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Abstract

Given a bounded positive linear operator A on a Hilbert spaceH we
consider the semi-Hilbertian space (H, 〈 , 〉A), where 〈ξ, η〉A = 〈Aξ, η〉.
On the other hand, we consider the operator range R(A1/2) with its
canonical Hilbertian structure, denoted by R(A1/2). In this paper
we explore the relationship between different types of operators on
(H, 〈 , 〉A) with classical subsets of operators on R(A1/2), like Hermi-
tian, normal, contractions, projections, partial isometries and so on.
We extend a theorem by M. G. Krein on symmetrizable operators and
a result by M. Mbekhta on reduced minimum modulus.

Introduction

Let H be a complex Hilbert space and let A : H → H be a positive (semidefinite
bounded linear operator) operator. Consider the semi-inner product defined by A,
namely, 〈ξ, η〉A := 〈Aξ, η〉 for all ξ, η ∈ H. The set of all T ∈ L(H) which are
A-adjointable, i.e., for which there exists W ∈ L(H) such that 〈Tξ, η〉A = 〈ξ,Wη〉A
for all ξ, η ∈ H, is

LA(H) = {T ∈ L(H) : T ∗R(A) ⊆ R(A)}.

On the other side, if ‖ξ‖A = 〈ξ, ξ〉1/2A = ‖A1/2ξ‖, the set of all ‖ ‖A-bounded
operators in L(H) is

LA1/2(H) = {T ∈ L(H) : T ∗R(A1/2) ⊆ R(A1/2)}.

These characterizations follow from the well known Douglas’ range inclusion the-
orem [11]. A recent result by S. Hassi, Z. Sebestyén and H. de Snoo [16] implies
that LA(H) ⊆ LA1/2(H). In what follows, any element in LA1/2(H) will be called
an A-operator.

∗The authors were supported in part by UBACYT I030, PIP 2188/00
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Among the A-operators, the A-symmetrizable operators have been studied since
the beginning of operator theory. Recall that T ∈ L(H) is called A-symmetrizable
if AT = T ∗A, which means that AT is Hermitian or selfadjoint. The book of A.C.
Zaanen [26] and the papers by M. G. Krein [17], P. Lax [18], J. Dieudonné [10], B.
A. Barnes [4], and Z. Sebestyén, and J. Stochel [24] contain many results, examples
and applications of symmetrizable operators. More recently, P. Cojuhari and A.
Gheondea [7], S. Hassi et al. [16] have extended the theory to unbounded operators
T : D(T ) ⊆ H → K, with semi inner products 〈 , 〉A on H and 〈 , 〉B on K, where
B is a positive operator on K.

The semi-inner product 〈 , 〉A induces on the quotient H/N(A) an inner prod-
uct which is not complete unless R(A) is closed (here N(A) denotes the nullspace
and R(A) the range of A). A canonical construction due to de Branges and
Rovnyak [5], [6] shows that the completion of H/N(A) is isometrically isomor-
phic to the range R(A1/2) of the positive square root of A, with the inner product
(A1/2ξ, A1/2η) := 〈Pξ, Pη〉, where P denotes the orthogonal projection onto the clo-
sure of R(A) in H. The Hilbert space (R(A1/2), ( , )) will be denoted by R(A1/2).
The books of T. Ando [1] and D. Sarason [20] and a series of papers of Z. Sebestyén
[21], [22], [23], and Z. Sebestyén and J. Stochel [24] are excellent sources for this
construction.

This paper is devoted to explore the relationship between A-operators in L(H)
and the algebra L(R(A1/2)) of all (bounded linear) operators on R(A1/2). There
is a unitary operator UA from the closure of R(A) in H onto the space R(A1/2).
The conjugation by UA provides an isometric isomorphism between L(R(A)) and
L(R(A1/2)). However, this isomorphism has no good properties with respect to
〈 , 〉A . Our choice is to study the way in which the operator WA : H → R(A1/2)
defined by ξ 7→ Aξ, and a certain adjoint of WA transform A-operators in L(H)
into operators in L(R(A1/2)), and conversely.

We describe now the main results of this paper. In 1937 M. G. Krein [17] (and,
later and independently, P. Lax [18]) proved the following theorem. Consider an
inner product space L with an additional Banach norm ‖ ‖B and let T : L→ L be
a linear operator such that 〈Tξ, η〉 = 〈ξ, Tη〉 for all ξ, η ∈ L. If T is ‖ ‖B-bounded
then it is also ‖ ‖L-bounded. Our extension is the following: if L = R(A1/2) and
T : L→ L is linear and it admits a 〈 , 〉-adjoint V : L→ L, then T is ‖ ‖H-bounded
if it is ‖ ‖R(A1/2)-bounded.

The second main result is the construction of partially defined homomorphisms
α : L(H) → L(R(A1/2)), β : L(R(A1/2)) → L(H) such that they basically trans-
port the Hermitian and normal operators, the contractions, the partial isometries
and projections, from one side to the other. In a paper by Cojuhari and Gheon-
dea [7], the operator α(T ) ∈ L(R(A1/2)) is called the lifting of T ; we follow their
terminology.

Finally, we extend to A-operators a result by M. Mbekhta [19] on the reduced
minimum modulus of a partial isometry.

The contents of the paper are the following. Section 1 contains basic results on
A-operators. There is also a description of the range inclusion theorem of R. G.
Douglas [11], which is a key for several results of this paper. Section 2 is devoted to
the description of L(R(A1/2)) and to the extension of Krein’s theorem. In section
3 we study the correspondence between A-operators and classes of operators in
L(R(A1/2)). The final section 4 contains the results on the A-reduced minimum
modulus.

1 Preliminaries

Throughout G, H and K denote complex Hilbert spaces with inner product 〈 , 〉 .
By L(H,K) we denote the space of all bounded linear operators from H to K,
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and we abbreviate L(H) = L(H,H). L(H)+ is the cone of positive (semidefinite)
operators of L(H), i.e., L(H)+ := {A ∈ L(H) : 〈Aξ, ξ〉 ≥ 0 ∀ξ ∈ H}. For every
T ∈ L(H,K) its range is denoted by R(T ), its nullspace by N(T ) and its adjoint
by T ∗. Given a closed subspace S of H, PS denotes the orthogonal projection onto
S.

1.1 The semi-Hilbertian space (H, 〈 , 〉A)

Given A ∈ L(H)+, the functional 〈 , 〉A : H×H → C, 〈ξ, η〉A := 〈Aξ, η〉, defines a
Hermitian sesquilinear form which is positive semidefinite, i.e., a semi-inner product
on H. So, (H, 〈 , 〉A) is a semi-Hilbertian space. By ‖ . ‖A we denote the seminorm
on H induced by 〈 , 〉A , i.e., ‖ξ‖A = 〈ξ, ξ〉1/2A . Given a subspace S of H its A-
orthogonal subspace is the subspace S⊥A = {ξ ∈ H : 〈ξ, η〉A = 0 ∀ η ∈ S}.
Observe that 〈 , 〉A induces a seminorm on a subset of L(H). More precisely, given
T ∈ L(H), if there exists a constant c > 0 such that ‖Tω‖A ≤ c‖ω‖A for every
ω ∈ H then it holds ‖T‖A := sup

ω∈R(A)

ω 6=0

‖Tω‖A

‖ω‖A
< ∞. Define LA1/2(H) := {T ∈ L(H) :

for some c > 0, ‖Tξ‖A ≤ c‖ξ‖A ∀ξ ∈ H}. LA1/2(H) is a subalgebra of L(H). Note
that given T ∈ LA1/2(H), in general, T ∗ /∈ LA1/2(H).
Given T ∈ L(H) we say that W ∈ L(H) is an A-adjoint of T if 〈Tξ, η〉A = 〈ξ,Wη〉A
for every ξ, η ∈ H, or, which is equivalent, if W satisfies the equation AX = T ∗A.
The operator T is called A-selfadjoint if AT = T ∗A. The existence of an A-
adjoint operator is not guaranteed. Observe that a given T ∈ L(H) may admit
none, one or many A-adjoints: in fact, if W is an A-adjoint of T and AZ = 0 for
some Z ∈ L(H) then W + Z is also an A-adjoint of T . This kind of equations can
be studied applying the next theorem of R. G. Douglas (for its proof see [11] or
[13]).

Theorem (Douglas) Let B ∈ L(H,K) and C ∈ L(G,K). The following
conditions are equivalent:

1. R(C) ⊆ R(B).

2. There is a positive number λ such that CC∗ ≤ λBB∗.

3. There is D ∈ L(G,H) such that BD = C.

If one of these conditions holds then there is a unique operator E ∈ L(G,H) such
that BE = C and R(E) ⊆ R(B∗). Furthermore, N(E) = N(C). Such E is called
the reduced solution or Douglas solution of BX = C.
The reduced solution of the equation BX = C can be explicitly obtained by means
of the Moore-Penrose inverse of B. Recall that given B ∈ L(H,K) the Moore-
Penrose inverse of B, denoted by B†, is defined as the unique linear extension of
B̃−1 to D(B†) := R(B)+R(B)⊥ with N(B†) = R(B)⊥, where B̃ is the isomorphism
B|N(B)⊥ : N(B)⊥ −→ R(B). It holds that B† is the unique solution of the four
“Moore-Penrose equations”:

BXB = B, XBX = X, XB = PN(B)⊥ and BX = P
R(B)

|D(B†).

B† is a bounded operator with closed range if and only if R(B) is closed. the
reduced solution of the equation BX = C with R(C) ⊆ R(B), is B†C. the range
inclusion guarantees its boundedness. For this and other results concerning different
generalized inverses of B and solutions of the equations BX = C, see Engl and
Nashed [12] and Arias et al. [3].
In what follows, we denote LA(H) := {T ∈ L(H) : T admits A-adjoint}. The
next proposition shows that the notations LA(H) and LA1/2(H) which look quite
different, are consistent.
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Proposition 1.1. Let A ∈ L(H)+. Then:

1. LA(H) = {T ∈ L(H) : T ∗R(A) ⊆ R(A)}.

2. LA1/2(H) = {T ∈ L(H) : T ∗R(A1/2) ⊆ R(A1/2)}.

Proof. (1) It is a straightforward application of Douglas theorem.
(2) Observe that T ∈ LA1/2(H) if and only if T ∗AT ≤ cA, and apply Douglas
theorem.

The next result has been proved in a more general context by Hassi, Sebestyén
and de Snoo ([16], Theorem 5.1). Here we present a short proof due to J. An-
tezana, valid for bounded operators, which only uses the so called Jensen operator
inequality.

Proposition 1.2. Let A ∈ L(H)+. Then, LA(H) ⊆ LA1/2(H).

Proof. Let T ∈ LA(H). Without loss of generality it is enough to consider the
case where T is a contraction. In this case the map φ : L(H) → L(H) defined by
φ(E) = T ∗ET is a contractive positive map. If there is an operator C ∈ L(H) such
that AC = T ∗A then

T ∗A2T = ACC∗A ≤ ‖C‖2A2.

Now, by Jensen’s inequality (see [14], [15]), we obtain that T ∗AT ≤ (T ∗A2T )1/2.
On the other hand, (T ∗A2T )1/2 ≤ ‖C‖A because f(t) = t1/2 is operator monotone.
This proves that

(T ∗A1/2)(T ∗A1/2)∗ = T ∗AT ≤ ‖C‖A.
Therefore, by Douglas theorem, T ∈ LA1/2(H).

Remark 1.3. The same proof, changing t → t1/2 by t → ts shows that LA(H) ⊆
LAs(H) for all s ∈ (0, 1). More generally, if 0 < s < s′ < 1 then LAs′ (H) ⊆ LAs(H).
Moreover, LAs′ (H) = LAs(H) if and only if R(A) is closed.

2 The algebra L(R(A1/2))

Let A ∈ L(H)+. R(A1/2) be equipped with the inner product

(A1/2ξ, A1/2η) := 〈Pξ, Pη〉 for every ξ, η ∈ H,

where we abbreviate P
R(A)

by P . It can be checked that R(A1/2) = (R(A1/2), ( , ))
is a Hilbert space. Moreover, R(A) is dense in R(A1/2) and (Aξ,Aη) = 〈ξ, η〉A for
every ξ, η ∈ H.
In this section we describe L(R(A1/2)). For this, we consider some operators be-
tween H and R(A1/2), and R(A) and R(A1/2), namely,

ZA : H → R(A1/2) defined by ZAξ = A1/2ξ;

UA : R(A)→ R(A1/2) defined by UAξ = A1/2ξ;

WA : H → R(A1/2) defined by WAξ = Aξ.

Following Z. Sebestyén and J. Stochel [24], we use the notations ZA, UA andWA just
to distinguish them from A1/2 : H → H, A1/2|

R(A)
: R(A) → H and A : H → H,

respectively. In fact, when taking adjoints, the differences between A1/2, ZA and
UA (respectively, A and WA) become apparent.
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Proposition 2.1. The following assertions hold:

1. ZA ∈ L(H,R(A1/2)) and ZA is onto;

2. Z∗A ∈ L(R(A1/2),H), Z∗A(A1/2η) = Pη;

3. Z∗AZA = P and ZAZ
∗
A = IR(A1/2), in particular ZA is a coisometry;

4. UA ∈ L(R(A),R(A1/2)) is an unitary operator;

5. ZA|R(A)
= UA;

6. WA ∈ L(H,R(A1/2)) and R(WA) = R(A) is dense in R(A1/2);

7. W ∗A : R(A1/2)→ H, W ∗A(A1/2η) = A1/2η, and R(W ∗A) = R(A1/2);

8. W ∗AWA = A and Z∗AWA = A1/2.

Proof. Straightforward.

The next result gives necessary and sufficient conditions for a linear operator T̃ :
R(A1/2)→ R(A1/2) to be bounded under the norm ‖ ‖R(A1/2).

Proposition 2.2. Let T̃ : R(A1/2) → R(A1/2) be a linear operator. Then there
exists a unique linear operator V : H → H such that R(V ) ⊆ R(A) and A1/2V =
T̃A1/2. Moreover, T̃ is bounded in R(A1/2) if and only if V is bounded in H. In
such case, V = Z∗AT̃ZA and it is the reduced solution of the equation ZAX = T̃ZA.
Moreover, ‖T̃‖R(A1/2) = ‖V ‖.

Proof. Given ξ ∈ H there exists a unique η ∈ R(A) such that T̃ (A1/2ξ) = A1/2η.

Define V : H → H by V ξ = η. It is easy to see that V is linear and R(V ) ⊆ R(A).
Furthermore, A1/2V = T̃A1/2. The uniqueness is straightforward. Now, suppose
that T̃ is bounded in R(A1/2). Hence, as T̃ZA = ZAV then, by Douglas theorem,
V is bounded. Moreover, since R(V ) ⊆ R(A) then V is the reduced solution
of the equation T̃ZA = ZAX and V = Z∗AT̃ZA. Conversely, if V is bounded
then there exists c > 0 such that ‖V ξ‖ ≤ c‖ξ‖ for every ξ ∈ H. In particular,
‖V Pξ‖ ≤ c‖Pξ‖ for every ξ ∈ H. Now, since N(A1/2) ⊆ N(T̃A1/2) = N(V ),
then V P = V . Hence, ‖V ξ‖ ≤ c‖Pξ‖ for every ξ ∈ H or, which is equivalent,
‖T̃ (A1/2ξ)‖R(A1/2) ≤ c‖A1/2ξ‖R(A1/2) for every ξ ∈ H. So, T̃ is bounded. On the
other hand, since T̃ZA = ZAV , R(V ) ⊆ R(A) and N(A) ⊆ N(V ) it holds

‖T̃‖R(A1/2) = sup{ ‖T̃A1/2ξ‖R(A1/2) : ‖A1/2ξ‖R(A1/2) = 1, ξ ∈ H}

= sup{ ‖A1/2V ξ‖R(A1/2) : ‖A1/2ξ‖R(A1/2) = 1, ξ ∈ H}
= sup{ ‖PV ξ‖ : ‖Pξ‖ = 1, ξ ∈ H}
= sup{ ‖V ξ‖ : ‖ξ‖ = 1, ξ ∈ H}
= ‖V ‖.
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In his groundbreaking paper [17], M. G. Krein proved the following theorem. Let
(L, 〈 , 〉) be an inner product space with Euclidean norm ‖ ‖L such that there exists
a (complete) Banach norm ‖ ‖B on L. Let T : L → L be a linear operator such
that 〈Tξ, η〉 = 〈ξ, Tη〉 ∀ξ, η ∈ L. If T is ‖ ‖L-bounded then it is also ‖ ‖B-bounded.
We prove now that, for the special case L = R(A1/2) with the inner product of
H and the Banach norm ‖ ‖R(A1/2), the same conclusion holds for a wider class of
operators, namely, it holds for all linear operators T : L → L such that it admits
an adjoint Z : L→ L in the sense that 〈Tξ, η〉 = 〈ξ, Zη〉 ∀ ξ, η ∈ L.

Theorem 2.3. Let T̃ : R(A1/2)→ R(A1/2) and Z : R(A1/2)→ R(A1/2) be linear
operators such that

〈
T̃ (A1/2ξ), A1/2η

〉
=
〈
A1/2ξ, Z(A1/2η)

〉
for every ξ, η ∈ H. If

T̃ is bounded in R(A1/2) then T̃ is bounded in H.

Proof. By Proposition 2.2, there exist linear operators V, V1 : H → H such that
T̃A1/2 = A1/2V , ZA1/2 = A1/2V1 and R(V ), R(V1) ⊆ R(A). As T̃ is bounded in
R(A1/2), then V is bounded. Moreover, for every ξ, η ∈ H it holds 〈ξ, AV1η〉 =〈
A1/2ξ, A1/2V1η

〉
=
〈
A1/2ξ, ZA1/2η

〉
=
〈
T̃A1/2ξ, A1/2η

〉
=
〈
A1/2V ξ,A1/2η

〉
=

〈ξ, V ∗Aη〉 . Thus, AV1 = V ∗A. So V ∈ LA(H) ⊆ LA1/2(H). Therefore, by
Proposition 1.1, there exists c > 0 such that V ∗AV ≤ cA, or which is the same
‖A1/2V ξ‖ ≤ c‖A1/2ξ‖ for every ξ ∈ H. Thus, ‖T̃ (A1/2ξ)‖ = ‖A1/2V ξ‖ ≤ c‖A1/2ξ‖
for every ξ ∈ H. Therefore T̃ is bounded in H.

3 Relationship among A-operators and operators
of L(R(A1/2))

In this section we study the problem of relating classes of A-operators with similar
classes of operators on R(A1/2). For this, note that if one needs to work with T ∈
L(H,K) and there are positive operators A ∈ L(H)+, B ∈ L(K)+ inducing semi-
inner products 〈 , 〉A on H and 〈 , 〉B on K, respectively, then T is AB-adjointable,
in the sense that there exists W ∈ L(K,H) such that 〈Tξ, η〉B = 〈ξ,Wη〉A ∀ξ ∈ H,
η ∈ K, if and only if the equation AX = T ∗B admits a solution; by Douglas
theorem, this is equivalent to R(T ∗B) ⊆ R(A). However, if R(T ∗B) 6⊆ R(A), the
definition of AB-adjoint of T can be extended as follows:

Definition 3.1. Given T ∈ L(H,K) its AB-adjoint is the operator T] defined by

D(T ]) = {ξ ∈ K : ∃η ∈ R(A) such that 〈Tν, ξ〉B = 〈ν, η〉A ∀ν ∈ H};

and T ]ξ = η for each ξ ∈ D(T ]).

Proposition 3.2. Let A ∈ L(H)+, B ∈ L(K)+ and T ∈ L(H,K). The next
assertions hold:

1. T ] is a well defined linear operator.

2. If R(T ∗B) ⊆ R(A) then T ] is the reduced solution of the equation AX =
T ∗B, i.e. T ] = A†T ∗B.

Proof. 1. If given ξ ∈ D(T ]) there exist η1, η2 ∈ R(A) such that 〈ν, η1〉A =
〈Tν, ξ〉B = 〈ν, η2〉A for every ν ∈ H then 〈Aν, η1 − η2〉 = 0 for every ν ∈ H.
So, A(η1 − η2) = 0. Therefore, η1 = η2 because η1, η2 ∈ R(A). Thus T ] is well
defined.

2. It is a straightforward application of Douglas theorem.
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Observe that if T ∈ LA(H) then T ] denotes the reduced solution of the equation
AX = T ∗A. We work with the next classes of A-operators.
Definition 3.3. Let T ∈ L(H).

1. T ∈ LA(H) is an A-normal operator if T ]T = TT ].

2. T is an A-contraction if ‖Tξ‖A ≤ ‖ξ‖A for every ξ ∈ H.

3. T is called an A-isometry if ‖Tξ‖A = ‖ξ‖A for every ξ ∈ H.

4. T ∈ LA(H) is an A-unitary operator if T and T ] are A-isometries.

5. T ∈ LA(H) is called an A-partial isometry if T ]T is a projection.
In [2] the above classes of operators are studied. The definition of A-partial isometry
can be extended for T /∈ LA(H) (see [2]). However, in that case, the A-partial
isometries are not A-operators, in general. For more results on A-contractions, see
[25] and the references therein.
We denote by Lsa(H) := {T ∈ L(H) : T is selfadjoint}, N (H) := {T ∈ L(H) :
T is normal}, P(H) := {Q ∈ Lsa(H) : Q is projection}, C(H) := {T ∈ L(H) :
T is a contraction}, I(H) := {T ∈ L(H) : T is an isometry}, U(H) := {U ∈
L(H) : U is unitary} and J (H) := {T ∈ L(H) : T is a partial isometry}. We
shall denote, LsaA (H) := {T ∈ L(H) : T is A-selfadjoint} and similarly NA(H),
PA(H), CA(H), IA(H), UA(H) and JA(H).
Remark 3.4. The definition 3.3 can be easily adapted to the case T ∈ L(H,K)
where A ∈ L(H)+, B ∈ L(K)+ induce semi-inner products on H and K, respec-
tively. In this case, the contractions (resp. isometries, unitaries, partial isome-
tries, normal operators) respect to these semi-inner products will be called AB-
contractions (resp. AB-isometries, AB-unitaries, AB-partial isometries,
AB-normal operators).
Observe that the standard way of transfer selfadjoints operators, isometries, projec-
tions, unitary operators and partial isometries of L(H) to similar classes of operator
of L(K), if H and K are isomorphic as Hilbert spaces, is by mean the application
T → UTU∗ where U : H → K is an unitary operator. Nevertheless, note that there
is not unitary transformation between (H, 〈 , 〉A) and R(A1/2); indeed, (H, 〈 , 〉A)
is not a Hilbert space. However, there exists an AI-unitary operator between them
which will play the role of U , namely, WA. Therefore, we shall transfer A-operators
to operators of L(R(A1/2)) by means of WATW

]
A.

Proposition 3.5. The next assertions hold

1. W ]
A = W †A.

2. WA ∈ L(H,R(A1/2)) is an AI-unitary operator.

Proof. (1) First, let us prove that D(W ]
A) = R(A). Let ξ = A1/2η ∈ D(W ]

A).
Then, there exists φ ∈ R(A) such that (WAψ,A

1/2η) = 〈ψ, φ〉A , for every ψ ∈ H;

or which is the same,
〈
A1/2ψ, Pη

〉
=
〈
A1/2ψ,A1/2φ

〉
for every ψ ∈ H. Therefore,

Pη = A1/2φ and so ξ = A1/2η = Aφ ∈ R(A). On the other hand, let Aη ∈ R(A).
Then for every ξ ∈ H, (WAξ, Aη) = 〈ξ, Pη〉A, i.e., Aη ∈ D(W ]

A) and W ]
AAη = Pη.

Hence, D(W ]
A) = R(A). Moreover, as W ]

AAη = Pη, we get that W ]
A = W †A.

(2) First, as ‖WAξ‖R(A1/2) = ‖A1/2ξ‖ = ‖ξ‖A for every ξ ∈ H, then WA ∈
L(H,R(A1/2)) is an AI-isometry. On the other hand, ‖W ]

A(Aξ)‖A = ‖Pξ‖A =
‖A1/2ξ‖ = ‖Aξ‖R(A1/2). Thus, W ]

A is an IA-isometry and so WA ∈ L(H,R(A1/2))
is an AI-unitary operator.
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Observe that the conjugation WATW
]
A is not bounded for every T ∈ L(H) and that

W ]
AT̃WA is not defined for every T̃ ∈ L(R(A1/2)). Thus, this sort of conjugation by

means of theAI-unitaryWA is not as perfect as it is in the case of isomorphic Hilbert
spaces. The study of these conjugations is equivalent to determine conditions for
the commutativity of the following diagram:

H T //

WA

��

H

WA

��
R(A1/2)

T̃ // R(A1/2)

More precisely, we study two different lifting problems:

1. given T ∈ L(H) under which conditions there exists T̃ ∈ L(R(A1/2)) such
that WAT = T̃WA;

2. given T̃ ∈ L(R(A1/2)) under which conditions there exists T ∈ L(H) such
that WAT = T̃WA.

The next result is due to Barnes [4] if A is injective. The general case, but with
an unnecessary extra hypothesis, can be found in [9]. We present a proof based on
Douglas theorem.

Proposition 3.6. Consider T ∈ L(H). Then, there exists T̃ ∈ L(R(A1/2)) such
that T̃WA = WAT if and only if T ∈ LA1/2(H). In such case T̃ is unique.

Proof. If T ∈ LA1/2(H) then T ∗R(A1/2) ⊆ R(A1/2). By Douglas theorem, equation
W ∗AX = T ∗W ∗A has solution S̃ ∈ L(R(A1/2)), because R(T ∗W ∗A) = T ∗R(A1/2) ⊆
R(A1/2) = R(W ∗A); take T̃ = S̃∗. Conversely, if T̃ ∈ L(R(A1/2)) satisfies WAT =
T̃WA then T ∗W ∗A = W ∗AT̃

∗ and, as before, T ∗R(A1/2) ⊆ R(A1/2). Observe that if
there exists such T̃ ∈ L(R(A1/2)), automatically T̃ ∗ ∈ L(R(A1/2)) and so R(T̃ ∗) ⊆
R(A1/2) ⊆ R(A). This means that T̃ ∗ is the reduced solution of the equation
T ∗W ∗A = W ∗AT̃

∗, and, as such, it is unique.

Remark 3.7. Cojuhari and Gheondea [7] proved a similar result under more gen-
eral conditions on A. See also the paper by Hassi et al. [16]. Basically, they suppose
that operators T : H → K, V : K → H satisfy BT = V ∗A, where A ∈ L(H)+ and
B ∈ L(K)+ and they prove the existence of unique T̃ : R(A1/2) → R(B1/2) and
Ṽ : R(B1/2)→ R(A1/2) such that WBT = T̃WA, WAV = Ṽ WB and T̃ ∗ = Ṽ .

In the previous proposition, we studied under which conditions an operator T ∈
L(H) comes from some T̃ ∈ L(R(A1/2)) in the sense that WAT = T̃WA. The next
lemma goes in the reverse direction, namely, given T̃ ∈ L(R(A1/2)) under which
conditions there exists some T ∈ L(H) such that T̃WA = WAT .

Proposition 3.8. Given T̃ ∈ L(R(A1/2)) there exists T ∈ L(H) such that WAT =
T̃WA if and only if R(T̃WA) ⊆ R(WA) = R(A). In such case, there exists a unique
T ∈ LA1/2(H) such that R(T ) ⊆ R(A).

Proof. The first part is a straightforward consequence of Douglas theorem. More-
over, if R(T̃WA) ⊆ R(WA) then the reduced solution T of the equation WAX =
T̃WA verifies that R(T ) ⊆ R(W ∗A) = R(A). On the other hand, R(T ∗A1/2) =
R(T ∗W ∗A) = R(W ∗AT̃

∗) ⊆ R(A1/2). So, T ∈ LA1/2(H).
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Define L̃(R(A1/2)) := {T̃ ∈ L(R(A1/2)) : R(T̃WA) ⊆ R(A)}. L̃(R(A1/2)) is a non
closed subalgebra of L(R(A1/2)). Moreover, observe that T̃ ∈ L̃(R(A1/2)) does
not imply T̃ ∗ ∈ L̃(R(A1/2)), in general. In fact, T̃ and T̃ ∗ ∈ L̃(R(A1/2)) if and
only if R(A) reduces T̃ . In the sequel, we denote L̃sa(R(A1/2)) = Lsa(R(A1/2)) ∩
L̃(R(A1/2)). Similarly we define P̃(R(A1/2)), C̃(R(A1/2)) and Ĩ(R(A1/2)). On
the other hand, we denote by Ñ (R(A1/2)) = {T̃ ∈ L̃(R(A1/2)) ∩ N (R(A1/2)) :
R(A) reduces T̃}. Analogously we define Ũ(R(A1/2)) and J̃ (R(A1/2)).

By Propositions 3.6 and 3.8, the next mappings are well defined:

α : LA1/2(H) −→ L̃(R(A1/2)), T 7−→ T̃

where T̃WAξ = WATξ for all ξ ∈ H, and

β : L̃(R(A1/2)) −→ LA1/2(H), T̃ 7−→ T

where T̃WAξ = WATξ for all ξ ∈ H and R(T ) ⊆ R(A).

Proposition 3.9. The following properties of α and β hold:

1. α is the homomorphism α(T ) = WATW
]
A; α is injective if and only if A is

injective.

2. β is the homomorphism β(T̃ ) = W ]
AT̃WA; β is always injective.

3. ‖α(T )‖R(A1/2) = ‖T‖A and ‖β(T̃ )‖A = ‖T̃‖R(A1/2).

4. The compositions αβ and βα can be explicitly computed as

αβ : L̃(R(A1/2)) −→ L̃(R(A1/2)), αβ(T̃ ) = T̃ and
βα : LA1/2(H) −→ LA1/2(H), βα(T ) = PTP.

Proof. (1) As W ]
A = W †A then α(T ) = WATW

]
A. The linearity of α(T ) is trivial.

If T, T1 ∈ LA1/2(H) then WATT1 = T̃WAT1 = T̃ T̃1WA. So α(TT1) = α(T )α(T1).
Thus α is an homomorphism. Now, note that if T ∈ LA1/2(H) then PTP ∈
LA1/2(H). Therefore, if A is not injective there exists T ∈ LA1/2(H) such that
T 6= PTP and it holds α(T ) = α(PTP ). So α is not injective. Let T, T1 ∈ LA1/2(H)
such that WATW

]
A = WAT1W

]
A. Then, it holds PTP = PT1P and so we obtain

that T = T1 because A is injective; hence α is injective.

(2) As W ]
A = W †A, it is clear that β(T̃ ) = W ]

AT̃WA. The linearity of β is immediate.
In addition, if T̃ , T̃1 ∈ L̃(R(A1/2)) then T̃ T̃1WA = T̃WAT1 = WATT1. Further-
more R(TT1) ⊆ R(A). Thus β(T̃ T̃1) = β(T̃ )β(T̃1). So, β is an homomorphism.
Now, if β(T̃ ) = β(T̃1) then T̃WAξ = T̃1WAξ for all ξ ∈ H. Now, as R(WA) is dense
in R(A1/2), then T̃ = T̃1. Thus β is injective.

(3) If WAT = T̃WA then it is sufficient to show that ‖T‖A = ‖T̃‖R(A1/2). Now,

‖T‖A = sup
06=ξ∈R(A)

‖Tξ‖A
‖ξ‖A

= sup
06=ξ∈R(A)

‖WATξ‖R(A1/2)

‖ξ‖A

= sup
06=ξ∈R(A)

‖T̃WAξ‖R(A1/2)

‖Aξ‖R(A1/2)

= ‖T̃‖R(A1/2)

(4) It is straightforward.
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The next result and, later, item (1) of Proposition 3.13, show a relationship between
the adjoint operation in L(R(A1/2)) and the ] operation in LA1/2(H). This result for
partially defined positive operators is due to Cojuhari and Gheondea ([7], Theorem
3.1). Here, we present a shorter proof for the case A ∈ L(H)+.

Proposition 3.10. Suppose that T,W ∈ L(H) satisfies that AW = T ∗A. Then,
T,W ∈ LA(H) and

W̃ = T̃ ∗

In other words, α(W ) = α(T )∗.

Proof. Indeed, for every ξ, η ∈ H it holds

(T̃ (Aξ), Aη) = (WATξ,Aη) =
〈
A1/2Tξ,A1/2η

〉
= 〈ATξ, η〉

= 〈W ∗Aξ, η〉 = 〈Aξ,Wη〉 = (Aξ,AWη)

= (Aξ, W̃ (Aη)).

Therefore, α(W ) = α(T )∗.

The next theorem which is the main result of this section relates, by means of α,
the classes of A-operators defined above with similar classes in L(R(A1/2)).

Theorem 3.11. Let A ∈ L(H)+.Then, the following equalities hold:

1. α(LsaA (H)) = L̃sa(R(A1/2)),

2. α(NA(H)) = Ñ (R(A1/2)),

3. α(PA(H)) = P̃(R(A1/2)),

4. α(CA(H)) = C̃(R(A1/2)),

5. α(IA(H)) = Ĩ(R(A1/2)),

6. α(UA(H)) = Ũ(R(A1/2)),

7. α(JA(H)) = J̃ (R(A1/2)).

Remark 3.12. Observe that LsaA (H), NA(H), PA(H), UA(H) and JA(H) are sub-
sets of LA(H), a fortiori of LA1/2(H). However, CA(H) and IA(H) are not contained
in LA(H), in general, but they are subsets of LA1/2(H).

For the proof of Theorem 3.11 we shall need the following result in which we de-
termine the images by β of certain subsets of L̃(R(A1/2)).

Proposition 3.13. Let A ∈ L(H)+. The next assertions hold:

1. If T̃ ∈ L̃(R(A1/2)) and R(A) reduces T̃ then β(T̃ ∗) = β(T̃ )].

2. β(L̃sa(R(A1/2))) ⊆ LsaA (H),

3. β(Ñ (R(A1/2))) ⊆ NA(H),

4. β(P̃(R(A1/2))) ⊆ PA(H),
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5. β(C̃(R(A1/2))) ⊆ CA(H),

6. β(Ĩ(R(A1/2))) ⊆ IA(H),

7. β(Ũ(R(A1/2))) ⊆ UA(H).

8. β(J̃ (R(A1/2))) ⊆ JA(H).

Proof. (1) For every ξ, η ∈ H it holds
〈
Aβ(T̃ ∗)ξ, η

〉
= (WAβ(T̃ ∗)ξ,WAη) =

(T̃ ∗WAξ,WAη) = (WAξ, T̃WAη) = (WAξ,WAβ(T̃ )η) =
〈
ξ, Aβ(T̃ )η

〉
. Therefore,

Aβ(T̃ ∗) = β(T̃ )∗A. Furthermore R(β(T̃ ∗)) ⊆ R(A). Hence, β(T̃ ∗) = β(T̃ )].
(2) It is consequence of item (1).
(3) Let T̃ ∈ Ñ (R(A1/2)) and T = β(T̃ ). Hence, TT ] = β(T̃ )β(T̃ ∗) = β(T̃ T̃ ∗) =
β(T̃ ∗T̃ ) = β(T̃ ∗)β(T̃ ) = T ]T . Therefore β(T̃ ) ∈ NA(H).
(4) Let P̃ ∈ P̃(R(A1/2)). Since β is a homomorphism, β(T̃ ) is idempotent. Fur-
thermore, by (2), β(P̃ ) is A-selfadjoint. Thus, β(P̃ ) ∈ PA(H).
(5) Let T̃ ∈ C̃(R(A1/2)) and T = β(T̃ ). Then, for every ξ ∈ H it holds ‖Tξ‖A =
‖ATξ‖R(A1/2) = ‖T̃ (Aξ)‖R(A1/2) ≤ ‖Aξ‖R(A1/2) = ‖ξ‖A . Therefore, T is an A-
contraction.
The proofs of items (6) and (7) are similar to the above one.
(8) If T̃ ∈ J̃ (R(A1/2)) then T̃ ∗T̃ ∈ P̃(R(A1/2)) and β(T̃ ∗T̃ ) = T ]T ∈ PA(H) by
item (4). So T = β(T̃ ) is an A-partial isometry.

By Proposition 3.13 and since αβ = id, the next inclusions hold: L̃sa(R(A1/2)) ⊆
α(LsaA (H)), Ñ (R(A1/2)) ⊆ α(NA(H)), P̃(R(A1/2)) ⊆ α(PA(H)), C̃(R(A1/2)) ⊆
α(CA(H)), Ĩ(R(A1/2)) ⊆ α(IA(H)), Ũ(R(A1/2)) ⊆ α(UA(H)), and J̃ (R(A1/2)) ⊆
α(JA(H)). Hence, in order to finish the proof of Theorem 3.11 it only remains to
show the reverse inclusions:

Proof of Theorem 3.11
(1) This equality is a particular case of Proposition 3.10.
(2) The equality follows since α is a homomorphism.
(3) Let Q ∈ PA(H). By (1), α(Q) = Q̃ ∈ L̃sa(R(A1/2)). Furthermore Q̃ is
idempotent because α is a homomorphism. So, Q̃ ∈ P(R(A1/2)).
(4) Let T ∈ CA(H) and T̃ = α(T ). Then, for every ξ ∈ H it holds ‖T̃ (Aξ)‖R(A1/2) =
‖ATξ‖R(A1/2) = ‖Tξ‖A ≤ ‖ξ‖A = ‖Aξ‖R(A1/2).Hence, asR(A) is dense in R(A1/2),
we get that T̃ is a contraction.
The proofs of items (5) and (6) can be done following the same lines that in item
(4).
(7) Let T ∈ JA(H) then T ]T is a projection. So α(T ]T ) = T̃ ∗T̃ ∈ P̃(R(A1/2)).
Then T̃ ∈ J̃ (R(A1/2)).

Remark 3.14. A closed subspace S of H and a positive semidefinite operator
A are called compatible if there exists a (bounded linear) projection Q onto S
which is A-selfadjoint. In [9], the compatibility of a pair (A,S) is related to the
existence in the operator range R(A1/2) of a convenient orthogonal projection.
More precisely, given a closed subspace S of H the pair (A,S) is compatible if and
only if P

A(S)
′ ∈ L̃(R(A1/2)) whereA(S)

′
denotes the closure ofA(S) in R(A1/2). As

a consequence, in general, P̃(R(A1/2)) 6= P(R(A1/2)). In fact, consider B ∈ L(H)+

11



with non closed range and A ∈ L(H ⊕ H)+ defined by A =
(

B B1/2

B1/2 I

)
.

Now, by Theorem 2.9, [8], the pair (A,R(B) ⊕ {0}) is not compatible. Therefore,

if W = A(R(B)⊕ {0})
′

then PW 6∈ P̃(R(A1/2)).

4 The A-reduced minimum modulus

In this section we introduce the concept of A-reduced minimum modulus of an
operator. This is a natural generalization of the reduced minimum modulus: recall
that the reduced minimum modulus of an operator T ∈ L(H) is defined as

γ(T ) = inf
{
‖Tξ‖ : ξ ∈ N(T )⊥ and ‖ξ‖ = 1

}
.

Definition 4.1. Let A ∈ L(H)+ and T ∈ L(H). The A-reduced minimum
modulus of T is

γA(T ) = inf
{
‖Tξ‖A : ξ ∈ N(A1/2T )⊥A and ‖ξ‖A = 1

}
.

Note that if T ∈ LA(H) then γA(T ) = inf
{
‖Tξ‖A : ξ ∈ R(T ]T ) and ‖ξ‖A = 1

}
.

From now on, given T ∈ LA1/2(H) we denote by T � the reduced solution of the
equation A1/2X = T ∗A1/2, namely, T � = (A1/2)†T ∗A1/2.

Proposition 4.2. Let A ∈ L(H)+. If T ∈ LA1/2(H) then γA(T ) ≤ γ(C) for every
solution C of the equation A1/2X = T ∗A1/2. In particular, γA(T ) ≤ γ(T �).

Proof. Let T ∈ LA1/2(H) and C ∈ L(H) such that A1/2C = T ∗A1/2. If ξ ∈
N(A1/2T )⊥A then η = A1/2ξ ∈ A−1/2(R(T ∗A1/2)). So ‖ξ‖A = ‖η‖ and ‖Tξ‖2A =
‖C∗η‖2. On the other hand, as R(C) ⊆ A−1/2(R(T ∗A1/2)), it holds that N(C∗)⊥ =
R(C) ⊆ A−1/2(R(T ∗A1/2)) ⊆ A−1/2(R(T ∗A1/2)). Therefore,

γA(T ) = inf{‖Tξ‖A : ξ ∈ N(A1/2T )⊥A and ‖ξ‖A = 1}

= inf{‖C∗η‖ : η ∈ A−1/2(R(T ∗A1/2)) and ‖η‖ = 1}
≤ inf{‖C∗η‖ : η ∈ N(C∗)⊥ and ‖η‖ = 1}
= γ(C∗) = γ(C).

Proposition 4.3. Let A ∈ L(H)+, T ∈ LA(H) and C be a solution of the equation
A1/2X = T ∗A1/2. If A1/2R(T ]T ) ⊆ R(C) then γA(T ) = γ(C).

Proof. Let C ∈ L(H) be a solution of the equation A1/2X = T ∗A1/2. Then, by
Proposition 4.2, it holds that γA(T ) ≤ γ(C). Now, as T ∈ LA(H), if ξ ∈ R(T ]T )
then η = A1/2ξ ∈ A1/2R(T ]T ). Then,

γA(T ) = inf{‖Tξ‖A : ξ ∈ R(T ]T ) and ‖ξ‖A = 1}
= inf{‖C∗η‖ : η ∈ A1/2R(T ]T ) and ‖η‖ = 1}
≥ inf{‖C∗η‖ : η ∈ N(C∗)⊥ and ‖η‖ = 1}
= γ(C∗) = γ(C).

Therefore, γA(T ) = γ(C).
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Lemma 4.4. Let A ∈ L(H)+ and T ∈ LA(H). Then T �A1/2 = A1/2T ].

Proof. As LA(H) ⊆ LA1/2(H) there exists T �. Now, A1/2T �A1/2 = T ∗A. On
the other hand, A1/2A1/2T ] = AT ] = T ∗A. Then, T �A1/2 and A1/2T ] are both
reduced solutions of the equation A1/2X = T ∗A. Therefore T �A1/2 = A1/2T ].

The next result shows that the A-reduced minimum modulus of an operator
T ∈ LA(H) coincides with the classical reduced minimum modulus of T �.

Corollary 4.5. Let A ∈ L(H)+ and T ∈ LA(H). Then
(1) γA(T ) = γ(T �).
(2) γA(T ) = γA(T ]).

Proof. 1. By Proposition 4.3, it is sufficient to show that A1/2R(T ]T ) ⊆ R(T �).
Now, by Lemma 4.4, it holds that A1/2R(T ]T ) = R(T �A1/2T ) ⊆ R(T �). Hence,

A1/2R(T ]T ) = A1/2R(T ]T ) ⊆ R(T �). So, A1/2R(T ]T ) ⊆ R(T �) and the assertion
follows.

2. As T ∈ LA(H) then T ] ∈ LA(H). By the above item, it is sufficient
to show that (T �)∗ is the reduced solution of the equation A1/2X = (T ])∗A1/2.
Now, by Lemma 4.4, it holds that A1/2(T �)∗ = (T ])∗A1/2. On the other hand,
R((T �)∗) ⊆ R((T �)∗) = N(T �)⊥ = N(T ∗A1/2)⊥ = R(A1/2T ) ⊆ R(A1/2) and so
the assertion follows.

We finish this section extending the following theorem due to Mbekhta [19]:

Theorem (Mbekhta) If T ∈ L(H) is a contraction, then the following conditions
are equivalent:

1. T is a non-zero partial isometry.

2. γ(T ) = 1.

Theorem 4.6. Let A ∈ L(H)+. If T ∈ LA(H) is an A-contraction, then the
following conditions are equivalent:

1. T is an A-partial isometry such that T ] is non-zero.

2. γA(T ) = 1.

Proof. Let T be an A-partial isometry such that T ] is non-zero. Then T ]T is non-
zero and ‖Tξ‖A = ‖ξ‖A for every ξ ∈ R(T ]T ). Therefore, by definition, γA(T ) = 1.
Conversely, since T ∈ LA(H) ⊆ LA1/2(H) then (T �)∗ = A1/2T (A1/2)† ∈ L(H).
Thus, T �(T �)∗ = (A1/2)†T ∗AT (A1/2)† ≤ (A1/2)†A(A1/2)† = P

R(A)
≤ I. Therefore

(T �)∗ is a contraction. On the other hand, by Corollary4.5, 1 = γA(T ) = γ(T �) =
γ((T �)∗). Then, by Mbekhta’s theorem, (T �)∗ is a non-zero partial isometry. More-
over, as (T �)∗ is non-zero, T ] is non-zero. Now,

(T ]T )2 = A†T ∗ATA†T ∗AT

= (A1/2)†(A1/2)†T ∗A1/2A1/2T (A1/2)†(A1/2)†T ∗A1/2A1/2T

= (A1/2)†T �(T �)∗|D((A1/2)†)T
�A1/2T = (A1/2)†T �A1/2T

= T ]T.

Then T is an A-partial isometry.
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