.

IExcept for the local and global swap operators, which is still open in one direction.
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4.1 Memory Logic

Memory logics [1, 32] are modal logics that can store the current state of evalua-
tion into a memory and check whether the current state belongs to this memory.
Its syntax and semantics are extensions of the syntax and semantics of the ba-
sic modal logic ML. The memory is a subset of the domain of the model.
ML(®,®) is the memory logic that extends ML with the operators @) and
&), which stand for “remember” and “known”, respectively.

Definition 15 (Syntax). Let PROP be a countable, infinite set of propositional
symbols. The set FORM of formulas over PROP is defined as:

FORM :=p|® [ ~¢ | o A | Op | @,

where p € PROP and ¢,9¥ € FORM. Other Boolean and modal operators are
defined as usual.

Definition 16 (Semantics). A model M = (W, R,V,S) is a relational model
equipped with a set S C W called the memory. Let w be a state in W. The
inductive definition of satisfiability for the cases specific to memory logic is:

(W,R,V,S),w =@y ifft (WRV,SU{w}),w¢
W,R,V,S)w=® iff wes.

The remaining cases coincide with the semantics of ML, and do not involve the
memory.

An ML(®), ®)-formula ¢ is satisfiable if there are a model M = (W, R, V., ()
and w € W such that M, w = ¢. The empty initial memory ensures that no
state of the model satisfies the unary predicate &) unless a formula (@)1 has
previously been evaluated there.

We will show that relation-changing operators simulate the remember and
known operators. However, there is one subtle difference between the () oper-
ator and relation-changing operators like (sb). While evaluating (sb)e always
results in a change in the model, )¢ can leave the memory unchanged if the
current state of evaluation is already memorized. We can ignore this difference
by observing that any ML(®), ®)-formula can be rewritten into an equivalent
formula where every occurrence of () is “proper,” in the sense that it actually
modifies the memory.

Definition 17 (PNF). An ML(®),®)-formula ¢ is in proper normal form
(PNF) if every occurrence of the () operator in ¢ occurs as (~®A@Y)V(®AY).

In the next section we assume that memory logic formulas are always in
PNF. This is important for structural inductive proofs.
Finally, we define the notion of modal depth of an ML(Q®), ®)-formula.

Definition 18. Given ¢ in ML(@®),®), we define the modal depth of ¢ (nota-
tion md(p)) as

md(®) = 0

md(p) = 0 for p € PROP
md(@®¢) = md(p)

md(—¢) = md(p)
md(w\wg = maz{md(p), md(s)}

= 14+ md(y).
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Multimodal memory logic is shown to be undecidable in [9]. We strengthen
this result, showing that undecidability holds also in the monomodal case. We
adapt the encoding of [31]: the N x N-tiling problem (i.e., the problem of tiling
the plane given a set of tile types [40]) is encoded into ML(®), ®).

We define an ML(®), ®)-formula that is satisfiable only in models with a
spy state s (i.e., a state that has direct access to all other states in the model),
where the formula is evaluated, and grid states that will be used for the tiling.
We show below the intended shape of the model, where the following notation is
used: the symbols 0, 1, 2, r and w all represent grid states, all shown edges are
symmetric, and the spy state is connected to all grid states (i.e., not all edges
from spy to grid are drawn).

2-r—1-7-0

1-7r-0-7r-2 thegrid

thespypointo/of767277&71

Let us enumerate the conjuncts of the formula that encodes a given instance
of the tiling problem. The first conjunct specifies that the spy state and all
its successors in one steps are irreflexive. The second enforces symmetry of
outgoing edges from all the successors of the spy state:

1. ®0-® A OO0-®
2. DOOO®

The following conjunct ensures the spy state see every grid state:

3. DO0O0® A ©Od(-® — 0®)
More formally, we have the following lemma:

Lemma 19. Let M = (W, R,V,0) be a model and w € W, such that M,w =
O0@O0® A @UO(-® — O®) Then every state accessible in two steps from
w 1s also accessible in a single step.

Proof. Since M,w = OO@OO® holds, for every state v accessible in two
steps from w, for all w € W, if (v,u) € R then (u,v) € R. Moreover, since
M,w E ©OO(-® — 0®), for every state v accessible in two steps from w,
we have (v,w) € R. This implies that for every state v accessible in two steps
from w, (w,v) € R. O

We now combine a single symmetric relation with propositional symbols
to encode the relations R,, and R,;4n¢ in the grid. We use the propositional
symbols 0, 1, 2, u, and r, and the notations %, s(i) and p(i), with i € {0, 1, 2};
s(#) = (i+ 1) mod 3; and p(i) = (i + 2) mod 3. More precisely, given a model
M = (W,R,V,S), we define the relations R,,;, and R,;gn: as follows:
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wp = {(@,y) | 3 € {0,1,2}, M,z = i, M,y |= s(i),32z € WM,z =
{( 2),(z,9)} € R}

® Rright = {(z,y) | 3 € {0, 1,2}, M,z = i, M,y |= p(i),32 € WM,z |=
r{(z,2), (z,9)} € R}

We ensure that exactly one of the propositional symbols used to define these
relations holds at every state of the grid. Given some set P C PROP, we use
the notation one(P) = \/ (p A A —q) to define:

pEP a€P\{p}
4. O(one({0,1,2,u,r})

We now specify that every grid state has a successor through the relations
Ryp and Rpigne:

5. A O(i — O(uns(i)))

i€{0,1,2}

6. A O(i = OrAOp(i))

i€{0,1,2}
The relation R,, and its inverse are functional:

7. N O@() = ©0w— 036 — 0w —0(s¢) = ®)))))

i€{0,1,2}

8 A 06— @O —0(s(i) = Ou— 030 = ®)))))

i€{0,1,2}

The relation R,;4n¢ and its inverse are functional:

9. A D) —» 0 = 0@ = 0@ = Op() - ®)))))

i€{0,1,2}

10. A O@— @00 — Op@) — O = 030 = ©)))))

i€{0,1,2}

They are also confluent:
1. {/\ }D(s(i) — @©0(u — 0> — O(r — O(p(i)
- = O(uAO(i A O(r A Os(i) A®))))))

Let T = {t1,...,tx} C PROP a set of propositional symbols representing
tile types. We write right(,,) for the set of tiles types that can be placed to the
right of some tile type t,, and top(t,) the set of tile types that can be placed
above it.

At every state of the grid, one and only one tile holds, and tiles must match:

12. A 0OG — one(T))

i€{0,1,2}

13. A O@ At, — O(u — O(s(i) = Vtop(tn))))

i€{0,1,2},1<n<k

14. A O@G At, — O@ — O(p(i) — Vright(t,))))

i€{0,1,2},1<n<k

We finish by setting the spy state apart and initializing the grid:
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15. =0A—-1A-2A-uA-1AO0

Lemma 20. Given a tiling problem T =ty .. .tg, let Grid(T) be the conjunction
of formulas (1)-(15) above. T tiles the N x N-grid if and only if Grid(T) is
satisfiable.

Theorem 21. The satisfiability problem of ML(®),®) is undecidable.

4.2 Mapping Memory Logic into Relation-Changing Log-
ics

We now present satisfiability-preserving translations from ML((@), ®) to relation-
changing modal logics. Combining these translations with the undecidability
result of Theorem 21, we can claim:

Theorem 22. The satisfiability problem of ML(#) is undecidable, for ¢ €
{(sb), (br), (sw), (gsb), (gbr), (gsw)}.

The main idea of these translations is to simulate the behavior of ML(@®), ®)
without having an external memory in the model. We simulate the ability to
store states in a memory by changing the accessibility relation of a model.
Checking for membership in the memory is simulated by checking for changes
in the accessibility relation.

Every translation 74 from ML(Q®),®)-formulas to ML(#)-formulas pro-
ceeds in two steps. For a given target logic, the translation includes a fixed part
called Structy, that enforces constraints on the structure of the model. The sec-
ond part, called Try, is defined inductively on ML(®), ®)-formulas, and uses
the structure provided by Structe to simulate the @) and &) operators.

4.2.1 Sabotage Logic

Local Sabotage. In the translation to local sabotage logic, the Struct ) sub-
formula should ensure that every state of the model can be memorized using the
expressivity of (sb). This operator changes the point of evaluation after deleting
an edge. To compensate for this, the Struct, formula guarantees that every
state has an edge that is deleted when the state is memorized, and a second edge
back to the original state to ensure that evaluation can continue at the correct
state. We use a spy point s to ensure this structure. The idea is illustrated in
the following image.

[}
o> -

ETI
N\

We need to ensure that every satisfiable formula of ML(@®), ®) is translated
into a satisfiable formula (and vice-versa, if the translated formula is satisfiable,
then the original formula is satisfiable, too). The image above shows an intended
model for the translated formula 7 (). Intuitively, bold edges and arrows
correspond to the model of . The complete translation is given in Definition 23.
Here we discuss in detail how it works.

@)
S
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Struct sy adds a spy state with symmetric edges between itself and all other
states. In particular, (1) in Definition 23 ensures that the evaluation state satis-
fies s and that it is irreflexive, and (2) guarantees that its immediate successors
reach a state where s holds. Formulas (3) and (4) ensure that this state is the
original s state. They work together as follows: (3) makes (JOs true in any
s-state reachable in two steps, and by deleting the traversed edges we avoid a
cycle of size two between this s-state and an immediate successor of the evalu-
ation state, distinguishing the original s-state from any other s-state reachable
in two steps. (4) then traverses one edge, deletes the next one, and reaches a
state where s implies ¢[J—s. This contradicts (3), unless we have arrived in the
original s state. Formulas (5), (6) and (7) mimic (2), (3) and (4), but for edges
which are removed twice. Observe that (6) now avoids a cycle of size three
between any other s-state reachable in two steps and an immediate successor
of the evaluation state. Finally, (8) and (9) ensure that the evaluation state is
indeed a spy state, i.e., that it is linked to every other state of the input model.

Tr sy starts by placing the translation ()’ of ¢ in a successor of the evaluation
state. Boolean cases are obvious. For the diamond case, {1 is satisfied if there
is a successor v where 1 holds, but we must ensure that v is not the spy state.
For (@®v)’, we do a round-trip of sabotaging from the current state to the spy
state. Note that after reaching the spy state an edge does come back to the
same state where it came from, since the only accessible state where —{s holds
is the one we are memorizing. For (®)’, we check whether there is an edge
pointing to some s-state.

Definition 23. Define (s () = Struct gy A Trspy (@), where:

Structspy= s A-s
A OOs
A [sb][sb](s — O¢s)
A Olsb](s = ¢0O-s)
A OO(=s — 0s)
A Olsb](s—[sb](O-s—00(s—00s)))
A Osb](s—O(0-s—=00(s—00=s)))
A O0OO(s — O0s)
A OO[sb](s — 00O-s)

AN AN AN N N N N S
© 00 ~J O U b W N~
— N N N —

(p)' = p for p € PROP appearing in ¢
(®)' = —0s

() = =)

(WAx) = @) AK)

Q) = O=sA(¥))

(@F) = (sb)(s A {sb)(=0s A (1))

Proposition 24. If (W,R,V),w = Structy. Let W™ the connected compo-
nent of W from state w. Then for every state v € W¥\ {w}, there exists exactly
one state v’ such that (v,v'), (v',v) € R and v’ € V (s).

Lemma 25. Let ¢ be an ML(®), ®)-formula in PNF that does not contain the
propositional symbol s. Then, ¢ is satisfiable iff sy () is satisfiable.
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Proof. (<) Suppose (W, R,V),s |= 7y (p). Let W' = W\V(s), " = RN
(W' x W') and V'(p) = V(p) "W’ for all p € PROP. By definition of Tr g
there is w’ € W’ such that (s,w’) € R and (W, R, V), w' = (¢)’.

Now, let 1 be a sub-formula of ¢, v € W', .S C W' and Rg = R\{(v, ), (s,v) |
v € S}. We prove by structural induction on ¢ that (W' R, V' S) v |E
¥ if, and only if, (W,Rg,V),v = (¥). In particular, this will prove that
(W R, V' 0y, w" = ¢ if, and only if, (W, R, V), w' = (p)’.

We prove the case for &). Suppose (W', R, V', S),v E ®. By definition of
E, v € S, but then (v,s),(s,v) € Rg by definition of Rg, so by construction
(W,Rg,V),v = —=0s. Hence, (W, Rg,V),v = (®)'.

The propositional, Boolean and modal cases are trivial. For v = &), we
should prove that (W', R, V', S),v E ® if, and only if, (W, Rg,V),v | —0s.
However this is immediate by definition of S and Rg and Proposition 24.

For the last case, consider ¢y = =& A @©x (remember that formulas are in
PNP), so we should prove that (W', R'. V' S), v E -® A @x if, and only if,
(W, Rg,V),v = OsA(sb)(sA(sb)(=0sA(x)’. Again, the equivalence is immediate
by Proposition 24.

(=) Suppose (W, R, V,0),w = ¢. We build a model for 7 () by adding
the necessary parts to this model, that are, the spy state and the round-trip
paths. Define (W', R', V') as follows. Let s ¢ W some state, W' = W U {s},
R = RU{(z,s),(s,z) | x € W}, V'(s) = {s} and V'(p) = V(p) for p €
PROP \ {s}. By construction, (W', R',V’),s = Struct ), so Proposition 24
holds. We prove that for all ¢ sub-formula of p, v € W, S C W and Ry =
R\{(z,s),(s,z) | x € S}, W,R,V,S),v =9 ifft (W' R,,V'),v = (¢). This
can be done by structural induction on v using Proposition 24. This proves that
(W,R,V,0),w |= ¢ iff (W', R, V'), s = 7(sp) (), 50 T(sp) () is satisfiable. O

Global Sabotage. In [29] it is shown that multimodal sabotage logic is un-
decidable via a reduction of the Post Correspondence Problem. The present
proof extends this result to the monomodal case via a reduction of the satisfia-
bility problem of the memory logic ML(®),®)?. The notation [’y is defined
as 0% = ¢ and (" 1y = OO .

One piece of data needed to build 7 (¢) is the modal depth of the input
formula (md(y)). Up to the depth indicated by this value, Struct g (¢) adds
to every state a transition to some state where s holds (In fact, this latter state
can be shared among several states of the input model.) It is as if each state
of the input model had a flag that could be turned on to identify the state.
Thus, remembering some state is simulated with Tr g, (@) by deleting the
edge between the state and its s-successor. For Tr e (®), we check whether
the current state has an s-successor. The idea is illustrated in the following
image.

2The same translation and proof can be adapted to show that locSML [15] is undecidable.
One only needs to change the (gsb) operator into the operator of locSML in Definition 26.
This dynamic operator is similar to the global sabotage one, except that it can only delete
edges that start at the evaluation state.
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Definition 26. Define 7(gq) (@) = Struct gepy (©) A Trgeny (), where:

Struct gy () = —sA N\ O(=s — (Os A (gsb)=0s))

0<i<md(e)
Tr(gsp) (D) = p for p € PROP appearing in ¢
Tr(gsb) (®) = Qs
Tr(gsby (—¢) = Trigsn) ()
Tr(gsb) (¢ A X) = Tr(gsb) (W A Tr(gsb) (X)
Tr{gsb) (07/]) - <>(_'5 A Tr{gsb) (1/1))
Tr(gsb) (@1/)) = <g5b> (_'<>S A Tr(gsb) (w))

Proposition 27. Let dist(a,b) the minimal number of R-steps to reach some
state b from some state a. Let ¢ some memory logic formula. If (W, R, V), w =
Struct gsp) (@), then for all x € W such that dist(w,z) < md(p), = has a
successor where s holds.

Proposition 28. If (W, R, V), w = Os A (gsb)—0s, then w has one and only
one successor where s holds.

Lemma 29. Let ¢ be an ML(@®), ®)-formula in PNF that does not contain the
propositional symbol s. Then, ¢ is satisfiable iff T(gsp) (@) is satisfiable.

Proof. (<) Suppose (W, R,V),w |= T(gepy (). Let W' = W\V(s), R' = RN
(W' x W), and V'(p) = V(p) N W' for p € PROP \ {s}. We should prove that
for all ¢ sub-formula of ¢ of modal depth md(¢)) < md(p) — dist(w,v), v € W’
accessible from w within md(y) steps, S C W', and Rs = R\ {(z,y) | |z €
S,y € V(s)}, then (W', R, V', S),v = iff (W, Rs,V),v = Trigen) (¥).

The proof is by structural induction on . The non-memory cases are easy.
For the &) case, we should show that (W', R, V' S), v E ® iff (W, Rgs,V),v |E
—{s, this is immediate by Proposition 27 and the definitions of S and Rg.

Then for the remaining case, we have to show that (W', R', V', S),v E -®A
O iff (W, Rs, V), v = Os A (gsb)(=0s A Trgspy (X))-

This is done by the following series of equivalences:

<W/’ R/’ V/7 S>7,U ': _|® /\ @X

I= v Sand (W R V' S),vE @®©x

I= v Sand (W, R, V', SU{u}, vk x

& v g S and (W, Rs \ {(v,9) | y € V(5)}. V), = Trigen (x)

5 w¢Sand (W, Rs\{(v,y) |y € V(s)},V),v b= =05 A Trigen) (1)

Proposition 28
<~

<W7 Rs, V>7 v ): Os A <g5b>(_‘<>5 A Tr(gsb) (X))

(=) Suppose (W, R,V,0),w = ¢. Let s ¢ W. Define (W', R, V'), where
W' =WU{s}, R = RU{(v,s) |[ve W}, V'(s) ={s},and V'(p) = V(p), forp €
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PROP appearing in . It is easy to check that (W', R', V'), w |= Struct ge) (),
hence Proposition 27 holds. Then, let us prove that for all 1) sub-formula of ¢
of modal depth md(¢)) < md(y¢) — dist(w,v), v € W accessible from w within
md(p) steps, S C W and Ry = R’ \ {(z,s) | = € S}, we have the equivalence
(W,R,V,S),v =9 iff (W, Rg, V'), v = Trigey (). This is done by structural
induction on 1. For the case @ the equivalence is immediate, and for the case
=& A @y, Proposition 28 provides the equivalence needed. O

4.2.2 Bridge Logic

Local Bridge. For local bridge logic, we use a spy state that is initially dis-
connected from the input model. When some state should be memorized, the
spy state gets connected (in both directions) to it. This construction is quite
special since we do not have pre-built gadgets in the input model, as they get
built on demand.

Let us first show the following result, that enables us to force the evaluation
state to be the only one in the model to satisfy s:

Lemma 30. Let ¢ = s AOL A [br](s—[br]=s). If M,w = ¢, then w is the only
state in the model M where s holds.

Proof. First, w obviously satisfies s and does not have any successor. Now,
we have M,w [ [br](s—[br]=s). In particular this means that M}  jw =
s—[br]=s, hence M} w k= [br]=s. Since in M, the state w is only connected
to itself, this means that for all v # w, we have M}, ., v = —s, this also means

that M, v & s for all v # w. O

For Bridge Logics, Struct,, adds to the input model a spy state in which
s holds. By Lemma 30, (1) in Definition 31 ensures that the evaluation state
has no successor and that it is the only state in the model where s holds. And
(2) ensures that there are no edges from —s-states (anywhere in the model)
to the spy state. The idea is illustrated in the following image, , where ¢ is a
propositional symbol used in Tr, (¢) and dotted lines represent edges created
with the (br) operator.

w O

Definition 31. Define 7, (¢) = Struct iy A Trpn (¢), where:

Structpry= s AOL A [br](s—[br]=s) (1)
A [br](=s — O=s) (2)

Tripey (0) = (br)(ms At A (br)(=s A=t A (9)")), with:

(p) = p for p € PROP appearing in ¢
(®) = Qs

() = =)

(WAx) = @) AK)

(O¥) = O(=sA—tA(¥))

(©y) = (br)(sA(br)(=s A Qs A (¥)))
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Trpry () first creates two edges until a —s-state, where the translation of ¢
holds. For Tr,y (@) we do a round-trip of bridging from the current state to
the spy state. Note that the second part of this round-trip has to be from the
spy state to the remembered state, since it is the only way to satisfy (br)(0s).
Also note that this would not work if the s state was directly connected to the
input model; this is why we use the intermediate ¢-state. For Tr .y (®) we check
whether there is an edge to a state where s holds.

Proposition 32. Let (W,R,V) a model such that there is a unique state s
where s holds, there is no state x € W such that (x,s) € R, and there is a
component C C W such that s ¢ C and for ally € C, (s,y) ¢ C. Let S C C
and Rg = RU{(z,s),(s,x) | z € S}.

Then in the model (W, Rg,V), evaluating the formula (br)(s A (br)0s) at
some state y € C'\ S, changes the evaluation state to s, then again to the same
state y, adding the edges (y,s) and (s,y) to the relation.

Lemma 33. Let ¢ be an ML(®, ®)-formula in PNF that does not contain the
propositional symbols s and t. Then, o is satisfiable iff Ty () is satisfiable.

Proof. (<) Suppose (W, R,V),s |= T (¢). Define M" = (W', R',V',0) with
W' = W\ V(s)\V(t), R = RN (W' x W), and V'(p) = V(p) N W' for all
p € PROP. By definition of Tryy there is w’ € W’ such that s # w’ and
(W RV, E (o).

Let ¢ a sub-formula of ¢, v € W/, S C W' and Rg = RU{(z,s), (z,v) |z €
S}, then we will We will prove that (W', R, V' S),v | ¢ if, and only if,
<I/V7R57V>7U ): (w)/

We prove it by structural induction on . For the =& A @)x case, suppose
(W' R, V' S),v E-®AQ®YX. By definition, this is equivalent to (W', R', V', SU
{v}),v E x with v ¢ S, Then, by definition of Rg and inductive hypothesis we
get (W, (RS)?(U,S),(S,U)}7V>’S E (x), with (v,s) ¢ Rg and (s,v) ¢ Rs. By
Proposition 32, this is equivalent to (W, Rg,V),v = =0s A (br)(s A (br)(Os A
(x)")). thus we have (W, Rg,V),v = (-® A ©x)’.

(=) Suppose (W, R,V,0),w = ¢. Let s,t ¢ W. Define M' = (W' R, V')
such that W/ = W U {s,t}, V'(s) = {s}, V'(t) = {t} and V'(p) = V(p) for
p € PROP appearing in ¢. We can easily check that (W', R, V"), s = Struct y,
and we can also check by structural induction on ¢ that (W, R, V,S), w |= ¢ iff
(W', Rs, V'), s = Tripy (@), where Rg = RU{(v, ), (s,v) | v € S}. O

Global Bridge. The global bridge operator is able to add edges in the model.
This is why, to mark some state, we use this operator to add an edge to some
s-state. Then, we enforce that the initial model does not have any reachable
state where s holds.

In this case Struct gy (¢) ensures that no state of the input model has s-
successors. Storing a state in the memory is simulated by creating an edge to an
s-state, and checking whether the current state of evaluation is in the memory
is simulated by checking the presence of an s-successor. Observe that we could
have either one state where s holds or (possibly) different s-states for each state
of the input model.
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Definition 34. Define gy (¢) = Struct gpn (¢) A Trigur (¢), where:

Struct gpn (¢) = A Oi-s
0<i<md(p)+1
Tr (gbry (P) = p for p € PROP appearing in ¢
Tr (gbry (®) = Os
Tr<gbr> (_‘1/1) = _'Tr(gbr) (7/})
Tr<gbr> (’l/J N X) = Tr(gbr) (W A Tr(gbr) (X)
Tr<gbr> (Ow) = <>(_‘S A Tr{gbr) (’L/)))
Tr<gbr> (®¢) = <gbr> (OS A Tr(gbr) (¢))

Lemma 35. Let ¢ be an ML(®), ®)-formula in PNF that does not contain the
propositional symbol s. Then, ¢ is satisfiable iff Tgpr () is satisfiable.

Proof. Tt is an easier version of the proof of Lemma 29, by observing that we
are creating edges to a (possibly more than one) s-state instead of deleting
them. O

4.2.3 Swap Logic

Local Swap. We introduce a new version of the translation given in [5] that
uses only one propositional symbol. The idea is that we have each state pointing
to some states called switch states, and memorizing a state is represented by
swapping such edges. Then, no edge pointing to a switch means that the state
has been memorized. We use the notation 0™ for A .
1<i<n

In this case Struct,y adds “switch states”, which are in one-to-one corre-
spondence with the states of the input model, together with a spy state. By (2)
in Definition 36, each —s-state at one, two and three steps from the evaluation
state, has a unique dead-end successor where s holds (switch state). By (3)
and (4), switch states (corresponding to states at distance 1, 2 and 3) can be
reached from the evaluation state by a unique path. (5) makes the evaluation
state a spy state. All these conjuncts together ensure that switch states are
independent one from another. The idea is illustrated in the following image.
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Definition 36. Define 75, = Struct o) A Trsw) (@), where:

Struct sy =
s AO=s (1)
A OB (=5 — Uniq) (2)
A Ofswl(s — 0O00(s — O1) (3)
A OOfsw](s - 0O00(s — O1) (4)
A [sw]lsw](os—{sw)(5 A O((T=8)00(s A 0=05))))  (5)

Unig = O(s AOL) A [sw](s — O-0s)

Triswy () = O(¢)’, with:
(p) = p for p € PROP appearing in ¢
(®)' = Qs
() = =)
WAX) = @) AX)
O) = O(=sA(¥))
(@v) = (sw)(sAO(¥))

For Trg,) (@®¢) we traverse and swap the edge between the current state
and its switch state, and come back to the same state. For Tr,)(®), we check
whether the current state has not an edge to its switch state.

Proposition 37. Let (W, R,V),s |= Structs,y. Let W* the connected compo-
nent of W from state w. Let W' = W™\ V(s) and S CW'. Then T = {(v,v) |
veESAWV)eRANV €V(s)} is a bijection.

Lemma 38. Let ¢ be an ML(@®), ®)-formula in PNF that does not contain the
propositional symbol s. Then, ¢ is satisfiable iff T (@) is satisfiable.

Proof. (<) From a pointed model (W, R, V), w of T,y (@) we can extract a
pointed model (W', R/, V' 0), w’ satisfying ¢ following the same definition as in
the proof of Lemma 25.

For all ¢ sub-formula of ¢, v € W/, S C W', T = {(v',v) |[v € SA (v,) €
RAvV' € V(s)} and Rg = (R\T~1)UT, we will prove that (W', R', V', S),v = ¢
if, and only if, (W, Rs,V),v = (¢)".

We do it by structural induction on ¥. We prove the ~& A @) x case. Suppose
(W R, V' S),v = -® A ®©x. Then by definition, v ¢ S and (W', R, V', S U
{v}),v E X, and by Proposition 37, we have (v,v’) € Rg for a unique v’ € V(s).
Then, by definition of Rg and inductive hypothesis we get (W, (Rg)%.,,V),v E

v'vr

(x)". By definition of = and by Proposition 37, (W, (Rs)%.,, V), v = sAO(x),
and again, (W, Rg,V),v = 0s A (sw)(s A O(x)’), thus we have, equivalently,
(W, Rg, V), v = (~® A ©X)".

(=) Suppose (W, R, V, (), w = ¢. Let sw be a bijective function between W
and a set U such that UNW = 0, and s ¢ UUW. Define M’ = (W', R', V') such
that W =W U{s}UU, R = RU{(s,w) | w € W} U {(w, sw(w)) | w e W},
V'(s) = {s} UU, and V'(p) = V(p) for p € PROP appearing in . It is
easy to check that (W', R', V'), s |= Struct sy, in particular, Proposition 37 is
relevant. Then, we can easily prove that for all ¥ sub-formula of ¢, v € W,
S C W, T = {(sw),v) | v € S}and Ry = (R\T~') UT, we have the
equivalence (W,R,V,S),v = ¢ iff (W', Ry, V'),v = (). This is done by
structural induction on . O
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Global Swap. The global swap operator is able to change the direction of
some edge in the model. In particular, we are interested in the ability to swap,
for some state, an incoming edge (undetectable for the basic modal logic) into an
outgoing edge. This is why this translation is similar to the one of global bridge
logic. Initially, the model does not have any reachable state where s holds. As
for global sabotage and global bridge, there may be many states where s holds
in the model with edges to states of the input model. The idea is illustrated in
the following image, where only one s state is shown.

T
/‘\

T Seo> -
P

Definition 39. Define 7(gqy) () = Struct gow) () A Trigsw) (@), where:

Struct gew) (©) = A Os

0<i<md(@)+1

Tr (gsw) (D) = p for p € PROP appearing in ¢

Trgsw) (®) = 0s

Tr(gsw) (_‘1/)) = _‘Tr(gsw> (¢)

Tr(gsw) (ﬂf A X) - Tr(gsw) W) A Tr(gsw} (X)

Tr(gsw) (01/)) = <>(_'S A Tr(gsw) (w))

Tr(gSW) (@1@ = <g5W>(<>S A Tr(gSw) (w))

Proposition 40. Let (W, R, V), w = =0sA{(gsw)Os. Then, by the semantics of
the global swap operator, there exists a state v € W \ {w} such that (v,w) € R
and v € V(s).

Lemma 41. Let ¢ be an ML(®, ®)-formula in PNF that does not contain the
propositional symbol s. Then, ¢ is satisfiable iff Tgswy () is satisfiable.

Proof. 1t is an adaptation of the proof of Lemma 35, using Proposition 40. [

5 Implementation and Examples

In Section 3 we have shown translations from relation-changing logics into hybrid
logics. We mentioned that this provided us a way to reuse existing hybrid logic
theorem provers to check for satisfiability of relation-changing logics.

We implemented these translations into the tableaux-based theorem prover
HTab [27]. Its version 1.7.1 can be downloaded from http://hub.darcs.net/
gh/htab along with example formulas.

When HTab gets a relation-changing formula as input, it first translates it
to the corresponding HL(E,|) formula (or more precisely, HL(:,]) formula in
the case of Local Sabotage and Local Swap), and then runs its internal hybrid
tableaux calculus on the translation.

For all three translations, the implementation has the following particular
case to avoid introducing unnecessary nominals:

(Op)p = O()y
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Since the translations are equivalence-preserving, the models built by HTab
satisfy the input relation-changing formula. Two illustrative examples are shown
in Figure 2.

Input ML((sb))-formula:
O(p A =g A OOp)
A Qg A=p A QOOg)
A [sb](p — OO-p)
A [sb](g — O0O—q)

Translated hybrid formula:
O(p A =g A OOP)
A Olg A =p A OOq)
A dng.OWn1.(—p V Ine.O((n1 Anaing) V Ing.0O((ng Anzing) V —p))))
A dng.OWn1.(—q V Ine.O((n1 A naing) V Ing.O((n1 Angng) V —q))))

@

2

Model found by HTab: Q? @

Input ML((gsb))-formula:
O(p A =g A OOP)
A Qg A =p AOO)
A O0@ AO-r)
A (gsb)OIOOL
Translated hybrid formula:
Op A =g A OOP)
A Qg A =p AOOq)
A OO(r AO-r)
A dng.Elng.O(Una.ng:(Ins.0((n2 A ng:ng) V Ing.O((n2 A nging)
V ¢n5D((n2 A TL5TL1))))))

o T o—@
Model found by HTab: 0 \@/ 3
2

4

Figure 2: Examples of models built by HTab from relation-changing formulas

This implementation is useful to test the correctness of the translations
in particular cases, just by checking the satisfiable/unsatisfiable output of the
prover for known formulas. It is also useful for checking that models are built
in the expected way, such as non-tree or diamond-shaped models.

Since the translation uses the | binder, HTab may never terminate on some
specific relation-changing formulas. Even in terminating cases, the size of the
translated formula (in particular for Swap Logic) leads to long running times.
In many cases modifying the default heuristics used by HTab result in time
improvements. A detailed empirical evaluation is left as future research.
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6 Conclusions

In this article, we considered the satisfiability problem of six logics we named
relation-changing logics. We considered three kinds of dynamic updates to the
accessibility relation in a model: deleting, adding, and swapping edges, that
can be performed either globally (anywhere in the model) or locally (modifying
adjacent edges from the evaluation point).

We first introduced equivalence-preserving translations from each of these
logics to a very expressive hybrid logic. Indeed, hybrid logic has operators to
rename states in a model. We use the down-arrow operator | to name pairs of
states that represent modified states. In this way, we keep track of the evolution
of a model. It is known that the hybrid logic HL(E,|) has the same expres-
sive power as first-order logic, and we introduced standard translations from
relation-changing logics to first-order logic in [6]. The advantage of translating
to HL(E,]) is that we easily obtain an implementation for relation-changing
modal logics, by extending the hybrid logic theorem prover HTab [27]. Satis-
fiability checking and model building can thus be automated and were useful
to empirically verify our translations on concrete cases. Of course, this could
have also been achieved using automated provers for first-order logic, but at
least in the case of classical logics, it has been noted in the literature that non-
optimized translations of modal formulas into first-order logic lead to very poor
performance (see, e.g., [28, 10] for details).

In the second half of this article, we showed that all six relation-changing
logics are undecidable. We first showed that monomodal memory logic was
undecidable, by reduction of a grid tiling problem. We then reduced satisfiability
of memory logic to satisfiability of each one of the relation-changing logics we
introduced.

We studied six relation-changing modal logics with the goal of covering a suf-
ficiently varied sample of alternatives. Clearly, other operators could have been
included in this exploration, and actually some alternative choices have been in-
vestigated in the literature, e.g., the adjacent sabotage operator discussed in [33].
The corresponding logic is denoted locSML in [15]. The undecidability proof of
global sabotage in the present work can be easily adapted for locSML, since the
dynamic operator of locSML does not change the evaluation state either. This
shows that locSML is undecidable, answering an open question in [15]. In fact,
we can also define locBr and locSw, i.e. adjacent bridge and swap logic respec-
tively, and adapt the other global proofs to prove their undecidability. While we
still need ad hoc proofs for each operator, unlike the results introduced in [6],
these proofs are similar enough to easily get more evidence about the complex
behaviour of this family of logics.

There are still many interesting questions to be answered. A natural di-
rection to explore is the decidability status of the finite satisfiability problem,
and more generally, finding interesting decidable fragments. Also, the hybrid
perspective we present in this article provides a new way to think of the relation-
changing framework. In particular, it would be interesting to use hybridization
techniques (a standard technique in modal logic [16]) to find complete axiomati-
zations for these logics, or investigate the status of their interpolation theorem.
On the other hand, it is possible to obtain decidable languages by defining oper-
ators which are specific for certain purposes. For instance, the relation-changing
operators from [20], designed to model introspection steps in dynamic epistemic
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logic, are decidable by reduction into Propositional Dynamic Logic, and can be
seen as restricted versions of bridge and sabotage operators.
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