
Probing the energy reactance with adiabatically driven quantum dots
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The tunneling Hamiltonian describes a particle transfer from one region to the other. While there
is no particle storage in the tunneling region itself, it has associated certain amount of energy. We
name the corresponding flux energy reactance since, like an electrical reactance, it manifests itself in
time-dependent transport only. Noticeably, this quantity is crucial to reproduce the universal charge
relaxation resistance for a single-channel quantum capacitor at low temperatures. We show that a
conceptually simple experiment is capable of demonstrating the existence of the energy reactance.

PACS numbers: 73.23.-b, 72.10.Bg, 73.63.Kv, 44.10.+i

Motivation. A very exciting experimental activity is
lately taking place in search of controlling on-demand
quantum coherent charge transport in the time domain.
The recent burst of activity started with the experimen-
tal realization of quantum capacitors in quantum dots
under ac driving [1], single particle emitters [2], and was
followed by the generation of quantum charged solitons
over the Fermi sea (levitons) [3]. A controlled manipula-
tion of flying single electrons [4–6] and their time-resolved
detection [7] have already been reported [8]. These mar-
velous developments, along with the identically impres-
sive progress in the field of fast thermometry [9–11], are
opening an avenue towards the study and control of the
concomitant time-dependent energy flow in the quantum
realm.

The relevant systems are characterized by small
(nanoscale) components confining a small number of par-
ticles in contact to macroscopic reservoirs. This puts
the description of the energy transport and heat gener-
ation beyond the scope of usual thermodynamical ap-
proaches, motivating a number of formal theoretical de-
velopments in statistical mechanics [12] and condensed
matter physics [13]. At the heart of this problem, there
is the proper definition of the quantum heat current in
the time domain. The concept of heat looks very intu-
itive and anyone can provide a definition for it. Formally,
it is a clear and well established concept in macroscopic
systems close to equilibrium. However, its accurate defi-
nition at the nanoscale and in situations away from equi-
librium is a deep and subtle issue, in particular due to the
coupling between a nanosystem and macroscopic reser-
voirs; see, e.g., Refs. 14–23. In fact, while charge and
energy are concepts obeying strict fundamental conser-
vation laws, the definition of heat implies the proper iden-
tification of a portion of the total energy.

An appealing scenario to address this problem from
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FIG. 1. Schematic of our proposal. The quantum RC circuit
consists of a quantum dot (blue disk) coupled to a fermionic
reservoir (light blue region) with well defined temperature T
and chemical potential µ. Electrons can be transferred be-
tween the dot and the reservoir (black curve). The dot is
capacitively coupled to a gate terminal where an ac potential
of amplitude V and frequency Ω is applied. A floating contact
is also attached to the dot. The temperature Tc and chemi-
cal potential µc of the floating contact adjust themselves to
cancel both the charge and heat current flowing through it,
thus allowing for an experimental test of the energy reactance,
namely, the variation of the stored energy at the tunneling re-
gion between the floating contact and the dot (gray line).

the theoretical point of view is a periodically driven sin-
gle level in contact to an electron reservoir. This is the
most basic and meaningful setup to analyze the inter-
play of charge and energy dynamics. At the same time,
this is the simplest model for a quantum RC circuit [24],
which has been experimentally realized [1]. A sketch
is presented in Fig. 1, where we stress that the driven
level represents a quantum dot. The nonequilibrium in-
gredient is provided by the time-dependent gate voltage
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V (t) = V cos (Ωt) locally applied to the single level. The
reservoir is an electron gas with temperature T and chem-
ical potential µ, and the strength of the coupling between
the two subsystems is arbitrary. The setup also includes
a “floating contact”, which we will discuss in detail later
on.

The effect of the periodic driving is twofold. On one
hand, it induces a charge current that flows between the
dot and the reservoir as a function of time. On the other
hand, it performs a work on the system, thus injecting
energy that is ultimately dissipated as heat deep inside
the reservoir. Importantly, due to charge conservation,
the electronic current is defined as the change in time of
the electron number either at the reservoir or on the dot.
No contribution of the tunneling region on the charge
current exists. In contrast, the energy delivered by the
external ac source is temporarily stored in three different
parts of the setup: the dot, the reservoir and also in the
dot-reservoir tunneling region. The role of the tunneling
region is typically disregarded in classical thermodynam-
ics because it is a surface term that is negligible when
both the system and the reservoir are macroscopic [26].
Yet, in the nanoscale setup studied here the amount of
energy stored in the dot is comparable to that of the tun-
neling region and the latter can no longer be neglected.

In a recent work [15] we have coined the name of energy
reactance to characterize the energy temporarily stored
at the tunneling region. This is a thermal analogue of
an electrical reactance (due to electrical capacitance and
inductance), which manifests itself in a time-dependent
setup only. We have argued that it is physically mean-
ingful to take the energy reactance into account as a
contribution to the time-dependent heat current flow-
ing into the reservoir. We have shown that this is in
full agreement with the laws of thermodynamics [13, 23].
While some recent works raised some concerns [18, 22],
other works arrived at conclusions similar to our analy-
sis [14, 17, 21]. The aim of the present work is to make
one step further by proposing a measurement scheme that
is able to test the effect of the energy reactance onto a
time-dependent heat flux.

Proposed experiment and predictions. The setup is
sketched in Fig. 1, where we introduce a floating con-
tact attached (e.g., via tunneling) to the quantum dot.
When a periodic gate voltage V (t) is applied, charge and
heat currents enter not only the reservoir but also the
floating contact. The latter can adjust its chemical po-
tential µc and temperature Tc to maintain zero charge
and heat currents flowing into it. We will focus on slow
“adiabatic” driving, which corresponds to a driving pe-
riod much larger than any characteristic time scale for
the system. Assuming that the charge and energy relax-
ation rate of the floating contact is much faster than any
other characteristic time, µc and Tc will change instan-
taneously to prevent charge and heat accumulation on
the floating contact. In contrast, the reservoir is a mas-

sive electrode that keeps its temperature and chemical
potential constant independently of the ac potential. In
practice, this can be achieved grounding the reservoir as
indicated in Fig. 1. Its temperature variations would be
suppressed if the reservoir has in addition a large heat
capacity.

The evolution of the chemical potential and temper-
ature of the floating contact as the dot is aidabatically
driven can be sensed by means of a voltage probe and
a thermometer [27–35], as indicated in the figure. We
predict different behaviors for µc and Tc depending on
whether the energy reactance is considered or not in the
heat flux into the floating contact. In this way, the pro-
posed experiment would help to discern on the proper
definition of the heat current and test the existence of
the energy reactance.

The results are the following: (i) By defining the heat
flux into the floating contact, taking into account the
energy reactance as in Ref. 15, the temperature of the
floating contact does not vary with time. The outcome
is

Tc = T , (1)

where T is the background temperature. The chemical
potential of the contact µc(t) does vary with time in a
periodic fashion with a period dictated by the electrical
current flowing through the dot. (ii) We demonstrate
that any other definition of the heat current, that does
not properly account for the energy reactance, necessarily
leads to a change in both quantities, Tc(t) and µc(t) as
functions of time.

Heat current into the floating contact and quantum en-
ergy reactance. Let the rates of change for the charge and
the internal energy stored in the floating contact due to
exchanges with the rest of the device be, respectively,
Ṅc(t) and U̇c(t). Similarly, the rate of change for the en-
ergy stored at the tunneling region between the dot and
the floating contact is denoted by U̇Tc(t). The meaning-
ful definition for the instantaneous heat current entering
the floating contact is [15]

Q̇c(t) = U̇c(t) +
U̇Tc(t)

2
− µc(t)Ṅc(t) . (2)

The energy reactance, U̇Tc(t)/2, contributes to the heat
flux only instantaneously and as such vanishes when av-
eraged over one driving period.

From the theoretical point of view, the energy reac-
tance is necessary to derive an instantaneous Joule law
for the heat current into a (single-channel) floating con-
tact at low temperatures, Q̇c(t) = Rq[Ṅc(t)]

2, with the
universal charge relaxation resistance, the Büttiker re-
sistance, Rq = h/2e2 [1, 24]. The energy reactance is
also necessary to both reconcile the relation between the
Green function and the scattering matrix formalisms [25]
for the instantaneous heat current [15] and also to obtain
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correct frequency parity properties of the response func-
tions [17].

Temperature and chemical potential of the floating con-
tact. Our goal is to explicitly show that the definition of
Eq. (2) can be verified by measuring the temperature
and chemical potential of the floating contact. The lat-
ter is a small conductor that we assume to be in ther-
mal equilibrium at every instant of time such that both
temperature and chemical potential adjust themselves to
satisfy the condition of vanishing charge and vanishing
heat current, i.e., µc(t) and Tc(t) simultaneously fulfill
Q̇c(t) = Ṅc(t) = 0. The local equilibrium condition is
justified in the adiabatic regime (very low driving fre-
quency Ω), mostly accessible in experiments [1]. De-
viation of the floating contact temperature and chem-
ical potential from their stationary values are denoted
by δTc(t) = Tc(t) − T and δµc(t) = µc(t) − µ, respec-
tively. In the adiabatic regime, these quantities are small,
δTc(t), δµc(t) ∝ ~Ω. As a consequence, we can evaluate
both charge and heat fluxes in linear response in these
quantities (while the amplitude of the ac driving poten-
tial is arbitrary).

Following Refs. 23 and 37 we expand the fluxes J(t) ≡(
Ṅc(t), Q̇c(t)

)
in the affinities X = (δµc(t), δTc(t), ~Ω),

with coefficients Λij(t) as

Ji(t) =

3∑
j=1

Λij(t)Xj(t), (3)

where i = 1, 2 (j = 1, 2, 3) label the different components
of the vectors J and X, respectively. The coefficients
of the above expansion are response functions evaluated
with the frozen Hamiltonian at time t and have the fol-
lowing physical interpretation: Λ11 and Λ22 are the usual
electric and thermal conductances. On the other hand,
Λ12 (related to the Seebeck effect) and Λ21 (related to the
Peltier effect) capture the thermoelectric transport, and
they satisfy the reciprocity relation Λ21 = TΛ12 [38–41].
Finally, Λ13 and Λ23 describe, respectively, the genera-
tion of charge and heat currents by the ac driving. They
also obey Onsager relations with the coefficients entering
the work flux (not considered here) [37]. Explicit expres-
sions of these coefficients will be supplied below for the
specific model.

Here, we notice that the conditions of vanishing fluxes
to the floating contact amounts to finding the solu-
tion of the 2 × 2 linear set of equations

∑2
j=1 ΛijXj =

−Λi3 ~Ω, i = 1, 2. The solutions are

δµc(t) =
Λ12Λ23 − Λ13Λ22

det Λ′
~Ω,

(4)

δTc(t) =
Λ13Λ21 − Λ11Λ23

det Λ′
~Ω,

where det Λ′ corresponds to the determinant of the 2× 2
matrix determined by the condition j 6= 3.

The coefficients Λ can be calculated for the system
considered in Fig. 1 following Refs. 25 and 36 (see details
in Ref. 42)

Λij(t) =


∫ (ε−µ)i+j−2

hT (j−1) T (t, ε) ∂εf dε if j 6= 3

− ΓcV̇
(Γ+Γc)hΩ

∫
(ε− µ)i−1ρf (t, ε) ∂εf dε if j = 3 ,

(5)
The distinction between j 6= 3 and j = 3 is impor-
tant. In the former case, the response depends on the
instantaneous transmission probability T (t, ε) for elec-
trons traversing the quantum dot between the reservoir
and the floating contact. Physically, this corresponds to
dc transport. In the latter case, the response is a func-
tion of the time derivative of the potential applied to
the gate, V̇ = −ΩV sin (Ωt), and the instantaneous local
density of states of the dot, ρf (t, ε). Physically, this is
pumping and, as such, of ac nature. Both coefficients are
time dependent because the system adiabatically reacts
to the instantaneous ac driving potential [43]. Finally, in
Eq. (5) f is the Fermi-Dirac distribution of the reservoir,
while Γc = |wc|2ρc and Γ = |w|2ρ are the hybridization
functions with wc the dot-floating contact couplings and
w the dot-reservoir couplings. The density of states of
the floating contact is ρc and that of the reservoir is ρ.

Interestingly, we readily find that the coefficients of
Eq. (5) satisfy i) Λ13Λ21 − Λ11Λ23 = 0 and ii) Λj3 =

−Λj1
V̇
ΓΩ with j = 1, 2, leading to the solution

δTc(t) = 0, δµc(t) =
~
Γ
eV̇ . (6)

From Eq. (4) and the relation ii), we see that the above
results do not actually depend on coupling to the floating
contact. We have checked that Eq. (6) is valid for any
temperature T , provided that the adiabaticity condition
Γ,Γc � ~Ω is satisfied [44, 45]. This is true even for
temperatures close to zero, in which case the second order
contributions in the affinities should be added to Eq. (3)
[42].

In summary, the floating contact fulfills the conditions
of vanishing heat and charge fluxes by changing δµc(t) in
time according to Eq. (6) while keeping its temperature
constant and equal to the background temperature, as
indicated in Eq. (1).

Examine the energy reactance. We would like to stress
now that Eq. (6), in particular, the prediction of a con-
stant temperature of the floating contact expressed in Eq.
(1), constitutes a proof for the existence of the energy re-
actance U̇Tc(t)/2 and the definition of the heat current
as in Eq. (2). This can be easily understood by noticing
that we would arrive at completely different conclusions
on the behavior of the temperature of the floating con-
tact if we consider a definition of the heat flux that does
not take into account the energy reactance.

As a proof, let us analyze the consequence of adopt-
ing a commonly used definition, that does not take into
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account the energy reactance. This corresponds to the
following expression for the heat flux into the floating
contact,

˙̃Qc(t) = U̇c(t)− µc(t)Ṅc(t). (7)

We need to recalculate the coefficients Λ2j(t) by us-
ing the above equation. We denote the so defined co-
efficients by Λ̃2,j(t). From Eq. (4), where we replace

Λ2,j(t) → Λ̃2,j(t), j = 1, 2, 3, we find the floating con-

tact temperature δT̃c(t) and chemical potential δµ̃c(t).
In contrast to Eq. (6), now we find that both the tem-
perature δT̃c(t) and the chemical potential δµ̃c(t) of the
floating contact change in time. In the case of the chem-
ical potential, δµ̃c evolves in time in a different pattern
from that described by Eq. (6). We turn to focus on
the behavior of the temperature δT̃c, which is shown in
Fig. 2. It is worth noting that the amplitude of the δT̃c
oscillations decreases as T increases, which shows that
the two definitions of the heat current agree in the high
temperature limit. These results show that the role of the
energy reactance is particularly relevant in the quantum
regime. In the classical high-temperature limit the tem-
perature of the floating contact is independent of time,
either with the heat current defined as in Eq, (2) or with
the definition of Eq. (7).

0.0 0.1 0.2 0.30.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0
tΩ/2π
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FIG. 2. Deviation of the temperature of the floating contact,
δT̃c, as a function of time for different background tempera-
tures T . The ac potential is 20 Γ cos(Ωt) with ~Ω = 0.07Γ.
The hybridization between the floating contact and the quan-
tum level is Γc = 0.6Γ. All energies are expressed in units
of the hybridization Γ with the reservoir. The temperature
of the floating contact displays oscillations that depend on
the background temperature. As T increases, the oscillations
become less pronounced and the maxima positions deviate
from the moment when the level is aligned with the chemical
potential of the reservoir, which in this case corresponds to
tΩ/2π = 0.25 and tΩ/2π = 0.75.

Conclusion. We have shown that the behavior of the
time-resolved chemical potential and temperature of a
floating contact coupled to an adiabatically driven quan-
tum dot is strongly sensitive on the definition of the
instantaneous heat flux. For this reason, sensing these
quantities would provide an experimental test for the rel-
evance of the energy reactance introduced in Ref. [15] as
a component of the time-dependent heat flux.

Specifically, for an adiabatically driven quantum dot
with a single active level coupled to a single reservoir,
we have shown that: (i) If the energy reactance is taken
into account, then the temperature of the floating contact
is constant and equal to that of the reservoir, while its
chemical potential follows the time derivative of the driv-
ing potential, V̇ , as expressed in Eq. (6). Instead, (ii) if
the energy reactance is not taken into account, these two
quantities follow a nonuniversal and rather cumbersome
time-dependent pattern.

The experiment we propose is close to the scope of
present-day experimental techniques. In fact, typical
level spacing for quantum dots is around 100 µeV [46].
Thus, by keeping driving amplitudes below this energy,
we would basically have a single active level. On the other
hand, typical parameters for single particle emitters have
Γ ' 1µeV (' 1 GHz) and are operated at frequencies
Ω ' 0.1 GHz [1], which satisfy the adiabatic condition
~Ω < Γ. As a consequence, a fast thermometer [9] is
able to follow temperature changes of the floating con-
tact on the nanosecond scale. Experiments are typically
performed at temperatures close to T ∼ 100 mK. For this
temperature, the oscillations in the temperature shown
in Fig. 2 have an amplitude of δT̃c ' 10 mK.

We emphasize that the question about the role of the
energy reactance in the definition of a time-dependent
heat flux is a fundamental one. It is not restricted to
slowly driven systems of noninteracting electrons but is
also relevant for interacting models, for fast drivings,
and for weakly and strongly coupled systems. So far
this question has been addressed only theoretically. The
present proposal shows that a thermometer probe re-
sponse will experimentally demonstrate the existence of
the energy reactance.
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[2] G. Fève, A. Mahé, J.-M. Berroir, T. Kontos, B. Plaçais,
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PROBING THE ENERGY REACTANCE WITH ADIABATICALLY DRIVEN QUANTUM DOTS:
SUPPLEMENTARY INFORMATION

This supporting document describes in detail the derivation of the time-dependent linear response coefficients for
particle and heat currents flowing into the floating contact.

Theoretical model

We consider a simple setup, with all the necessary ingredients to analyze the dynamical energy transfer and to
probe the energy reactance. It is the most basic model for a quantum capacitor, which consists in a periodically
driven single level (quantum dot) coupled to an electron bath, the reservoir, with temperature Tr = T and chemical
potential µr = µ. The time-dependent driving is provided by the application of an oscillatory gate voltage of the form
V (t) = V cos(Ωt).

To test the effect of the energy reactance on the time-dependent heat flux, we introduce a floating contact, which
is coupled to the driven level. In order to be electrically and thermally isolated from the environment at every time,
the floating contact instantaneously adjusts its chemical potential µc and temperature Tc.

The Hamiltonian of the full system, the quantum capacitor together with the floating contact, can be separated
into three contributions,

H(t) = HQC(t) +Hc +HTc . (S1)

The Hamiltonian HQC represents the quantum capacitor, which contains three elements: the single level, an electron
bath (the reservoir, denoted by the letter r), and the coupling between the two. Then,

HQC(t) =
∑
k

[
εrkc
†
kck + w(d†ck + c†kd)

]
+ (ε0 + V (t))d†d, (S2)

where εrk is the energy band of the reservoir and w is the coupling amplitude to the driven level. The energy ε0

corresponds to the bare level, which for simplicity will be considered aligned with the chemical potential of the
reservoir, i.e. ε0 = µ . The operator c†k(ck) create (destroy) an electron with a wavevector k in the reservoir, while d†

and d are associated to the degrees of freedom of the single level.
Similarly, the floating contact is represented by the Hamiltonian,

Hc =
∑
q

εcqa
†
qaq, (S3)

while in this case, the operators aq and a†q are responsible, respectively, for the creation and destruction of an electron
in the floating contact with an energy εcq. The coupling between the level and the floating contact can be written as

HTc =
∑
q

wc(d†aq + a†qd). (S4)

Particle and heat currents

Now, the aim is to compute the particle and heat fluxes entering the floating contact. The time variation of the
particles present in the floating contact is given by the exact expression, Ṅc = i

~ 〈[H,Nc]〉. To compute the time-
dependent heat current as in Eq. (2), or by adopting the definition (7), we define the internal energy stored in the
floating contact and in the tunneling region as U̇β = i

~ 〈[H,Hβ ]〉, with β = c, Tc.
In Refs. [1] and [2], we presented that the evolution of the expectation value of an observable (e.g the number of

particles or the energies) can be obtained by recourse to Keldysh non-equilibrium Green’s functions. In this way, the
different currents can be computed in terms of the retarded Green function GR(t, t′) = −iθ(t − t′)〈{d(t), d†(t′)}〉 of
the single level. For a time-periodic driving it is convenient to use the Floquet-Fourier representation [3],

GR(t, t′) =

∞∑
n=−∞

∫ ∞
−∞

dε

2π
e−i

ε
~ (t−t′)e−inΩtG(n, ε). (S5)
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As we showed in detail in Ref. [1] for a single driven level connected to many reservoirs, the particle current entering
one of them, as for example the floating contact, is

Ṅc(t) =
∑
l

∫
dε

h
e−ilΩtΓc

{
iG∗(−l, ε) [fc(ε)− fc(εl)]−

∑
n

∑
α=r,c

[fc(ε)− fα(εn)] ΓαG(l + n, εn)G∗(n, εn)

}
, (S6)

where α = r corresponds to the reservoir of the capacitor, and α = c is the floating contact. Some of the energies are
shifted by a multiple of the energy quantum ~Ω as εn = ε−n~Ω. We have introduced the Fermi-Dirac distribution of
the reservoir labeled by α, fα(ε) = [e(ε−µα)/kBTα + 1]−1, with kB being the Boltzmann constant. The hybridizations
with the reservoirs are Γc = |wc|2ρc for the floating contact and Γ = |w|2ρ for the reservoir, with ρc =

∑
k∈c 2πδ(ε−εck)

and ρ =
∑
k∈m 2πδ(ε− εmk ) being the density of states of the floating contact and the reservoir, respectively. We are

considering the wide band limit, in which Γc and Γ are constant functions.
In the same work [1], and also in Ref. [2] for a more general setup, we showed that according to the definition in

Eq. (2) the heat flux is

Q̇c(t) =
∑
l

∫
dε

h
e−ilΩtΓc

{
iG∗(−l, ε)(ε l

2
− µc) [fc(ε)− fc(εl)]

−
∑
n

∑
α=r,c

(ε− l
2
− µc) [fc(ε)− fα(εn)] ΓαG(l + n, εn)G∗(n, εn)

}
. (S7)

If we adopt the definition in Eq. (7), which does not take into account the energy reactance U̇Tc(t)/2, then

˙̃Qc(t) =
∑
l

∫
dε

h
e−ilΩtΓc

{
iG∗(−l, ε)

[
(ε− µc)(fc(ε)− fc(εl)) + l~Ωfc(εl)

]

−
∑
n

∑
α=r,c

[
(ε− µc)(fc(ε)− fα(εn))− l

2
~Ωfα(εn)

]
ΓαG(l + n, εn)G∗(n, εn)

}
. (S8)

Here, we stress that all the above expressions for both particle and heat fluxes are exact, in the sense that they are
valid for arbitrary values of the driving frequency, amplitude and temperature.

Linear response coefficients Λ and Λ̃

In what follows, we focus on the adiabatic regime, in which the driving frequency Ω is very low. As we presented
in our previous works [1, 2], to which we refer the reader for further details, we can expand the Floquet components
G(n, ε) up to first order in Ω as

G(n, ε) ∼
∫ τ

0

dt

τ
einΩt

[
Gf (t, ε) +

i~
2

∂2

∂t∂ε
Gf (t, ε)

]
. (S9)

Here τ = 2π/Ω is the driving period, and

Gf (t, ε) =

(
ε− ε0 − V (t)− i (Γ + Γc)

2

)−1

(S10)

is the frozen Green’s function, which corresponds to the equilibrium solution of the Dyson equation [4] at a given
frozen time t.

Within the adiabatic regime, the departures of the temperature and chemical potential of the floating contact from
those of the reservoir, δTc and δµc, are proportional to ~Ω. Hence, we can also evaluate Eqs. (S6), (S7) and (S8)
within linear response in these quantities by expanding

fc(εn) ∼ f(ε)− ∂εf n~Ω− ∂εf δµc −
(ε− µ)

T
∂εf δTc (S11)

where fr(ε) = f(ε) is the Fermi distribution of the reservoir.
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Then, by using the expansions for slow driving (S9) and (S11) in the expressions of the charge and heat fluxes, we
can compute the linear response coefficients Λ as defined in Eq. (3) of the main text

Λij(t) =


∫ (ε−µ)i+j−2

hT (j−1) T (t, ε) ∂εf dε if j 6= 3

− ΓcV̇
(Γ+Γc)hΩ

∫
(ε− µ)i−1ρf (t, ε) ∂εf dε if j = 3 ,

(5)

where ρf (t, ε) = |Gf (t, ε)|2(Γ+Γc) is the total frozen density of states of the quantum dot, and T (t, ε) = |Gf (t, ε)|2ΓcΓ
is the transmission probability.

The same procedure can be applied to the heat flux in Eq. (S8), whose definition does not take into account the
energy stored in the tunneling region. In this case, we replace Λ2j → Λ̃2j , so that

˙̃Qc(t) =

3∑
j=1

Λ̃2j(t)Xj(t). (S12)

For this different definition of the heat, we find that Λ̃21(t) = Λ21(t) and Λ̃22(t) = Λ22(t), while the coefficient
describing the pumping of heat changes as

Λ̃23(t) = − ΓcV̇ V

(Γ + Γc)hΩ

∫
dε
df

dε
ρf (t, ε). (S13)

Chemical potential and temperature of the floating contact in the zero temperature limit

In the very low temperature limit of the reservoir, when T → 0, an analysis of the fluxes within linear response turns
out not to be appropriate anymore since second order contributions could become dominant. In this case, instead of
Eq. (3), the fluxes should be expanded as

Ji =

3∑
j=1

(
ΛijXj +

∑
m≤j

LimjXmXj

)
, (S14)

where
−→
L is a vector composed by matrices which capture the second order terms. The extreme situation occurs at

T = 0, in which absolutely all the linear response coefficients of the heat Q̇c vanish (Λ2j = 0). In what follows, we
focus on that case and compute both heat and particle fluxes entering the floating contact, in order to study if Eq.
(6) remain valid when the temperature of the reservoir is close to zero. For the heat flux we find

Q̇T=0
c (t) = L2

22(t)δTc(t)
2 + L2

13(t)δµc(t)~Ω + L2
33(t)(~Ω)2, (S15)

where

L2
22(t) = −π

2

3h
T (t, µ)

L2
13(t) = − ΓcΓ V̇

(Γ + Γc)hΩ

ρf (t, µ)2

2
, (S16)

L2
33(t) = − V̇

ΓΩ
L2

13(t)

and all other coefficients are zero, L2
11 = L2

12 = L2
23 = 0. However for the particle current, unlike the heat flux, only

the coefficient Λ12 = 0 at zero temperature while first order contributions in δµc and ~Ω remain. Thus, we can express
the particle current at lowest order in the affinities as

ṄT=0
c (t) = Λ11(t)δµc(t) + Λ13(t)~Ω + L1

22(t)δTc(t)
2, (S17)

with

L1
22(t) = −π

2

3h
∂εT (t, µ). (S18)
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Here, it is worth to mention that L1
12 = L1

23 = 0, so that L1
22δT

2
c is the only lowest order contribution in δTc.

Similarly, the chemical potential and the temperature of the floating contact can also be found by the condition
ṄT=0
c = Q̇T=0

c = 0. In this occasion, the vanishing fluxes condition leads to a set of equation which is linear en δT 2
c

and δµc, with solution

δTc(t)
2 =

L2
13Λ13 − Λ11L

2
33

(Λ11L2
22 − L1

22L
2
13~Ω)

(~Ω)2,

δµc(t) =
L1

22L
2
33(~Ω)2 − L2

22Λ13~Ω

(Λ11L2
22 − L1

22L
2
13~Ω)

. (S19)

From Eqs. (S16) and (5), it is easy to notice that L2
13Λ13 − Λ11L

2
33 = 0, and then

δTc(t) = 0. (S20)

Moreover, the relation between L2
13 and L2

33 in Eq. (S16) and Λ13 = − V̇
ΓΩΛ11 in (5), lead to the solution

δµc(t) =
~
Γ
V̇ +O(Ω2). (S21)

Therefore, we find that Eq. (6) obtained for kBT � ~Ω within linear response regime, remain valid at zero
temperature for which higher order contributions take place. This is a strong result, that shows the universality of
the behavior of δTc and δµc for any temperature of the reservoir.
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