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The performance of a-Si:H devices is highly sensitive to the
density of gap states: tail states are distributed in two
exponentials and defect states are generated by dangling bonds
(DB). The density of DB in a-Si:H can be evaluated with the
defect pool model (DPM). Charge trapping and recombination
of electron–hole pairs through tail states are described by the
Shockley–Read–Hall (SRH) formalism while defect states
behave as amphoteric. Equations derived with the SRH
formalism can be simplified with the Simmons–Taylor’s
approximation (STA), especially with the “0K” approximation
(0KSTA). Amphoteric-like defect states were approximated by

donor- and acceptor-like decoupled states (DSA). The accuracy
of STA was tested in a-Si:H based devices when the density of
DB is evaluated with the DPM for different illumination
conditions, voltages, temperatures, and some key electrical
parameters. Our code was modified to include both the STA and
the DSA. Our results indicate that the STA is very accurate
under illuminated conditions. Under dark conditions, the STA
is acceptable for forward voltages but overestimates the dark
current at reverse voltages. The 0KSTA can be used under
illuminated conditions for any applied voltage and under dark
conditions for forward voltages.

� 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

1 Introduction The performance of hydrogenated
amorphous silicon (a-Si:H) based electronic devices is
highly dependent on the density of states present in the band
gap. The density of states in these materials contains two
exponentially decreasing tails connected to the bands and a
considerable number of defect states. Charge trapping and
recombination of electron–hole pairs through gap states are
very often described by the Shockley–Read–Hall (SRH)
formalism.

In a previous contribution, the current voltages (J–V)
and spectral responses (SR) characteristic curves of a-Si:H
and mc-Si:H devices were evaluated by modeling charge
trapping and recombination with three different approaches:
the SRH formalism, the Simmons–Taylor’s approximation
(STA) and the so called “0K” Simmons–Taylor’s approxi-
mation (0KSTA) [1]. In the last case, the occupation
functions and the recombination rate are represented by step
functions that abruptly change at the trapped quasi-Fermi

levels defined by Simmons and Taylor [2]. The J–V and SR
curves obtained with the three formalisms were compared
under different scenarios: dark and different illuminated
conditions, forward and reverse bias voltages, lower and
higher temperatures, thin and thick intrinsic layers, and for
different key electrical parameters like the mobility gap in
order to cover different devices based in thin films of a-Si:H
and its alloys. Our results indicated that the STA was an
acceptable approximation of the SRH model when the
device is working under illumination. Under dark con-
ditions, the STA was suitable when the device was forward
biased but slightly overestimated the dark current when the
device was reversed biased. The 0KSTA under illuminated
conditions or under dark conditions for forward voltages
the 0KSTA was also a reasonable approximation with
some few exceptions like junctions with low gap intrinsic
layers. The 0KSTA cannot be applied when the device was
reversed biased and operates under dark conditions. In our
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contribution, the density of defect states or dangling bonds
(DB) was assumed to be uniform within each device layer
and represented by pairs of single occupied acceptor-like and
donor-like states. The uniformity of the density of DB was
recognized in our paper as the Uniform density of states
model (UDM) and the representation of DB as a pairs of
acceptor and donor states as the decoupled state approxima-
tion (DSA).

In this paper, the accuracy of the STA and 0KSTA in
a-Si:H based devices is now tested evaluating the density of
DB with the defect pool model (DPM). This issue was not
covered in our previous contribution due to its inherent
complexity and an excessive extension of our manuscript.
Although fittings of characteristics J–V and spectral
responses (SR) of a-S:H devices can be achieved with
either the DPM or the UDM, the DPM is widely used in a-S:
H devices because it can successfully capture experimentally
trends while the UDM could give rise to predictions in
contradiction with some experimental findings [3, 4].

The DPM is based in an elaborated thermodynamic
approach where the creation of defects is described through
specific microscopic reactions that involve the breaking of
weak Si–Si bonds (WB) stabilized by diffusive hydrogen
motion and also the breaking and reforming of Si–H bonds.
Hydrogen passivation of the newly created DB prevents
back-transformation into a WB. Hence, the charge state of a
DB after bond-breaking influences the final equilibrium of
the electron configuration. Therefore, the position of the
Fermi level in the mobility gap influences the equilibrium
DB concentration that is computed by minimizing the free
energy of the system composed byWB, DB, andH bonds. The
equilibrium density of DB reached at the freezing temperature
depends of the Fermi energy. Hence, the predicted density of
DB is highly non-uniform along the intrinsic layer of a-Si:H
p–i–n devices being considerable higher near the p/i and i/n
interfaces than in the bulk [5].

It is important to emphasize that the derivation of the
density of DB in the DPM assumes that defect states
associated with Si–Si bonds have an amphoteric character [6,
7]. On the other hand, the STA was derived for decoupled
states (acceptor-like and donor-like states). Hence, the
trapped charge concentrations and the recombination rate
expressions obtained with the DPM for amphoteric states
must first be re-written for decoupled states. In order to test
the validity of the STA in a-Si:H based devices modeled with
the DPM, two approximations have to be simultaneously
tested: the DSA in the non-uniform density of DB predicted
by the DPM and the STA itself once the DSA was applied to
the original equations of the DPM.

In this paper, the density of DB will be evaluated with
the DPM. At the deposition or freezing temperature, the
material is assumed to reach the state of thermodynamic
equilibrium. In the derivation of the DB density of the
DPM the amphoteric nature of DB is taken into account.
Therefore, the occupation functions Fþ

eq, F
0
eq, and F�

eq for
amphoteric states at thermodynamic equilibrium were
used by Powel and Deane [7] (Eqs. (5)–(7), p. 10815 of

this reference). The device operates out of equilibrium
conditions at lower temperatures than the freezing tempera-
ture (for instance at room temperature). The DB profile
evaluated with the DPM at the freezing temperature does not
change during device operation (except for the possible
Stabler Wronski effect). The trapped carrier concentrations
and recombination rates under non-equilibrium conditions
can be evaluated by modeling DB as either amphoteric or
decoupled states. In the second case, some errors will
be introduced. To our knowledge, the Simmons–Taylor
approximation was derived only for decoupled states.
Hence, the non-equilibrium occupation functions fþ, f 0,
and f� of amphoteric states should first be approximated by
the occupation functions f and 1� f of the SRH formalism
for donor- and acceptor-like states (Section 4).

Kron and van Swaaij [8] have studied in detail the
ideality factor of dark J–V curves of a-Si:H p–i–n diodes
modeling the DB density with the DPM. In their papers, they
used the 0K Simmons–Taylor approximation that consider-
ably simplified the interpretation of their results (see their
references in [8]) They have reached interesting conclusions
but we could not find in the literature a paper where the use of
the 0K Simmons–Taylor approximation was justified when
the DPM was adopted to evaluate the DB density in a-Si:H
devices. This paper is an attempt to fill this void.

Our paper is organized as follows: in Section 2, our
methodology is briefly described, in Section 3, the DPM is
presented, in Section 4, the implementation of the DSA that
describes charge trapping and recombination within the
DPM is discussed, and in Section 5, the predictions obtained
with the STA and the 0KSTA are compared with the ones
obtained with the DPM where DB are modeled with
amphoteric states. Finally in our conclusions, the main
results are summarized.

2 Methodology The device structure that was ana-
lyzed is as follows: TCO/p-a-SiC:H/i-a-Si:H/n-a-Si:H/Al
with a 5-nm thick buffer layer between the p- and i-layers.
The front contact is an Asahi U-type (employing textured
SnO2:F). The p- and n-layer thicknesses are 10 and
20 nm thick, respectively. Our data correspond to a-Si:H
based p–i–n junctions with intrinsic layer thicknesses of 200
and 600 nm. Both devices are in the annealed state and were
characterized at Delft University of Technology.

The experimental J–V characteristics of the a-Si:H based
p–i–n devices were fitted in order to calibrate the input
parameters of our computer code D-AMPS described
elsewhere [9]. The density of DB was evaluated with the
DPM inside the intrinsic and buffer layers. The density of
DB in the doped layers was assumed to be uniform but the
number of defects enclosed in theDþ,D0, andD�Gaussians
are given by the DPM. We adopted Dþ�D0�D� and
Dþ�D0�D� in the p- and n-layers, respectively,
following the equations [21, 22] proposed by Powel and
Deane [7] (see p. 10815 of this reference). The optical
parameters were obtained from reflection and transmission
spectra measured on layers deposited on glass. The global
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density of states and the Urbach slope were extracted using
dual beam photoconductivity. The correlation energy U was
assumed equal to 0.2 eV [6, 7]. The freezing temperature was
set to 460K [10]. The hydrogen concentration was adopted
equal to 1� 1021 cm�3 [6]. The parameters used to match the
experimental data are listed in Table 1. The optical model
was briefly described in previous publications [1].

Figures 1 and 2 show our fittings of the dark and the
light J–V characteristics measured at 40 8C and at room
temperature, respectively. The light source corresponds
to AM1.5 illumination. In our fittings of Figs. 1 and 2, the
carrier trapping and the recombination rate were evaluated
with the full expressions of the DPM without making any
approximations. DB were modeled as amphoteric states at
both the freezing and the operating temperature of the device.

3 The defect pool model States associated to DB
show an amphoteric character: i.e., they can act as either
donor-like or acceptor-like, depending on their charge state.

Amphoteric DB can adopt three different charge status:
positive (þ), neutral (0), or negative (�) when they are
occupied by zero, one, or two electrons, respectively. The
theory for multiple charge levels was developed by Sah and
Shockley [11]. The amphoteric state is represented by two
energy levels: Eþ/0 associated to the þ/0 transition and E0/�

associated to the 0/� transition. In these two levels, the four
processes of electron or hole capture and emission can take
place. The two levels are separated by the energy U.
Assuming that D denotes a DB state and its superscript
gives the charge status, the possible transitions are listed in
Table 2.

The formalism of amphoteric states will be recognized in
this contribution with the initials AMP. The mathematical
expressions for the occupation functions of the three charge

Table 1 Setting parameters.

parameters p i n

W (nm) 10 200/600 20
EG (eV) 1.9 1.72 1.72
GA0 GD0 (cm

�3 eV�1) 1� 1021 1� 1021 1� 1021

Nc, Nv (cm
�3) 3� 1020 3� 1020 3� 1020

mN (cm2V�1 s�1) 5 20 5
mP (cm2V�1 s�1) 1 4 1
ED (meV) 80 44 50
EA (meV) 25 30 30
tþN t�P (cm2) 1� 10�15 1� 10�15 1� 10�15

t0N t0P (cm2) 1� 10�17 1� 10�17 1� 10�17

D� (cm�3) 3.04� 1012 – 6.78� 1018

D0 (cm�3) 2� 1016 – 1.6� 1015

Dþ (cm�3) 5.25� 1018 – 1.51� 1012

E�
D (eV) 0.7 – 0.6

E0
D (eV) 1 – 0,9

Eþ
D (eV) 1.3 – 0.12

sD (eV) 0.13 – 0.13
EDP (eV) – 1.03/1.1 –

DDP (eV) – 0.295 –

sþ
N s�

P (cm2) 1� 10�14 1� 10�14 1� 10�14

s0
N s0

P (cm2) 2� 10�16 1� 10�16 2� 10�16

List of electrical input parameters obtained from fitting the dark and light
J–V curves. The meaning of the symbols is as follows: W is the layer
thickness, EG is the mobility gap,GA0 andGD0 are the density of states at the
conduction and valence band edges, respectively,Nc andNv are the effective
density of states at the conduction and valence bands, respectively, mN

and mP are the electron and hole mobilities, ED and EA are the valence and
conduction tail slopes, t0N and t�P are the cross-sections for electrons and
holes at acceptor tail states, tþN and t0P are the cross-sections for electrons
and holes at donor tail states, D�, D0, and Dþ are the defect densities
enclosed by each Gaussian, E�

D, E
0
D, and Eþ

D are the peak positions of
Gaussians referred to the valence band edge, sD are the standard deviations,
EDP is the peak energy of defect pool, DDP is the separation between the
positive charge in a-Si:H n-layers and the negative charge in a-Si:H p-layers,
and sN and sP are the defect states cross-sections for electrons an holes.
The superscript þ, 0, and � indicates the charge status of the traps. The
thermal velocity vTH was assumed as 107 cm s�1 for both electrons and holes.

Figure 1 Fitting of the experimental dark and light J–V
characteristics of an a-Si:H based p–i–n junction with a 200 nm
thick intrinsic layer. The density of DB is modeled with the DPM.

Figure 2 Fitting of the experimental dark and light J–V
characteristics of an a-Si:H based p–i–n junction with a 600 nm
thick intrinsic layer. The density of DB is modeled with the DPM.
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states, the trapped carrier densities and the recombination
rate under steady-state non-equilibrium conditions have
been derived by different authors [11–13]. Under steady
state conditions, the rates of Table 2 must fulfill the
following two equations:

r2 þ r3 � r1 � r4 ¼ 0; ð1aÞ

r5 þ r8 � r6 � r7 ¼ 0: ð1bÞ

Using (1), the principle of detailed balance, and the
condition that the sum of the occupation probabilities of
having one state unoccupied, singly occupied and doubly
occupied is unity the non-equilibrium occupation functions
fþ, f 0, and f� can be obtained [14, 15]. The average chargeQ
and the recombination efficiency hR for one DB (i.e., the
recombination per energy state E), can be derived as [16–18]:

QðEÞ ¼ qðfþ � f�Þ; ð2aÞ

fþ ¼ P0P�

NþP� þ P0P� þ NþN0 ;

f 0 ¼ NþP�

NþP� þ P0P� þ NþN0 ;

f� ¼ N0Nþ

NþP� þ P0P� þ NþN0 ;

hRðEÞ ¼ r1 þ r2 � r5 � r6; ð2bÞ

hRðEÞ ¼ v2thðpn� n2i Þ
sþ
Ns

0
PP

� þ s0
Ns

�
P N

þ

NþP� þ P0P� þ NþN0 ;

Nþ ¼ nvths
þ
N þ eþP ;

N0 ¼ nvths
0
N þ e0p

P� ¼ pvths
�
P þ e�n ;

P0 ¼ pvths
0
P þ e0n;

where vth is the thermal carrier velocity assumed identical for
electrons and holes, n and p are the free electron and
hole concentrations, respectively, ni is the intrinsic carrier
concentration, eþp and e0p are emission coefficients for
holes at the Eþ/0 and E0/� levels and e�n and e0n are emission
coefficients for electrons at the same levels, respectively. The
symbol s stands for the respective cross-sections for electrons
and holes associated to the capture processes that oppose to
the respective emission rates.

Powel and Deane [6] have derived in the DPM the
following expression for the DB distribution:

NðEÞ ¼ g
2

F0
eqðEÞ

" #kT=2ED

P E þ s2
DP

2ED

� �
; ð3Þ

where the coefficient g is given by

g ¼ GD0
H

NSiSi

� �kT=4ED 2E2
D

2ED � kTF

� �

� exp � 1
2ED

EDP � Ev � s2
DP

4ED

� �� �
;

and the defect-pool function, P(E) by

PðEÞ ¼ 2s2
DPp

� ��1=2
exp �ðE � EDPÞ2

2s2
DP

 !
:

In these equations, the meaning of symbols is as follows:
TF is the freezing temperature, ED is the characteristic slope
of the valence band tail, GD0 is the density of states at the
valence band edge, NSiSi is the total number of electrons in
the silicon bonding states, EDP is the energy of the peak of
the defect pool, sDP is the width of the pool, and Ev is the
valence band mobility edge. In Eq. (3), F0

eq is the equilibrium
occupation function of neutral amphoteric defect states at
the freezing temperature [5].

Table 2 Capture and emission processes in a three-state amphoteric level.

Eþ/0 process rate E0/� process rate

electron capture r1 Dþþ e!D0 electron capture r5 D0þ e!D�

electron emission r2 D0! eþDþ electron emission r6 D�! eþD0

hole capture r3 D0þ h!Dþ hole capture r7 D�þ h!D0

hole emission r4 Dþ! hþD0 hole emission r8 D0! hþD�
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The main result of the DPM is that the defect distribution
depends on the energy position of the Fermi-level relative to
the band edges. Since this energy position changes with the
spatial location inside the device the distribution of defect
states also varies with the x-position. Figure 3 shows the
defect distribution computed with Eq. (3) in three different
regions of the intrinsic layer.

The total recombination rate R and the space-charge
density r are evaluated by integrating the recombination
efficiency and the average charge for each DB over all the
gap states situated between the valence and conduction band
mobility edges Ev and Ec:

R ¼
Z Ec

Ev

NðEÞhRðEÞdE; ð4aÞ

r ¼
Z Ec

Ev

NðEÞQðEÞdE; ð4bÞ

where N(E) is the density of states obtained with Eq. (3).
In (4), the non-equilibrium occupation functions fþ, f 0, and
f� are at the device temperature T and not at the freezing
temperature (see Eqs. (2)).

4 The defect pool model with the decoupled
state approximation The STA was derived in the
literature only for decoupled states. Hence, the DSA should
be previously implemented in (4) before applying the STA.
The DSA consist in replacing the non-equilibrium occupa-

tion functions fþ, f 0, and f� of (2) by the SRH occupation
functions f and 1� f for electrons and holes, respectively.
Expressions (2) for the average charge Q(E) and the
recombination efficiency hR(E) are modified by the DSA
as [19]:

hRdðEÞ ¼ v2ths
þ
Ns

0
P

np� n2i
nvths

þ
N þ pvths0

P þ e0n þ eþp
; ð5aÞ

hRaðEÞ ¼ v2ths
0
Ns

�
P

np� n2i
nvths0

N þ pvths�
P þ e�n þ e0p

; ð5bÞ

QdðEÞ ¼ qð1� f dÞ; ð5cÞ

QaðEÞ ¼ qf a; ð5dÞ

QðEÞ ¼ QdðEÞ � QaðEÞ: ð5eÞ

Furthermore (4) can be rewritten as

R ¼
Z Ec

Ev

NdðEÞhRdðEÞ þ NaðEÞhRaðEÞ½ �dE; ð6aÞ

r ¼
Z Ec

Ev

NdðEÞQdðEÞ � NaðEÞQaðEÞ½ �dE: ð6bÞ

The subscripts d and a refer to donor-like and acceptor-
like states, respectively. In the DSA, DB are represented
by pairs of donor and acceptor states. In particular when
the DSA is used in the DPM, the density of DB N(E),
given by Eq. (3), has to be replaced by two densities:
one of donor-like states Nd(E) and other of acceptor-like
states Na(E). Nd(E) is a copy of N(E) that should be
placed kT ln(2) below (in energy) of N(E) and Na(E) is
another copy of the same density Nd(E) that should be
placed above of N(E) (in energy) by Uþ 2kT ln(2) [7] as
shown in Fig. 4. As F0

eq in Eq. (3) is part of the expression
derived by Powel and Deane for the density N(E) of DB in
a-Si:H at the freezing temperature TF the DSA was not
applied toF0

eq. Hence, the total recombination rate in the DSA
is given by the sum of the recombination processes taking
place in donor-like and acceptor-like states. This assumption
tends to overestimate the recombination losses through
neutral states [5]. When DB are modeled as amphoteric states
they cannot simultaneously behave as donor-like and
acceptor-like neutral states as in the decoupled approxima-
tion. The charge density is given by the difference between

Figure 3 Density of gap states as predicted by the DPM inside a
600 nm thick intrinsic layer thickness of an a-Si:H p–i–n device.
Three different x-locations in the i-layer are shown: near the p/i
interface, at middle of the layer and near the i/n interface. Density of
DB used in our previous contribution [1] where a uniform density
of DB was adopted along the whole intrinsic layer is shown for
comparison by dotted lines.
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the positively charged donor-like states and the negatively
charge acceptor-like states (5c). The errors introduced by
this approximation have been already discussed in the
literature for a uniform density of states [20]. Although there
is a priori no reason to suspect that the DSA could fail
when the density of DB is not uniform, the complexity of
the algorithms developed by Powel and Deane makes this
checking prudent. The two conditions to guarantee the
accuracy of the DSA are fulfilled: the charged cross-sections
are much higher than the neutral cross sections (100 times
higher in the intrinsic layer and 50 times higher in doped
layers as it can be seen in Table 1) and the correlation energy
U is positive and considerably larger than kT (U¼ 0.2 eV)
[5]. However, as it was discussed in a previous publica-
tion [20], in computer modeling an error introduced in the
recombination rate can affect the final free carrier concen-
trations and the gap-state occupation function values that
would in turn alter the trapped carrier concentrations
evaluated with the DSA.

The validity of the DSA was tested by comparing the
predictions obtained with the DPM when defect states are
assumed to be either amphoteric or decoupled in a-Si:H
devices that are operating under different conditions: with
and without bias light, under forward and reverse bias
voltages, at several temperatures, for various intrinsic layer
thicknesses, light source intensities, mobility gaps at the
intrinsic layer, etc.

Figure 5 shows the J–V characteristic curves predicted
by D-AMPS at room temperature using the DPM when DB

are modeled with either amphoteric or decoupled states. The
intrinsic layer of the a-Si:H p–i–n device was adopted
600 nm thick in agreement with the device of Fig. 2. On
the right-hand axis of Fig. 5 the relative error eAMP-DSA

introduced by the DSA in the calculation of the current
density J, is shown for different voltages V. Equation (7) was
used to evaluate eAMP-DSA,

eAMP�DSA ¼ 100
JAMP � JDSA

JAMP
: ð7Þ

Under illuminated conditions and for reverse and low
forward voltages (voltages close to the maximum power
conditions), the error introduced by the DSA is caused by the
higher recombination rate predicted by the DSA [20].
However, the relative error given by Eq. (7) remains below
0.5% in the device of Fig. 5 (600 nm intrinsic layer and at
room temperature) and below 1.5% for all the devices that
were analyzed (thicknesses between 200 and 2000 nm and
temperatures between 250 and 400K).

Under dark conditions and for forward voltages, the
DSA predict the same current density at low voltages and
slightly lower current densities at higher voltages than when
DB states are assumed to be amphoteric. The errors become
more visible for voltages near and below the knee of the J–V
curve. In p–i–n devices with 2000 nm thick intrinsic layers,
this discrepancy can reach values near 8% at room
temperature. Differences are caused by the overestimation
of the trapped charge inside the intrinsic layer by the DSA.
Fermi quasi-levels are pushed closer to mid-gap by the DSA.
Hence, the free carrier concentrations and the recombination
rate become underestimated [20]. A thicker intrinsic layer
has been intentionally adopted in order to weaken the electric
field in the intrinsic layer and make our simulations more
sensitive to the formalisms adopted to model the DB states.

Figure 4 Distribution of DB with respect to the gap state energy
inside the intrinsic layer of the p–i–n device at the middle of i-layer
predicted with the defect pool model that takes into account their
amphoteric character (solid line). In the decoupled state approxi-
mation, the density of donor-like states is given by the same
distribution (solid line) slightly displaced by kT ln(2) to the left-
hand side (dotted line) and the density of acceptor-like states is also
given by the same distribution of DB but displaced in energy by
Uþ kT ln(2) to the right-hand side (dashed line). Tail states are
also shown using thinner solid lines.

Figure 5 Predicted dark and light (AM1.5 illumination) J–V
curves by D-AMPS for an a-Si:H based p–i–n device at room
temperature using the DPM and modeling DB as either amphoteric
or decoupled states. Relative errors are included. The intrinsic layer
is 600 nm thick.

Phys. Status Solidi B 252, No. 1 (2015) 175

www.pss-b.com � 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim

Original

Paper



When the band gap of the intrinsic layer is adopted 1.53 eV,
scenario that corresponds to a-SiGe:H based p–i–n devices,
the error shows the opposite sign, i.e., the current density
predicted by D-AMPS with the DSA is greater than the one
predicted with amphoteric states. For the mobility gap of
1.53 eV, the overestimation of the recombination rate
predicted with the DSA does not significantly modify the
free carrier concentrations as when the mobility gap in
the intrinsic layer was assumed 1.72 eV and the final result
is just a simple overestimation of the current density J (6–7%
at the most).

Under dark conditions and for forward voltages, the
error eAMP-DSA is temperature dependent. The higher the
temperature the greater the error becomes. For instance at
250K and at 400K, eAMP-DSA reaches values near 2 and 5%,
respectively, at low voltages where the current density J
is controlled by recombination. At higher temperatures
more electrons and holes are available for recombination
and the difference between the DSA and the formalism of
amphoteric states becomes more significant. The error eAMP-

DSA is lower at higher forward voltages where recombination
does not entirely control the current density.

5 The Simmons–Taylor approximation with
decoupled state applied to the defect pool
model The DSA uses the SRH formalism to describe
carrier trapping and recombination in acceptor-like and
donor-like states. Simmons and Taylor have derived an
elegant approximation of the SRH formalism that simplifies
the calculation of the recombination efficiency and the
trapped carrier concentrations for a continuous distribution
of states [5]. They defined the intrinsic trap level, ET0, as
the energy where the emission rates of electrons to the
conduction band and holes to the valence band are equal; i.e.,
en(ET0)¼ ep(ET0). Since the emission rates exponentially
increase or decrease with the trap energy Et, either en or ep
can be neglected few kTs away from ET0. Using this
argument, the electron and hole occupation functions can be
rewritten as

f nðEtÞ ¼ nsN

nsN þ psP
1þ exp

Et � Efnt

kT

� �� ��1

for Et > ET0;

ð8aÞ

f pðEtÞ ¼ 1� f nðEtÞ ¼ psP

nsN þ psP
1þ exp

Efpt � Et

kT

� �� ��1

for Et < ET0;

ð8bÞ

where Efnt and Efpt are the quasi-Fermi levels for trapped
electrons and trapped holes, respectively. The energies Efnt

(Efpt) correspond to the energy levels Et where a trapped
electron (hole) has the same probability of being emitted to

the conduction (valence) band than to recombine with a hole
(electron) of the valence (conduction) band. Hence, Efnt are
defined as the energies where the conditions e0n ¼ nvths0

N þ
pvths0

P and eþp ¼ nvths
þ
N þ pvths0

P are satisfied.
The occupation functions f n(Et) (f p(Et)) are smooth

functions of the gap state energy. They are approximately
constant between the band edges and the quasi-Fermi levels
for trapped electrons and holes where they show transitions
steps [5]. Going from the valence toward the conduction
band edge f n(Et) (f

p(Et)) decreases (increases) from 1 (0) to
the pre-factor of Eq. (8a) (Eq. (8b)) around Efpt, and from this
pre-factor decreases (increases) to 0 (1) around Efnt; being
approximately constant between Efpt and Efnt. The recombi-
nation efficiency can be approximated by [5]

hR ¼ vth
sNsPnp

nsN þ psP
1þ exp

Et � Efnt

kT

� �� ��1

for Et > ET0;

ð9aÞ

hR ¼ vth
sNsPnp

nsN þ psP
1þ exp

Efpt � Et

kT

� �� ��1

for Et < ET0:

ð9bÞ

In these equations, only traps located between the quasi-
Fermi levels for trapped carriers Efpt and Efnt are acting as
effective recombination centers because outside of this
energy range the probability of re-emission of electrons or
holes to the conduction and valence bands, respectively, is
higher than the probability of recombination.

In the Simmons and Taylor 0K approximation, the
electron occupation functions f n(Et) and f

p(Et) and recombina-
tion efficiency are approximated by step functions as follows:

f nðEtÞ ¼
1 for Ev < Et < Efpt

nsN

nsN þ psP
for Efpt < Et < Efnt

0 for Efnt < Et < Ec

8>><
>>:

9>>=
>>;;

ð10aÞ

f pðEtÞ ¼
0 for Ev < Et < Efpt

psP

nsN þ psP
for Efpt < Et < Efnt

1 for Efnt < Et < Ec

8>><
>>:

9>>=
>>;;

ð10bÞ

hRðEtÞ ¼

0 for Ev < Et < Efpt

vth
np� n2i
� �

sNsP

nsN þ psP
for Efpt < Et < Efnt

0 for Efnt < Et < Ec

8>>><
>>>:

9>>>=
>>>;
:

ð10cÞ
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By replacing (9) in (4), the total recombination rate and
the trapped charge density can be evaluated. The STA was
conceived for forward biased devices, but it is interesting to
check how the approximation behaves when the device is
working under reverse voltages, the operating mode of
optical detectors. In this paper, the accuracy of the STA were
tested within the voltage range (�1 and 1.5V) using as
reference the J–V curves obtained with the DSA. 0KSTA
were tested in the same voltage range under illuminated
condition and only for forward voltage under dark condition
using the same reference. The relative error eDSA-STA
introduced by the STA can be similarly defined eAMP-DSA

(see Eq. (7)) as

eDSA�STA ¼ 100
JDSA � JSTA

JDSA
; ð11aÞ

where the meaning of the sub-indexes is straightforward. It is
interesting to look also at the overall relative error made
when the two approximations DSA and STA are simulta-
neously used, which is

eAMP�STA ¼ 100
JAMP � JSTA

JAMP
: ð11bÞ

In Eq. (11b), the currents obtained with the DPM after
both the DSA and the STA were applied and when DB are
modeled as amphoteric states are compared at different
device voltage. The errors defined in Eqs. (7) and (11) can be
approximately related by (actually current densities in the
denominators are different):

eAMP�STA � eAMP�DSA þ eDSA�STA: ð12Þ

In the worst scenario, the relative errors will add but
there are also some situations where a compensation effect
between the two errors takes place and the total error is lower
than the sum. It is important to remark that the STA and the
0KSTA apply to both defect states and tail states.

In Fig. 6, the J–V curves under AM1.5 illumination
predicted by our computer code with the parameters of
Table 1 are shown for four different cases: DB represented
by amphoteric states, DB represented by decoupled states
(DSA), defect and tail states approximated by the STA and
defect and tail states approximated by the 0KSTA equations.
In the first and second scenarios, tail states are modeled with
the SRH formalism. The relative errors are shown at voltages
below 0.82 eV. Very near VOC the relative errors can be very
large but meaningless because the current densities become
very small. However, the spread predicted in VOC with the
four different models is not larger than 0.004V.

Under illuminated conditions when either a reverse or
a forward voltage is applied to the p–i–n device, the STA
accurately reproduces the results obtained with the DSA. In
Fig. 6, the J–V curves predicted with the STA and the DSA
formalisms are on the top of each other. The error eDSA-STA is
below 0.001% for the voltage range under analysis. This

result is expected because under illuminated conditions
the quasi-Fermi levels for trapped carriers are far-off the
intrinsic trap level ET0 what guarantees the exactness of
the approximation [1]. Therefore, in this scenario the relative
errors eAMP-STA and eAMP-DSA are quite similar. In other
words under illuminated conditions, the error when the
density of DB is modeled with the DPM is originated by
the DSA.

Under dark condition and for forward biases, the STA
shows also minor relative errors with respect to the DSA
formalism (see Fig. 7). Only for very low-forward voltages;
i.e., near the thermodynamic equilibrium condition, the
eDSA-STA becomes higher reaching figures between �4 and
�7%. In this regime, the current density is controlled by
recombination [21]. In this scenario, the quasi-Fermi levels

Figure 6 Predicted light J–V curves (under AM1.5 illumination)
by D-AMPS for an a-Si:H based p–i–n device at room temperature
using the AMP, DSA, STA, and 0KSTA formalisms. Relative
errors are included. The intrinsic layer is 2000 nm thick.

Figure 7 Predicted dark J–V curves by D-AMPS for an a-Si:H
based p–i–n device using the AMP, DSA, STA, and 0KSTA
formalisms. Relative errors are included. The intrinsic layer is
2000 nm thick and the temperature is 310K.
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for trapped carriers become close to the intrinsic trap level
ET0 and the STA losses its accuracy. On the top of that the
current density near thermodynamic equilibrium is very
small favoring the appearance of higher relative errors.

Under dark conditions and for reverse voltages, the STA
shows more significant discrepancies with respect to the
DSA formalism. In this scenario, the current density is
controlled by thermal generation of electron–hole (e–h)
pairs [22, 23]. The energy positions of the quasi Fermi levels
become inverted with respect to the ones obtained at forward
biases. In other words, the electron quasi-Fermi level is
below the intrinsic trap level ET0 and the hole quasi-Fermi
level is above the intrinsic trap level ET0. The quasi Fermi
level for trapped holes is also above the quasi Fermi levels
for trapped electrons inside the region of the intrinsic layer
where thermal generation of e–h takes place.

Hence, the neglecting of either the electron or the hole
emission coefficient under and above the intrinsic trap level
ET0 become questionable [4]. However, the STA is still able
to reproduce quite well the shape of the dark J–V curve at
reverse voltages, but overestimating the current by less than
25% in all cases that were studied.

It is interesting to note that under dark conditions the
relative errors eDSA-STA and eAMP-DSA have different signs.
While the DSA formalism tends to underestimate the
recombination rate [20] the STA tends to overestimate the
same recombination rate [1]. Hence, there is compensation
effect when the DSA and STA are simultaneously applied
that reduces the overall relative error (see Eq. (11)).

When the device is subjected to forward voltages, the
error eAMP-STA is always lower than the error eAMP-DSA. Only
for very low forward voltages (V< 0.05V) this inequality is
not true. Hence, unexpectedly the DSA in conjunction with
the STA becomes a better approximation than the DSA
alone. This difference is significant for forward voltages
below 0.25 and 0.3V and less important for higher forward
voltages where the error eAMP-STA remains lower than
eAMP-DSA but becoming quite similar. Only in the a-SiGe:H
based p–i–n devices both eDSA-STA and eAMP-DSA show the
same sign. In this case, both approximations tend to
underestimate the recombination rate, the compensation
effect is not taking place and the two errors add to each other.

The relative error eDSA-STA does not show any sensitivity
with respect to temperature in the range going from 250
to 400K. On the other hand, eAMP-STA changes with
temperature due to the error introduced by the decoupled
state approximation.

The relative errors eDSA-STA and eAMP-STA are also quite
independent of the illumination intensity as long as the
light flux is higher than 8� 1010 cm�2 s�1. For lower light
intensities, the errors become more significant. The errors
eDSA-STA and eAMP-STA can become higher than 15% when
the light intensity is lower than 8� 108 cm�2 s�1 when a
reverse voltage is applied to the junction.

The 0KSTA also showed some interesting results. Under
illuminated conditions for either reverse or forward voltages,
there is a compensation effect between the errors introduced

by the DSA and the 0KSTA. The DSA tends to overestimate
the recombination rate while the 0KSTA tends to
underestimate the same recombination rate. Hence, the
current density loss predicted by applying both the DSA and
the 0KSTA is lower than the current loss predicted by using
only the DSA. The errors eDSA-0KSTA and eAMP-DSA remain
approximately constant for different voltages and with an
absolute value below 1.5% but they have different signs (see
Fig. 6). If we conceive that the error introduced by both
approximations (DSA and the 0KSTA) eAMP-0KSTA as given
by the algebraic sum eAMP-0KSTA� eAMP-DSAþ eDSA-0KSTA
the overall error of making both approximations is near zero.
Hence, the predicted current densities J are practically
identical to the ones obtained with the DPM where DB are
modeled as amphoteric states (see Fig. 6). Actually eAMP-

0KSTA is in absolute value below 0.5% for voltages below the
maximum power point. Devices with a-SiGe:H intrinsic
layers show a different type of behavior. At reverse voltages
both eDSA-0KSTA and eAMP-0KSTA remain close of 0%. At
forward voltages, the 0KSTA gives rise to higher current
densities than the DSA. The error eDSA-0KSTA increases in
absolute value with the applied voltage and can reach values
near �25% for voltages close and higher the maximum
power point. When the forward voltage approaches VOC the
relative error naturally could become very high due to
the very low current densities. In the 0KSTA, only the
recombination processes through gap states located between
the quasi Fermi levels for trapped carriers are accounted
while the ones at gap states located outside of these energy
levels are neglected (see Eq. (10c)). Hence, in p–i–n devices
with low gap intrinsic layers where the recombination rate
near the band edges is not negligible the 0KSTA tends to
underestimate the recombination. When the applied voltage
is increased the band edge profiles become more flat and
the electric field weaker. This scenario gives rise to higher
recombination rates and to increasing errors.

Under dark conditions and for reverse voltages, the
0KSTA cannot be calculated from Eqs. (10a)–(10c) that are
no longer valid because the quasi-Fermi levels for trapped
charges become inverted. Work is under progress to find
new formulations of the 0KSTA in this case and we will
concentrate here on the forward range when the device is the
dark. Under dark conditions and for forward voltages but not
too near the thermodynamic equilibrium (V> 0.05V) the
0KSTA works within acceptable levels of errors (less than
8% in absolute value) at temperatures between 250 and
350K in p–i–n device with intrinsic layers thinner than
800 nm. However, in quite thick devices like in p–i–n with
2000 nm intrinsic layers operating at room temperature (see
Fig. 7) the error el eDSA-0KSTA can reach values near �19%.
The most significant errors in thick p–i–n devices can be
observed for voltages between 0.8 and 1.3V. When the
forward applied voltage is increased within the range (0.8–
1.3V), the electric field changes its direction; i.e., the bands
pass through the flat band condition. The magnitude of the
electric field in the intrinsic layer bulk is weaker in thicker
devices than in thinner samples. The weaker electric field

178 M. G. De Greef and F. A. Rubinelli: Characteristic curves of a-Si:H based devices

� 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim www.pss-b.com

p
h

ys
ic

a ssp st
at

u
s

so
lid

i b



allows for higher recombination losses inside of the intrinsic
layer. As it was already stated in the 0KSTA only the
recombination processes taking place at gap states located
between the quasi-Fermi levels for trapped carriers are
accounted. This strong assumption neglects the recombina-
tion efficiency in gap states located outside of the quasi
Fermi levels for trapped carriers but also tend to overestimate
the recombination efficiency in gap states located inside of
the quasi Fermi levels for trapped carriers (in the 0KSTA the
recombination efficiency is assumed to be constant with
respect to the gap state energy) where the most significant
contributions to the recombination rate are present. These
statements apply to p–i–n devices with a-Si:H intrinsic layers
where the gap is higher than in the a-SiGe:H. On the top of
that the DSA predicts more significant carrier trapping than
the 0KSTA when the electric field is very weak (near zero).
The magnified carrier trapping gives rise to the observation
of a more pronounced band bending near the interfaces
inside the intrinsic layer. This extra band bending makes
more difficult the injection of free carriers into the intrinsic
layer what in turn reduces the recombination losses. The
final result of these two trends makes the DPM with the
DSA to predict lower recombination rates and lower current
densities than the DPMwith the 0KSTA in the voltage range
(0.8–1.3V).

Under dark conditions and when forward voltages are
applied, the error introduced by the 0KSTA is temperature
sensitive unlike the one of STA. The error eDSA-0KSTA
increases with temperature. For instance in a p–i–n device
with a 600 nm thick intrinsic layer at 250K, the maximum
error value is�0.5% and at 400K is�12%. These errors are
observed at low voltages where the current is controlled by
recombination. At higher temperatures more states closer to
the band edges contribute to the recombination rate while at
lower temperatures states the near mid-gap take more control
of the total recombination rate. At higher temperatures, the
error eDSA-0KSTA increases because the contribution of gap
states outside of the quasi-Fermi levels for trapped carriers
becomes not negligible (see Eq. (10c)).

Regarding the dependence of eDSA-0KSTA with respect
to the light intensity the 0KSTA is a good approximation
for intensities higher than 8� 1011 photons cm�2 s�1

(eDSA-0KSTA does not overcome 1%). On the other hand
for intensities below 8� 109 photons cm�2 s�1 eDSA-0KSTA
can be of the order of 20% when the p–i–n junction is
reversed biased.

6 Conclusions The Simmons–Taylor approximation
(STA) can be used in hydrogenated amorphous silicon (a-Si:
H) and alloys based thin film devices when the density of DB
is modeled with the defect pool model (DPM). The
amphoteric nature of DB has to be approximated by two
decoupled states (DSA) in order to test the STA when the
recombination rate and the trapped charge density are
evaluated. The current voltage under illuminated conditions
can be accurately predicted by the STA for reverse voltages
as long as the light intensity is not below 8� 1010 photons

cm�2 s�1. The value of the relative error introduced by the
approximation of amphoteric states by decoupled states does
not overcome 1%. The same conclusions have been found to
be valid for the SR curves.

Under dark conditions and forward voltages, the
performance of the STA is also satisfactory. In a-Si:H
devices for voltages higher than 0.05V the error introduced
by the combined use of the STA and the DSA is even lower
than the error introduced by the DSA alone due a
compensation effect occurring between the errors introduced
by both approximations in the evaluation of the recombina-
tion rate. In a-SiGe:H based devices, the STA works also
quite well although the compensation effect between the two
errors does not take place. Under dark conditions and for
reverse voltages, the STA preserves the shape of the current–
voltage curve but overestimates the dark current by no more
than 25% with respect to the currents obtained when DB are
modeled as amphoteric states. Similar results with minor
variations were obtained for different temperatures within
the range 250–400K. The errors can be higher in thick p–i–n
devices than in thin p–i–n devices but they are still
acceptable. Intrinsic layer thicknesses up to 2000 nm have
been tested.

The 0K Simmons–Taylor approximation (0KSTA) is
also a useful tool that simplifies the modeling and the
analysis of disordered semiconductor based devices but
some precautions have to be taken into account. For a-Si:H
devices under illuminated conditions (AM1.5 for instance),
the use of the 0KSTA generates current voltage and SR
with small errors as long as the applied voltage is below
the one corresponding to the maximum power point. In
contrast for a-SiGe:H devices, these errors become more
significant when the characteristic curves are compared
with their counterpart of the DPM assuming amphoteric-
like defect states. The error obtained with the application of
both the DSA and the 0KSTA is lower that the error
obtained when only the DSA is applied due also to a
compensation effect. Under low light level illuminated
conditions, the relative error is still acceptable for light
fluxes higher than 8� 1011 photons cm2 s�1. Under dark
conditions and when forward voltages is applied the
0KSTA is accurate enough in p–i–n devices with intrinsic
layer thicknesses below 800 nm and mobility gaps of
1.72 eV or higher, and within the temperatures range
between of 250 and 350K. In p–i–n devices where the
intrinsic layer has a smaller mobility gap the accuracy of
the 0KSTA is not as good as for a-Si:H or a-SiC:H intrinsic
layers. The usual formulas for 0KSTA do not apply in
under reverse bias and new approximate formulas have to
be found to treat this regime.
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