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Abstract

We study deformations of axially symmetric initial data for Einstein-Maxwell

equations satisfying the time-rotation (t-φ) symmetry and containing one asymp-

totically cylindrical end and one asymptotically flat end. We find that the t-φ sym-

metry implies the existence of a family of deformed data having the same horizon

structure. This result allows us to measure how close solutions to Lichnerowicz

equation are when arising from nearby free data.

1 Introduction

The observation that wormhole initial data (black hole data having two asymptotically

flat ends) rapidly evolve to trumpet initial data (one asymptotically flat and one cylin-

drical end) (see [21], [20] and references therein) motivated the use of trumpet data to

study numerical binary collisions since, in this way, the gauge evolution and the initial

noise in wave quantities would be minimized. This then inspired an extensive study of

initial data for Einstein equations having cylindrical ends, both from the numerical rel-

ativity community [4], [19], [24], [23], [17], [16] and the mathematical relativity side

[15], [11], [27], [26], [9], [10]. There seems to be a close relation between the pres-

ence of a cylindrical end and certain extremality condition suggested in part, by the

behavior of stationary solutions like Kerr-Newman and also by the fact [11] that given

a mono-parametric family of conformally flat initial data having a wormhole structure,

with given angular momentum and charges, then there exists a singular limit as the

parameter goes to zero, where the asymptotic structure changes to trumpet-like and the

angular momentum and charges are maximal for given mass. This reinforces the in-

terest in studying initial data with cylindrical ends in an attempt to understand cosmic

censorship issues, black hole formation, conical singularities appearing in stationary

multi-black hole solutions, etc.

Initial data with more than one cylindrical end, i.e. representing many extremal

black holes, are specially important. They include data for the Majumdar-Papapetrou
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solution [28], consisting of black holes of the extremal Reissner-Nordström type. It

is the only static multi black hole solution of Einstein-Maxwell equations in equilib-

rium known to us. Moreover one would expect it to be the unique electro-vacuum,

stationary solution with disconnected horizon. Nevertheless, the proof of this result

and a complete analysis of its stability are lacking. Motivated by these open problems

it is our aim here to understand perturbations of electromagnetic fields in initial data

for Einstein-Maxwell with cylindrical ends. To us, this is a first step in the study of

deformations of the full 4-dimensional Majumdar-Papapetrou solution.

In the past five years there has been increasing interest in developing the mathe-

matical tools appropriate to deal with the problem of initial data with cylindrical ends.

In [15] weighted Sobolev spaces were used to prove existence of an extremal solution

with one cylindrical end as a special limit of Bowen-York initial data. This was gen-

eralized in [11] to conformally flat initial data. Then, Waxenegger et al [27] adapted

the theorem of sub and super solution on weighted Hölder spaces to prove the same

result without invoking the singular extremal limit. On the other hand, in [14], defor-

mations of extreme Kerr black holes were studied. It was proven that for compactly

supported perturbations, there exists a unique family of nearby initial data, that have

the same horizon structure as extreme Kerr but greater ADM mass. For that result

a specific property of extreme Kerr’s metric was explicitly used in the proof. In more

general terms Chrusciel et al [9] have studied solutions to Lichnerowicz equation. They

proved existence of vacuum initial data with positive scalar curvature, having a number

of asymptotically flat and cylindrical ends. This is an important existence result that

extends previous ones by Choquet-Bruhat et al [6] to manifolds with cylindrical (or

periodic or hyperbolic) ends. Uniqueness of solution however, has not been dealt with

in [9] due mainly to the methods used there.

In this article we are interested in electro-vacuum initial data with an asymptoti-

cally flat end and one cylindrical end, representing the black hole horizon. We address

the problem of how close solutions to Lichnerowicz equation are, when they arise from

close free data. The idea is thus to consider two sets of free data for Lichnerowicz

equation that are close in a certain norm, and analyze how close the corresponding ini-

tial data found from them are. We choose the free data sets as one being a deformation

of the other one. This extends the result of [14] to more general, axially symmetric

initial data for Einstein-Maxwell equations having the t-φ symmetry. Basically this ex-

tra symmetry gives a positivity condition (Yamabe positivity) that replaces the explicit

property of Kerr used in [14]. Moreover, we also abandon the vacuum hypothesis, in

view of our later study of the Majumdar-Papapetrou solution.

The manuscript is organized as follows: In section 2 we present Einstein constraints

and describe in detail the hypotheses we work with, axial symmetry and time-rotation

symmetry. We show how they lead to the Lichnerowicz equation and the asymptotic

boundary conditions. We present our main result, Theorem 2.1 and discuss its scope

and implications afterwards. In section 3 we present the proof of Theorem 2.1.

2 Main result

Consider a 3-dimensional surface M = R
3 \ {0}. An initial data for the Einstein-

Maxwell equations is a set (M,gi j,Ki j,E
i,Bi) where gi j is the 3-metric on M, Ki j is

the extrinsic curvature tensor and E i, Bi are the electromagnetic fields on M. This set
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of fields satisfies the constraints on M:

R+K2 −Ki jK
i j = 2(EiE

i +BiB
i) (1)

D jK
j

i −DiK =−2εi jkE jBk (2)

DiE
i = 0, DiB

i = 0 (3)

where K = Ki jg
i j, Di, R and εi jk are respectively the covariant derivative, the curvature

scalar and the volume form associated to the metric gi j. For simplicity, we will not

consider electromagnetic currents in (2), i.e. ji = −2εi jkE jBk = 0. This is a techni-

cal assumption to make the equations and calculations easier, but could be removed

without altering the basic results of this article.

We will focus on initial data satisfying the above equations and the following three

hypotheses:

H1. Axial symmetry. We consider axially symmetric initial data, namely, we as-

sume that there exists a Killing vector field η tangential to M with complete closed

orbits, such that Lηgi j = 0, LηKi j = 0, LηE i = 0, LηBi = 0. In cylindrical coordinates

(ρ,z,φ) we write ηi = (∂φ)
i and axial symmetry implies in particular that the fields

above will not depend on φ. Moreover, we will see below that this assumption allows

us to write the metric, extrinsic curvature and electromagnetic fields in a simple manner

in terms of scalar potentials.

H2. Time-rotation symmetry. Besides axial symmetry we impose a discrete sym-

metry, namely, time-rotation symmetry. In terms of the initial data and the coordinates

associated with the axial symmetry, this means that under the map φ →−φ the initial

data map as (see Appendix A)

gi j → gi j, Ki j →−Ki j (4)

and

E i → E i, Bi → Bi. (5)

Initial data satisfying this symmetry turn out to be maximal and has been called “mo-

mentarily stationary”, as this symmetry is to a stationary space-time what time-symmetry

is to a static space-time [2], [22], [5]. In the treatment below it will be highlighted why

we need this symmetry in order for our equations to be written in a particular form,

without being too restrictive as to forbid the consideration of dynamical space-times.

It is important to remark that the time-rotation symmetry implies (see [5]) maxi-

mality K = 0 and moreover, due to the Hamiltonian constraint (1), also R ≥ 0. This in

turn means that (M,g ji) satisfies the positivity condition

∫
M
|∂ f |2g +R f 2dµg > 0 (6)

for all f ∈ C∞
0 , where ∂ denotes partial derivatives and the norm, curvature scalar and

volume element dµg are taken with respect to g. For later purposes, we will say that

(M,g ji) satisfying (6) is in the positive Yamabe class Y +.

H3. Asymptotic structure. The manifold M = R
3 \ {0} has an asymptotically flat

end and we take the origin to be a cylindrical end. This means [9] that the cylindrical
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end is identified with the product R+ ×N, where N is compact and the asymptotic

metric is conformal (with bounded conformal factor) to

ĝ = dx2 +h+O(e−ax) (7)

for a metric h on N and some positive constant a. Moreover we will restrict our study

to the topologically spherical case N = S2, and take h to be the standard metric on the

unit sphere.

We will approach the constraint equations by using the Conformal Method, [6].

Consider the rescaling

gi j = Φ4g̃i j, Ki j = Φ−2K̃i j, ,E i = Φ−6Ẽ i, Bi = Φ−6B̃i (8)

where Φ > 0 and for simplicity, we take the conformal metric to be

g̃i j = e2q(dρ2 +dz2)+ρ2dφ2 (9)

where q does not depend on φ. This rescaled conformal metric g̃i j is not the most

general axially symmetric metric satisfying (4) (see eq. (5) in [1]). Nevertheless, it is

not difficult to see that the same procedure can be made for that more general metric.

Under this rescaling, the constraints read

D̃iD̃
iΦ =

1

8
R̃Φ− K̃i jK̃

i j

8Φ7
− ẼiẼ

i + B̃iB̃
i

4Φ3
(10)

D̃ jK̃
j

i = 0, D̃iẼ
i = 0, D̃iB̃

i = 0. (11)

Here R̃ is the curvature scalar associated to g̃i j

In electro-vacuum and axial symmetry, the fact that M is simply connected implies

[8] the existence of potentials ω, ψ and χ given by

K̃i j =
2

ρ2
S̃(iη j), S̃i =

1

2ρ2
ε̃i jkη j∂kω, (12)

∂iχ = Fjiη
j, ∂iψ = ∗Fjiη

j, (13)

such that the momentum and Maxwell constraints (11) are automatically satisfied (see

[13] for a proof in the momentum case and the appendix B for the electromagnetic

case). Here Fi j is the 4-dimensional electromagnetic tensor, which can be constructed

in the standard way from E i and Bi (115).

The values of the potentials ω, ψ and χ are constant on each connected component

of the symmetry axis Γ := {ρ = 0} and give the angular momentum J, electric charge

QE and magnetic charge QB respectively [7]:

J =
ω−−ω+

8
, QE =

ψ−−ψ+

2
, QB =

χ−−χ+

2
, (14)

where we denote by ω+ := ω(ρ = 0,z > 0), ω− := ω(ρ = 0,z < 0) the values of the

function ω on the axis, at positive and negative values of z respectively. Analogous

notation holds for the electromagnetic potentials.

In terms of these potentials, the symmetry conditions (4)-(5) translate into the fol-

lowing expressions appearing in the Hamiltonian constraint

K̃i jK̃
i j = e−2q (∂ω)2

2ρ4
, ẼiẼ

i = e−2q (∂ψ)2

ρ2
, B̃iB̃

i = e−2q (∂χ)2

ρ2
, (15)
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where the norms are taken with respect to the flat metric on R
3. In general, for data not

satisfying the symmetry conditions, a ≥ sign holds in the three equations in (15) (see

Appendix A).

The scalar curvature in terms of the metric function q is given by

R̃ =−2e−2q∆2q (16)

with ∆2 = ∂2
ρ +∂2

z .

With these variables, the only non-trivial equation left is the Hamiltonian constraint

(1), which takes the form

∆Φ =−∆2q

4
Φ− (∂ω)2

16ρ4Φ7
− (∂ψ)2 +(∂χ)2

4ρ2Φ3
, (17)

where ∆ = ∂2
ρ +ρ−1∂ρ +∂2

z .

This equation, known as the Lichnerowicz equation, is a non-linear equation for

the conformal factor Φ. The set of functions F := (q,ω,ψ,χ) is known as free data,

and can be freely prescribed, made to satisfy the asymptotic conditions appropriate

for the problem at hand. Once Φ is found, we can construct the initial data as follows.

From the prescribed function q we have the conformal metric g̃i j (9). With the obtained

conformal factor we calculate the metric gi j, and using the prescribed functions ψ and

χ we can calculate E i (113) and Bi (114). From ω we calculate K̃i j (12) and rescaling

obtain Ki j. Therefore we finally have gi j, Ki j, E i and Bi.

Next we investigate the conditions that the functions Φ and q in the metric (9) must

satisfy at the cylindrical end. We write g in spherical coordinates (r,θ,φ) and make the

change x =− lnr,

g = r2Φ4[e2qdx2 + e2qdθ2 + sin2 θdφ]. (18)

Thus, by comparison with (7) we obtain that the conditions for the data on the cylin-

drical end r → 0 are

Φ = O(r−1/2), q = O(1). (19)

In virtue of equation (17) and the regularity near the symmetry axis (see [25])

we obtain conditions for the derivatives of the function q and the potentials on the

cylindrical end

∆2q = O(r−2) (20)

|∂ω|2 = O(r−2 sin6 θ), |∂ψ|2 = O(r−2 sin2 θ), |∂χ|2 = O(r−2 sin2 θ). (21)

Finally, recall that the Yamabe condition (6) is conformally invariant, and therefore

if g̃i j is conformally related to gi j, then (M, g̃i j) also belongs to Y +, that is

∫
M
|∂ f |2g̃ + R̃ f 2dµg̃ > 0. (22)

The question we want to address is the following. Consider two sets of free data F0

and F giving rise, through (17), to corresponding conformal factors Φ0,Φ and thus, to

initial data satisfying the hypothesis H1-H3 above. If the free data are close in certain

norm, how close are the data constructed from them? Clearly, this depends mainly on

the relative size of the conformal factors. To study this problem we will think of F as

a deformation of the set F0, then look for a solution to Lichnerowicz equation close to

Φ0 and finally, estimate its relative size.
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Assume (Φ0,q0,ω0,ψ0,χ0) satisfy (17). Let |λ| be a sufficiently small number,

take

q0 → q0 +λq, ω0 → ω0 +λω, ψ0 → ψ0 +λψ, χ0 → χ0 +λχ (23)

for appropriate axially symmetric functions q,ω,ψ,χ and write

Φ0 → Φ := Φ0 +u. (24)

We demand the perturbed function Φ = Φ0 + u to satisfy Lichnerowicz equation (17)

and write the resulting equation for u as

G(λ,u) = 0 (25)

with

G(λ,u) = ∆u+
∆2q0u

4
+

λ

4
∆2q(Φ0 +u)+

(∂ω0 +λ∂ω)2

16ρ4(Φ0 +u)7
− (∂ω0)

2

16ρ4Φ7
0

+

+
(∂ψ0 +λ∂ψ)2

4ρ2(Φ0 +u)3
− (∂ψ0)

2

4ρ2Φ3
0

+
(∂χ0 +λ∂χ)2

4ρ2(Φ0 +u)3
− (∂χ0)

2

4ρ2Φ3
0

. (26)

Clearly, if λ = 0, we recover the Lichnerowicz equation for the background solution

Φ0 in the form

G(0,0) = 0. (27)

Our main result, presented in the next theorem proves that there exists a unique

solution u of (25) close to the background (0,0) for each small enough λ.

The weighted Lebesgue spaces L′2
δ [3], with weight δ ∈ R are the spaces of mea-

surable functions in L2
loc(R

3 \{0}) such that the norms

‖u‖L′2
δ
=

[∫
R3\{0}

|u|2r−2δ−3

]1/2

(28)

are finite. As usual the weighted Sobolev spaces H ′k
δ are defined with norms

‖u‖H ′k
δ
=

k

∑
j=0

‖D ju‖L′2
δ− j

. (29)

Theorem 2.1. Let q,ω,ψ,χ ∈C∞
0 (R

3 \Γ) be arbitrary smooth axially symmetric func-

tions. Then, there is λ0 > 0 such that for all λ ∈ (−λ0,λ0) there exists a solution

u(λ) ∈ H
′2
−1/2

of equation (25). The solution u(λ) is continuously differentiable in λ

and satisfies Φ0 +u(λ)> 0. Moreover, for small λ and small u (in the norm H
′2
−1/2

) the

solution u(λ) is the unique solution of equation (25).

Once u is found, we can re-construct the perturbed initial data in the same way as

it was explained above.

With this construction, a different wording of Theorem 2.1 can be presented as fol-

lows: given initial data D0 := (M,g0
i j,K

0
i j,E

0i,B0i) that satisfy hypotheses H1-H3, with

angular momentum J and electromagnetic charges QE and QB, there exists a mono-

parametric family of initial data sets (M,gi j(λ),Ki j(λ),E
i(λ),Bi(λ)), unique for each

λ sufficiently close to zero such that
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(i) gi j(0) = g0
i j, Ki j(0) = K0

i j, E i(0) = E0i, Bi(0) = B0i. The family is differentiable

in λ and it is close to D0 with respect to an appropriate norm which involves two

derivatives.

(ii) The data has the same asymptotic geometry as D0. The angular momentum,

charges and the area of the cylindrical end in the family do not depend on λ, they

have the same value as in D0.

(iii) The data are axially symmetric and time-rotational symmetric.

The λ-dependent initial data is to be constructed from the given functions (23) and the

solution u(λ) to equation (25). That is, one must solve equations (12)-(13) for K̃i j(λ)
and Fi j(λ) and use (9) to obtain the metric in terms of λ.

Before going to the proof of Theorem 2.1, we want to make some remarks.

• Several known black hole solutions fit into the hypotheses described above. In

particular the extreme Bowen-York initial data built in [15], the {t = 0} slice in

extreme Kerr and extreme Reissner-Nordström black holes. As we explained in

the introduction, the results of [14] are of course included in Theorem 2.1 for the

vacuum, extreme Kerr case. Moreover, a {t = 0} slice of the axially symmetric

Majumdar-Papapetrou solution also satisfies the hypotheses, but contains many

cylindrical ends (as many as black holes are described). This case is of particular

interest for us and will be dealt with in a subsequent paper. The main difficulty

that the many ends bring into the problem is the appropriate choice and treatment

of the Sobolev spaces involved.

• The method of proof we use not only gives us existence but also uniqueness

of solution for each λ. Moreover we also obtain an estimate on the perturbed

conformal factor in terms of the background one 0 ≤ √
rΦ ≤ max(

√
rΦ0) +

C1

√
C2/2 where C1,C2 are constants depending on Φ0 (see eq’s. (36), (38)). In

turn, this estimation on the conformal factor and the size of λ allows us to control

how different the initial data (M,gi j,Ki j,E
i,Bi) and (M,g0

i j,K
0
i j,E

0i,B0i) are.

• Axial symmetry is required to define in a well manner the angular momentum of

the initial data. Time-rotation symmetry is used to simplify the analysis of the

constraint equations as it gives an explicit and simple relation between the fields

Ki j,E
i,Bi and the potentials. We believe the most important ingredient for our

purposes that we obtain from this symmetry is the Yamabe positivity.

• In [14] it was shown that the weighted Sobolev space H
′2
−1/2

is specially appro-

priate for the study of small perturbations of solutions to Lichnerowicz equation

with a cylindrical end. By small here we mean that the structure of the cylindri-

cal end is unchanged by the perturbation (see [14] for details). This is due to the

fact that the background function satisfies Φ0 = O(r−1/2) asymptotically at the

cylindrical end. The perturbation is not meant to change the asymptotic structure

of the end, which translates to u = o(r−1/2) at the end. This behavior is captured

by the −1/2 weight in the Sobolev space.

• The compact support away from the symmetry axis of the metric function q is

required by the regularity desired on the metric g̃, this guarantees that there will

not be a conical singularity on the axis. On the other hand, in view of (14), the

compact support of ω,ψ,χ implies that there is no change in the angular mo-

mentum and charges of the data. Moreover, the whole horizon structure remains
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unaltered, in particular the horizon area will be the same as in the background.

This can be seen as follows. The horizon area is computed as

A = lim
r→0

∫
Br

dsg (30)

where Br is a coordinate ball of radius r and dsg is the area element with respect

to the metric gi j. This integral can be written as

A(λ) = lim
r→0

∫
Br

Φ4r2eq0+λq sinθdθdφ = lim
r→0

∫
Br

(Φ0 +u)4r2eq0+λq sinθdθdφ

(31)

and using the boundary conditions (19) and u = o(r−1/2) we find A = A0.

If one wants to alter, say, the angular momentum, then ω must have a precise

asymptotic behavior at r → 0 and the axis ρ = 0. We expect that a different treat-

ment will be necessary to deal with this case as it is likely that the perturbed solu-

tion Φ0+u will no longer have the same asymptotic behavior, resulting probably

in a different character for the end (changing from asymptotically cylindrical to

asymptotically flat or giving rise to a naked singularity).

• The condition of positive Yamabe for the background data (M,gi j), (6) does

not imply a non-negative conformal scalar curvature, R̃0 ≥ 0 as is assumed in

[9]. That is, R̃0 can attain positive, negative and zero values, we only know that

inequality (22) is satisfied. However, if on top of Yamabe positivity, we assume

R̃0 ≥ 0, we can estimate how small the deformation parameter λ needs to be in

order to guarantee the existence of a new solution. We find

λ ≤−∆2q0

∆2q
. (32)

This condition arises from equation (16) and the results in [9]. Note that this

does not depend on the size of the ω,ψ,χ functions, but only on the perturbation

function q.

3 Proof of main result

Sketch of the proof

The proof uses the Implicit Function theorem to show that there exists a unique so-

lution to (25). We first investigate the appropriate functional spaces where we expect

to find the solution. Then prove that the operator G is well defined and continuously

differentiable on these spaces. Finally, we prove that the associated linear operator DG

is an isomorphism. In this last step we use the Riesz Representation Theorem to find a

weak solution and then, a regularity theorem to prove that the weak solution is a strong

solution. The Yamabe condition (22) plays a key role in the last parts of the proof, as it

serves as the coercivity condition needed for the application of Riesz Theorem.

In this section we use several constants whose exact value is not relevant, we denote

them by Ci.

Sobolev spaces and neighborhoods used

We will work with the only non-trivial constraint equation written as (25) and look

for a solution u. In [14] the authors deal with an analogous map G, and choose G :

8



R×H ′2
−1/2

→ L′2
−5/2

considering the fall off behavior of the functions involved. As in

our case the asymptotic behavior is the same, we choose the same function spaces.

We are considering the map G : R×H ′2
−1/2

→ L′2
−5/2

, but for a general u ∈ H ′2
−1/2

the function Φ = Φ0 + u does not have a definite sign. In order for Φ to be a proper

conformal factor we need it to be positive. As we take Φ0 > 0, then we can conjecture

that if u is small enough, then Φ is also going to be positive. There are some subtleties

in the problem at hand, as we have a particular behavior at the cylindrical end. Even so,

it is possible to prove the conjecture, that is, to show that that there is a neighborhood

V of 0 in H ′2
−1/2

such that

Φ0 +u > 0. (33)

We start by noting that as Φ0 is a proper conformal factor, then it is positive and

bounded away from zero if we remove a neighborhood of the cylindrical end. Ap-

proaching the cylindrical end, Φ0 → r−1/2 as r → 0, thus we can conclude that there

are positive constants C1, C2, C3 and C4 such that

C1

√

r+C2 ≤
√

rΦ0 ≤C3

√

r+C4. (34)

The argument in [14] carries through. Consider the open ball of radius ξ around the

origin in H ′2
−1/2

,

V = {v ∈ H ′2
−1/2 : ||v||H ′2

−1/2
< ξ}, (35)

where ξ > 0 is yet to be defined. From Lemma A.1 in [14] we have that if ‖u‖H ′2
−1/2

< ξ

then there is a constant C such that

√
r|u| ≤Cξ. (36)

Given Φ0 satisfying (34) we find

√
r(Φ0 +u)≥C1

√

C2 −Cξ =: C5, (37)

and if we choose ξ such that

0 < ξ <
C1

√
C2

2C
(38)

then

C5 >
C1

√
C2

2
> 0, (39)

and therefore

Φ0 +u > 0. (40)

From now on ξ and V are fixed. The factor 1/2 in the r.h.s. of (38) is a technical

requirement needed later to perform some bounds.
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The map G : R×V → L′2
−5/2

is well defined

To prove that G : R×V → L′2
−5/2

is a well defined map we evaluate ‖G‖L′2−5/2
,

‖G(λ,u)‖L′2−5/2
≤ ‖∆u‖L′2−5/2

+ (41)

+

∥

∥

∥

∥

∥

λ∆2q

4
(Φ0 +u)

∥

∥

∥

∥

∥

L′2−5/2

+

∥

∥

∥

∥

∥

λ∂ω(2∂ω0 +λ∂ω)

16ρ4(Φ0 +u)7

∥

∥

∥

∥

∥

L′2−5/2

+ (42)

+

∥

∥

∥

∥

∥

λ∂ψ(2∂ψ0 +λ∂ψ)

4ρ2(Φ0 +u)3

∥

∥

∥

∥

∥

L′2−5/2

+

∥

∥

∥

∥

∥

λ∂χ(2∂χ0 +λ∂χ)

4ρ2(Φ0 +u)3

∥

∥

∥

∥

∥

L′2−5/2

+ (43)

+

∥

∥

∥

∥

∥

∆2q0

4
u

∥

∥

∥

∥

∥

L′2−5/2

+

∥

∥

∥

∥

∥

(∂ω0)
2

16ρ4

[

1

(Φ0 +u)7
− 1

Φ7
0

]

∥

∥

∥

∥

∥

L′2−5/2

+ (44)

+

∥

∥

∥

∥

∥

(∂ψ0)
2

4ρ2

[

1

(Φ0 +u)3
− 1

Φ3
0

]

∥

∥

∥

∥

∥

L′2−5/2

+

∥

∥

∥

∥

∥

(∂χ0)
2

4ρ2

[

1

(Φ0 +u)3
− 1

Φ3
0

]

∥

∥

∥

∥

∥

L′2−5/2

.(45)

The term on the r.h.s. of (41) is bounded by the definition of the H ′2
−1/2

norm. The terms

in (42) and (43) are bounded due to the compact support of q, ω, ψ and χ respectively.

The first term in (44) is bounded due to u ∈ H ′2
−1/2

and the behavior of q0 given in

(20). The remaining three norms are bounded due to the asymptotic conditions on the

background functions (21) together with the inequalities (34) and (37). This can be

seen as follows. Use the identity

1

ap
− 1

bp
= (b−a)

p−1

∑
i=0

ai−pb−1−i (46)

to write
1

Φ
p
0

− 1

(Φ0 +u)p
= r(p+1)/2uH, (47)

where

H =
p−1

∑
i=0

[
√

r(Φ0 +u)]i−p[
√

rΦ0]
−1−i. (48)

Using (34) and (37) we see that

H ≤C6, (49)

where C6 is a constant that only depends on previous constants. Using the conditions

(21) we can bound for instance

∥

∥

∥

∥

∥

(∂ψ0)
2

4ρ2

[

1

(Φ0 +u)3
− 1

Φ3
0

]

∥

∥

∥

∥

∥

L′2−5/2

≤C7

∥

∥

∥

∥

∥

r−2 sin2 θ

4ρ2
(r2uH)

∥

∥

∥

∥

∥

L′2−5/2

(50)

=
C7C6

4

∥

∥

∥

∥

∥

u

r2

∥

∥

∥

∥

∥

L′2−5/2

≤ C7C6

4
‖u‖L′2−1/2

≤ C7C6

4
‖u‖H ′2

−1/2
. (51)

Applying the same argument to the other terms involving ω0 and χ0 completes the

proof that ||G(λ,u)||L′2−5/2
is bounded and therefore the map is well-defined.
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The map G is continuously differentiable

We now prove that G is differentiable. To propose candidates for D1G(λ,u) and

D2G(λ,u) we calculate the directional derivatives

D1G(λ,u)[γ] :=
d

dt
G(λ+ tγ,u)

∣

∣

∣

∣

∣

t=0

, (52)

D2G(λ,u)[v] :=
d

dt
G(λ,u+ tv)

∣

∣

∣

∣

∣

t=0

, (53)

obtaining

D1G(λ,u)[γ] =

[

∂ω(∂ω0 +λ∂ω)

8ρ4(Φ0 +u)7
+

∆2q

4
(Φ0 +u)

+
∂ψ(∂ψ0 +λ∂ψ)

2ρ2(Φ0 +u)3
+

∂χ(∂χ0 +λ∂χ)

2ρ2(Φ0 +u)3

]

γ, (54)

D2G(λ,u)[v] = ∆v+

[

− 7(∂ω0 +λ∂ω)2

16ρ4(Φ0 +u)8
+

∆2q0 +λ∆2q

4

−3(∂ψ0 +λ∂ψ)2

4ρ2(Φ0 +u)4
− 3(∂χ0 +λ∂χ)2

4ρ2(Φ0 +u)4

]

v. (55)

We show that the operators are bounded. The L′2
−5/2

norm of each term inside square

brackets in (54) is bounded due to compact support, the conditions (21) and the in-

equality (37), then

‖D1G(λ,u)[γ]‖L′2−5/2
≤C8|γ|. (56)

For the second operator the proof is a bit more tricky. We have

‖D2G(λ,u)[v]‖L′2−5/2
≤ ‖∆v‖L′2−5/2

+

∥

∥

∥

∥

∥

[

− 7λ∂ω(2∂ω0 +λ∂ω)

16ρ4(Φ0 +u)8
− 7(∂ω0)

2

16ρ4(Φ0 +u)8
+

+
∆2(q0 +λq)

4
− 3λ∂ψ(2∂ψ0 +λ∂ψ)

4ρ2(Φ0 +u)4
− 3(∂ψ0)

2

4ρ2(Φ0 +u)4
−

− 3λ∂χ(2∂χ0 +λ∂χ)

4ρ2(Φ0 +u)4
− 3(∂χ0)

2

4ρ2(Φ0 +u)4

]

v

∥

∥

∥

∥

∥

L′2−5/2

(57)

= ‖∆v‖L′2−5/2
+

∥

∥

∥

∥

∥

[

− 7r2λ∂ω(2∂ω0 +λ∂ω)

16ρ4(Φ0 +u)8
− 7r2(∂ω0)

2

16ρ4(Φ0 +u)8
+

+
r2∆2(q0 +λq)

4
− 3r2λ∂ψ(2∂ψ0 +λ∂ψ)

4ρ2(Φ0 +u)4
− 3r2(∂ψ0)

2

4ρ2(Φ0 +u)4
−

−3r2λ∂χ(2∂χ0 +λ∂χ)

4ρ2(Φ0 +u)4
− 3r2(∂χ0)

2

4ρ2(Φ0 +u)4

]

v

r2

∥

∥

∥

∥

∥

L′2−5/2

(58)

≤ ‖v‖H ′2
−1/2

+C9‖v‖L′2−1/2
≤C10‖v‖H ′2

−5/2
, (59)

11



where again we have used that v∈H ′2
−1/2

, equations (37), (20) and (21) and the compact

support of ω, q, ψ and χ. This proves that the operators D1G and D2G are bounded.

To show that D1G is the partial Fréchet derivative we calculate

G(λ+ γ,u)−G(λ,u)−D1G(λ,u)[γ] (60)

=

[

(∂ω)2

16ρ4(Φ0 +u)7
+

(∂ψ)2

4ρ2(Φ0 +u)3
+

(∂χ)2

4ρ2(Φ0 +u)3

]

γ2, (61)

and as ω, ψ and χ have compact support

‖G(λ+ γ,u)−G(λ,u)−D1G(λ,u)[γ]‖L′2−5/2
≤C11|γ|2, (62)

which shows that

lim
γ→0

‖G(λ+ γ,u)−G(λ,u)−D1G(λ,u)[γ]‖L′2−5/2

|γ| = 0. (63)

For D2G we have

G(λ,u+ v)−G(λ,u)−D2G(λ,u)[v] (64)

=
(∂ω0 +λ∂ω)2

16ρ4

[

1

(Φ0 +u+ v)7
− 1

(Φ0 +u)7
+

7v

(Φ0 +u)8

]

(65)

+
(∂ψ0 +λ∂ψ)2

4ρ2

[

1

(Φ0 +u+ v)3
− 1

(Φ0 +u)3
+

3v

(Φ0 +u)4

]

(66)

+
(∂χ0 +λ∂χ)2

4ρ2

[

1

(Φ0 +u+ v)3
− 1

(Φ0 +u)3
+

3v

(Φ0 +u)4

]

(67)

=
(∂ω0 +λ∂ω)2

16ρ4
r

9
2 v2H1 +

(

(∂ψ0 +λ∂ψ)2

4ρ2
+

(∂χ0 +λ∂χ)2

4ρ2

)

r
5
2 v2H2 (68)

=

[

λ∂ω(2∂ω0 +λ∂ω)

16ρ4
r6H1 +

(∂ω0)
2

16ρ4
r6H1 + (69)

+
λ∂ψ(2∂ψ0 +λ∂ψ)

4ρ2
r4H2 +

(∂ψ0)
2

4ρ2
r4H2 (70)

+
λ∂χ(2∂χ0 +λ∂χ)

4ρ2
r4H2 +

(∂χ0)
2

4ρ2
r4H2

]

v2

r
3
2

(71)

where H1 is as in [14] and satisfies |H1|<C12 and H2 is given by

H2 =
1

[
√

r(Φ0 +u+ v)]3[
√

r(Φ0 +u)]4

2

∑
i=0

Ci[
√

r(Φ0 +u)]2−i(
√

rv)i, (72)

with Ci numerical constants and satisfy

|H2| ≤
1

(C1

√
r+C2 −2Cξ)7

2

∑
i=0

|Ci|(C3

√

r+C4 +Cξ)2−i(Cξ)i ≤C13. (73)
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Using that ω, ψ and χ have compact support

‖G(λ,u+ v)−G(λ,u)−D2G(λ,u)[v]‖L′2−5/2
≤C14

∥

∥

∥

∥

∥

v2

r
3
2

∥

∥

∥

∥

∥

L′2−5/2

≤C15‖v‖2
H ′2
−1/2

, (74)

where the last inequality has been calculated in [14]. This proves that D2G is the

Fréchet partial derivative.

The next step is to prove continuity of the derivatives. We compute 1.

‖D1G(λ1,u)[γ]−D1G(λ2,u)[γ]‖L′2−5/2
(75)

=

∥

∥

∥

∥

∥

[

(∂ω)2

8ρ4(Φ0 +u)7
+

(∂ψ)2

2ρ2(Φ0 +u)3
+

(∂χ)2

2ρ2(Φ0 +u)3

]

γ(λ1 −λ2)

∥

∥

∥

∥

∥

L′2−5/2

(76)

≤
[∥

∥

∥

∥

∥

(∂ω)2

8ρ4(Φ0 +u)7

∥

∥

∥

∥

∥

L′2−5/2

+

∥

∥

∥

∥

∥

(∂ψ)2

2ρ2(Φ0 +u)3
+

∥

∥

∥

∥

∥

L′2−5/2

(77)

+

∥

∥

∥

∥

∥

(∂χ)2

2ρ2(Φ0 +u)3
+

∥

∥

∥

∥

∥

L′2−5/2

]

|γ| |λ1 −λ2| (78)

≤C16|γ| |λ1 −λ2|, (79)

1Note that eq (55) in [14] has a typo. It should be a D2 derivative
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where again we used compact support and the bound (37). We also compute

‖D2G(λ,u1)[v]−D2G(λ,u2)[v]‖L′2−5/2

=

∥

∥

∥

∥

∥

{

7(∂ω0 +λ∂ω)2

16ρ4

[

1

(Φ0 +u2)8
− 1

(Φ0 +u1)8

]

+
3(∂ψ0 +λ∂ψ)2

4ρ2

[

1

(Φ0 +u2)4
− 1

(Φ0 +u1)4

]

+

+
3(∂χ0 +λ∂χ)2

4ρ2

[

1

(Φ0 +u2)4
− 1

(Φ0 +u1)4

]}

v

∥

∥

∥

∥

∥

L′2−5/2

(80)

=

∥

∥

∥

∥

∥

{

7(∂ω0 +λ∂ω)2

16ρ4
r9/2H3 +

3(∂ψ0 +λ∂ψ)2

4ρ2
r5/2H4

+
3(∂χ0 +λ∂χ)2

4ρ2
r5/2H4

}

v(u2 −u1)

∥

∥

∥

∥

∥

L′2−5/2

(81)

=

∥

∥

∥

∥

∥

{

7λ∂ω(2∂ω0 +λ∂ω)

16ρ4
r6H3 +

7(∂ω0)
2

16ρ4
r6H3 +

3λ∂ψ(2∂ψ0 +λ∂ψ)

4ρ2
r4H4 +

3(∂ψ0)
2

4ρ2
r4H4 +

3λ∂χ(2∂χ0 +λ∂χ)

4ρ2
r4H4 +

3(∂χ0)
2

4ρ2
r4H4

}

v(u2 −u1)

r3/2

∥

∥

∥

∥

∥

L′2−5/2

(82)

≤C17

∥

∥

∥

∥

∥

v(u2 −u1)

r
3
2

∥

∥

∥

∥

∥

L′2−5/2

≤C18‖v‖H ′2
−1/2

‖u1 −u2‖H ′2
−1/2

, (83)

where to go from (80) to (81) we used

r−9/2

(

1

(Φ0 +u1)8
− 1

(Φ0 +u2)8

)

= (u2 −u1)H3 (84)

and

r−5/2

(

1

(Φ0 +u1)4
− 1

(Φ0 +u2)4

)

= (u2 −u1)H4 (85)

with

H3 :=
7

∑
i=0

(
√

r(Φ0 +u1))
i−8(

√
r(Φ0 +u2))

−1−i, (86)

H4 :=
3

∑
i=0

(
√

r(Φ0 +u1))
i−4(

√
r(Φ0 +u2))

−1−i. (87)

Lines (82) are merely a convenient re-writing of (81). To go from (82) to (83) we

use the asymptotic conditions on the background functions (21), that ω, ψ and χ have

compact support, the bounds

|H3| ≤C19, |H4| ≤C20 (88)
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and combined all the constants into C17. Then we have

‖D2G(λ,u1)[v]−D2G(λ,u2)[v]‖L′2−5/2
≤C6‖v‖H ′2

−1/2
‖u1 −u2‖H ′2

−1/2
(89)

proving that the derivative operator (55) is also continuous.

The map D2G(0,0) : H ′2
−1/2

→ L′2
−1/2

is an isomorphism

Finally, we need to prove that L := −D2G(0,0) : H ′2
−1/2

→ L′2
−1/2

is an isomorphism.

As in [14], we can write

D2G(0,0)[v] = ∆v−αv, (90)

α =−∆2q0

4
+7

(∂ω0)
2

16ρ4Φ8
0

+3
(∂ψ0)

2 +(∂χ0)
2

4ρ2Φ4
0

, (91)

which can be written as

α = hr−2 (92)

and h is a bounded function in R
3 with h ∈ L2(M). In [11] it was proven that when h is

positive, the operator (90) is an isomorphism. In general, due to the first term in (91),

α is not necessarily positive. However, here is where the Yamabe positivity condition

plays a role. We have the following important result.

Lemma 3.1. Let (M, g̃i j) be in the positive Yamabe class, namely

∫
M
|∂ f |2g̃ + R̃ f 2dµg > 0 (93)

for all f ∈C∞
0 , f 6= 0, then ∫

M
|∂ f |2 +α f 2dµ > 0 (94)

where α is given in (91) and the norm and volume element in (94) are computed with

respect to the flat metric.

Proof We start with the left hand side of (94)
∫

M

[

|∂ f |2 +α f 2
]

dµ = (95)

=
∫

M

[

|∂ f |2 − ∆2q0

4
f 2

]

dµ+
∫

M

(

7
(∂ω0)

2

16ρ4Φ8
0

+3
(∂ψ0)

2 +(∂χ0)
2

4ρ2Φ4
0

)

f 2dµ ≥(96)

≥
∫

M

[

e−2q0 |∂ f |2 −2e−2q0
∆2q0

8
f 2

]

e2q0 dµ = (97)

=
∫

M

[

|∂ f |2g̃ + R̃ f 2
]

dµg̃ > 0, (98)

which proves the claim. Note that in order to go from (97) to (98) we have used the

background metric g̃ = e2q(dr2 + r2dθ2)+ r2 sin2 θdφ2.

�

Theorem 3.2. The linear map L defined by

Lu :=−∆u+αu = f in R
3 \{0}, (99)

where α is given by (91)-(92) and satisfies (94), is an isomorphism H
′2
−1/2

→ L
′2
−5/2

.
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The proof of this result will be given below and departs slightly from [14] because

we exploit the symmetry of the weak problem associated to (99) to apply the Riesz

Representation theorem instead of Lax-Milgram theorem used in [11]. This is impor-

tant as we will no longer need to prove the coercivity condition.

We first prove the existence of a weak solution (Lemma 3.3) and then we find it to

be regular.

Lemma 3.3. There exists a unique weak solution u∈H
′1
−1/2

of (99) for each f ∈ L
′2
−5/2

.

Proof. For u,v ∈ H
′1
−1/2

, define the bilinear form

B[u,v] :=

∫
R3

∂u ·∂v+αuvdµ (100)

which corresponds to the linear operator L .

Let us check that B[ , ] satisfies the hypotheses of Riesz Representation theorem

(see [18]). We first need to prove that the B[u,v] can be taken as an inner product on

H
′1
−1/2

×H
′1
−1/2

. By the Yamabe condition we know that for all u 6≡ 0, B[u,u] > 0 and

also, by definition, if u ≡ 0, then B[u,u] = 0. Therefore, the bilinear form is positive

definite. Second, it can easily be proven that B[u,v] = B[v,u] and that B[u,av+ cw] =
aB[u,v]+ bB[u,w]. Therefore, B[u,v] is an inner product. Next we need to prove that

the linear functional ℓ(·) := B[·,v] is bounded for all v ∈ H
′1
−1/2

. This is done exactly as

in [11]

|B[u,v]| ≤
∣

∣

∣

∣

∫
∂u ·∂vdµ

∣

∣

∣

∣

+

∣

∣

∣

∣

∫
αuvdµ

∣

∣

∣

∣

(101)

≤ |∂u|L2 |∂v|L2 +C|ur−1|L2 |ur−1|L2 (102)

≤ |∂u|L2 |∂v|L2 +C|u|L′2−1/2
|u|L′2−1/2

(103)

≤ max{1,C}|u|H ′1
−1/2

|u|H ′1
−1/2

. (104)

Then with these conditions fulfilled, Riesz Representation Theorem states that there

exists a unique u ∈ H
′1
−1/2

such that

B[u,v] = 〈 f ,v〉, ∀v ∈ H
′1
−1/2, (105)

that is, such that ∫
R3
(Lu− f )vdx = 0, ∀v ∈ H

′1
−1/2. (106)

Therefore u is the unique weak solution of Lu = f .

Next, we use Lemma A.3 in [11] to prove regularity of solution, namely

Lemma A.3 in [11]. Let f ∈ L
′2
−5/2

. Assume u∈H
′1
−1/2

is a weak solution of Lu= f .

Then u ∈ H
′2
−1/2

.

These two lemmas show that there exists a unique function u ∈ H
′2
−1/2

which solves

equation −∆u+αu = f a.e, for each f ∈ L
′2
−5/2

. This, in turn, means that L :=−∆+α

is an isomorphism H
′2
−1/2

→ L
′2
−5/2

, proving Theorem 3.2.
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A Time-rotation symmetry

An axially symmetric initial data (M,gi j,Ki j,E
i,Bi) has the time-rotation symmetry if,

in the coordinates associated with the axial symmetry, under the map φ→−φ the initial

data map as

gi j → gi j, Ki j →−Ki j, E i → E i, Bi → Bi. (107)

This symmetry on the level of the initial data implies that the development is invariant

under the transformation (t,φ)→ (−t,−φ) (see [2], [22], [5]).

Using the symmetries it can be concluded that (see [8], [13])

K̃i jK̃i j =
|Dω|2g̃
2|η|4g̃

= e−2q (∂ω)2

2ρ4
. (108)

We consider now the electric and magnetic fields. Since the initial data is axially

symmetric, the components of the fields in (ρ,z,φ) coordinates do not depend in the φ
coordinate. This means in particular that

E3(ρ,z,−φ) = E3(ρ,z,φ).

On the other hand, the discrete symmetry φ →−φ on the initial data implies

E3(ρ,z,−φ) =−E3(ρ,z,φ),

and therefore

E3(ρ,z,φ) = 0. (109)

Taking into account that

η = dφ, (110)

we can write the previous condition in a coordinate invariant way as

E iηi = 0. (111)

The condition

Biηi = 0 (112)

is proven in an analogous way. We can reconstruct the fields from the potentials, and

using (111) and (112) we have

E i =
1

|η|2 εi jkη j∂kψ, (113)

Bi = − 1

|η|2 εi jkη j∂kχ. (114)

Rescaling and taking the norm we finally arrive at expressions (15)

From the electric and magnetic field we can reconstruct the electromagnetic tensor

Fi j = 2E[in j]−Bknlεkli j, (115)

where n is the normal to the surface M. In terms of the potentials

Fi j =
1

|η|2
(

2η[i∂ j]χ−ηk∂lψεkl
i j

)

. (116)
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B Maxwell equations in terms of the potentials

Here we show that the Maxwell equations

∇ ·E = 0, ∇ ·B = 0 (117)

are automatically satisfied by any choice of potentials ψ,χ. In terms of the potentials

we have (see [8]-[12])

E1 =
1√
g33

∂2ψ, E2 =− 1√
g33

∂1ψ, E3 =
1√
g33

∂nχ (118)

In components we write

∇ ·E = gab∇aEb = gab(∂aEb −Γc
abEc) (119)

= g11(∂1E1 −Γ1
11E1 −Γ2

11E2 −Γ3
11E3)+ (120)

+ g22(∂2E2 −Γ1
22E1 −Γ2

22E2 −Γ3
22E3)+ (121)

+ g33(∂3E3 −Γ1
33E1 −Γ2

33E2 −Γ3
33E3)+ (122)

(123)

Due to axial symmetry we have ∂3E3 = 0, Γ3
33 = 0 and g11 = g22, which leaves us

with

∇ ·E = g11∂2ψ
[

∂1(g
−1/2

33 )−g
−1/2

33 (Γ1
11 +Γ1

22 +g11g33Γ1
33)

]

− (124)

− g11∂1ψ
[

∂2(g
−1/2

33 )−g
−1/2

33 (Γ2
11 +Γ2

22 +g11g33Γ2
33)

]

− (125)

− g11g
−1/2

33 ∂nχ(Γ3
11 +Γ3

22) (126)

Now use that

−Γ1
22 = Γ1

11 =
1

2
g11g11,1 (127)

−Γ2
11 = Γ2

22 =
1

2
g11g11,2 (128)

Γ3
ii = 0 (129)

Γi
33 =−1

2
g11g33,i (130)

to obtain

∇ ·E = g11∂2ψ

[

−1

2
g
−3/2

33 ∂1g33 +
1

2
g
−3/2

33 ∂1g33

]

− (131)

− g11∂1ψ

[

−1

2
g
−3/2

33 ∂2g33 +
1

2
g
−3/2

33 ∂2g33

]

= (132)

= 0. (133)

And similarly for ∇ ·B = 0. This means that Maxwell constraints are automatically

satisfied when the fields are written in terms of the potentials ψ,χ, leaving no equations

for the potentials.
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